CN103413127A - 基于频谱奇异值分解的海上目标显著性检测方法 - Google Patents

基于频谱奇异值分解的海上目标显著性检测方法 Download PDF

Info

Publication number
CN103413127A
CN103413127A CN2013104084618A CN201310408461A CN103413127A CN 103413127 A CN103413127 A CN 103413127A CN 2013104084618 A CN2013104084618 A CN 2013104084618A CN 201310408461 A CN201310408461 A CN 201310408461A CN 103413127 A CN103413127 A CN 103413127A
Authority
CN
China
Prior art keywords
marine
spectrum
feature
amplitude spectrum
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013104084618A
Other languages
English (en)
Other versions
CN103413127B (zh
Inventor
任蕾
冉鑫
王胜正
彭静
施朝健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Maritime University
Original Assignee
Shanghai Maritime University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Maritime University filed Critical Shanghai Maritime University
Priority to CN201310408461.8A priority Critical patent/CN103413127B/zh
Publication of CN103413127A publication Critical patent/CN103413127A/zh
Application granted granted Critical
Publication of CN103413127B publication Critical patent/CN103413127B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Analysis (AREA)
  • Complex Calculations (AREA)
  • Image Processing (AREA)

Abstract

一种基于频谱奇异值分解的海上目标显著性检测方法,利用海上图像CIELab空间的亮度和颜色通道,对其分别进行傅里叶变换,并根据设定的阈值选择其幅度谱的非主要分量,与原相位谱结合进行傅里叶逆变换,得到各特征的显著图,将颜色显著图合并后再与亮度显著图合并得到总显著图。本发明能够快速提取海上场景中的显著区域,有利于海上场景中目标检测,较好的抑制了海杂波的干扰,无须多个尺度的显著图融合,可在图像原图尺度上实现,能为海难搜救中的目标检测、海事监控、港口视频监控、海事执法取证中的各类船舶检测等提供机器视觉的辅助手段。

Description

基于频谱奇异值分解的海上目标显著性检测方法
技术领域
本发明涉及一种基于频谱奇异值分解(singular value decomposition, SVD)的海上目标显著性检测方法。
背景技术
近十几年来,国内外很多学者对人眼视觉的注意机制进行了深入研究。计算机视觉领域的学者在提出各类视觉注意的计算模型方面进行了大量的研究工作。目前,视觉注意的研究成果已应用于图像检索、图像质量评价、图像和视频编码、目标检测和跟踪等领域。显著性检测是视觉注意模型的核心问题,即如何度量图像的显著性。根据利用的图像空间划分,可分为空间域方法和频域方法。目前已提出的频域显著性检测方法,其本质多为通过对图像傅里叶变换或离散余弦变换后的频谱进行白化或者滤波来突出显著区域。
侯晓迪等人提出频谱残差方法(SR,spectral residual),以图像对数幅度谱的残差定义图像显著性。之后有学者提出基于图像相位谱的显著性检测方法,并利用四元数傅里叶变换,将SR方法中仅处理亮度通道扩展到同时处理颜色、亮度和运动特征等四个通道(QPFT,phase spectrum using quaternion Fourier Transform)。余映等人提出脉冲余弦变换的显著性检测方法。之后,侯晓迪等人也证明了利用离散余弦变换方法提取显著图的有效性,并在RGB颜色空间和CIELab颜色空间分别进行了实验。但这些显著性检测方法,均是在图像单一尺度上实现,且需要对图像进行下采样。改变图像尺寸时,得到的显著图差异较大。张巧荣等利用多尺度SR方法,选择亮度、颜色和方向三类特征,提取显著图,其检测效果好于单一尺度的方法。为了解决多通道数据的显著性检测问题,丁正虎等人在四元数傅里叶变换的基础上提出利用双四元数检测多谱图像中的显著目标,该方法的本质与相位谱方法一致。
针对海上场景中的船舶检测问题,部分学者提出基于可见光图像和红外图像的海上舰船检测方法,同时对利用不同颜色空间进行了研究工作,包括利用海上场景的RGB颜色空间和HIS颜色空间等。吴琦颖等人在海上运动目标实时监测和跟踪系统中引入视觉注意机制,提出了一种迭代的基于倒三角小模板的线性低通滤波方法,快速实现粗分辨率图像上的平滑去噪,以此凸显目标。吴琦颖等还提出基于可见光图像序列的海上运动目标快速检测方法,利用视觉注意模型首先在静态图像中分割感兴趣区域(ROI, region of interest),进而仅在感兴趣区域中应用改进的时间差分法检测运动目标。同时,就利用SAR图像和多光谱图像进行舰船检测,有学者提出了相应的显著性检测方法。
但由于利用单一尺度的频谱残差方法、相位谱方法、离散余弦变换方法等对图像尺度是敏感的,当改变图像尺度时会得到不同的显著图,同时无法完整的提取显著目标的内部区域。而利用多个尺度融合的方法会增加算法的复杂度,特别的在无任何先验信息的前提下,如何选择融合的尺度也是需要额外考虑的问题。
发明内容
本发明提供一种基于频谱奇异值分解的海上目标显著性检测方法,能够快速提取海上场景中的显著区域,有利于海上场景中目标检测,较好的抑制了海杂波的干扰,无须多个尺度的显著图融合,可在图像原图尺度上实现,能为海难搜救中的目标检测、海事监控、港口视频监控、海事执法取证中的各类船舶检测等提供机器视觉的辅助手段。
为了达到上述目的,本发明提供一种基于频谱奇异值分解的海上目标显著性检测方法,其特征在于,该检测方法包含以下步骤:
步骤1、提取可见光海上图像                                                
Figure 247833DEST_PATH_IMAGE001
步骤2、将海上图像
Figure 252698DEST_PATH_IMAGE001
由RGB颜色空间转换至CIELab颜色空间,并提取亮度L和两个颜色通道a,b作为基本特征
Figure 2013104084618100002DEST_PATH_IMAGE002
步骤3、将各特征图像分别进行傅里叶变换,得到各个特征的幅度谱;
                                        (1)
Figure 2013104084618100002DEST_PATH_IMAGE004
                                        (2)
Figure 737348DEST_PATH_IMAGE005
                                         (3)
其中,
Figure 2013104084618100002DEST_PATH_IMAGE006
表示傅里叶变换,
Figure 272235DEST_PATH_IMAGE007
是各特征的幅度谱,幅度谱是对图像中不同频率信号分布情况的表征方式,
Figure 2013104084618100002DEST_PATH_IMAGE008
是各特征的相位谱;
步骤4、对得到的各幅度谱进行奇异值分解;
Figure 182422DEST_PATH_IMAGE009
                                              (4)
Figure 2013104084618100002DEST_PATH_IMAGE010
                                              (5)
Figure 730822DEST_PATH_IMAGE011
                                              (6)
其中,左奇异矩阵为
Figure 2013104084618100002DEST_PATH_IMAGE012
,右奇异矩阵为
Figure 17447DEST_PATH_IMAGE013
,同时奇异值矩阵为,且其对角线元素按照降序排列,分别为
Figure 406840DEST_PATH_IMAGE015
Figure 2013104084618100002DEST_PATH_IMAGE016
Figure 254972DEST_PATH_IMAGE017
Figure 2013104084618100002DEST_PATH_IMAGE018
为各奇异值矩阵的秩;
步骤5、根据设定的阈值
Figure 729816DEST_PATH_IMAGE019
,选择每个特征幅度谱的非主要分量;
选择满足的最小
Figure 554552DEST_PATH_IMAGE021
个特征分量,与原幅度谱差的绝对值作为非主要分量的幅度谱,其中,P是指排序前p个奇异值,r是指排序前r个奇异值,均为正整数;
对每个特征均利用上述方法计算幅度谱的非主要分量有:
Figure 2013104084618100002DEST_PATH_IMAGE022
                                      (7)
Figure 798452DEST_PATH_IMAGE023
                                       (8)
                                       (9)
其中,表示各特征幅度谱的非主要分量,
Figure 844872DEST_PATH_IMAGE027
Figure 2013104084618100002DEST_PATH_IMAGE028
分别由各矩阵的前
Figure 473300DEST_PATH_IMAGE029
个矢量构成;
步骤6、将各特征提取的幅度谱非主要分量与原相位谱结合进行傅里叶逆变换,得到各个特征的显著图;
                                    (10)
Figure 73170DEST_PATH_IMAGE031
                                     (11)
Figure 2013104084618100002DEST_PATH_IMAGE032
                                    (12)
其中,
Figure 761641DEST_PATH_IMAGE033
表示傅里叶逆变换,exp是指数运算,即的意思,参数φ表示相位谱,j是虚数单位;
步骤7、对步骤7得到的各显著图进行空间域的高斯滤波以去除杂波噪声;
步骤8、将两个颜色通道的显著图进行线性合并,得到颜色通道显著图SMcolor
Figure 211077DEST_PATH_IMAGE035
                                        (13)
步骤9、将颜色通道显著图与亮度显著图融合为总显著图SM;
Figure 2013104084618100002DEST_PATH_IMAGE036
                                         (14)。
本发明能够快速提取海上场景中的显著区域,有利于海上场景中目标检测,较好的抑制了海杂波的干扰,无须多个尺度的显著图融合,可在图像原图尺度上实现,能为海难搜救中的目标检测、海事监控、港口视频监控、海事执法取证中的各类船舶检测等提供机器视觉的辅助手段。
附图说明
图1是本发明的流程图。
具体实施方式
以下根据图1,具体说明本发明的较佳实施例。
本发明提供一种基于频谱奇异值分解的海上目标显著性检测方法,该检测方法包含以下步骤:
步骤1、提取可见光海上图像
Figure 377616DEST_PATH_IMAGE001
步骤2、将海上图像
Figure 94643DEST_PATH_IMAGE001
由RGB颜色空间转换至CIELab颜色空间,并提取亮度L和两个颜色通道a,b作为基本特征
Figure 954014DEST_PATH_IMAGE002
步骤3、将各特征图像分别进行傅里叶变换,得到各个特征的幅度谱;
Figure 562850DEST_PATH_IMAGE003
                                           (1)
Figure 798659DEST_PATH_IMAGE004
                                           (2)
Figure 871658DEST_PATH_IMAGE005
                                            (3)
其中,
Figure 839614DEST_PATH_IMAGE006
表示傅里叶变换,
Figure 935746DEST_PATH_IMAGE007
是各特征的幅度谱,幅度谱是对图像中不同频率信号分布情况的表征方式,是各特征的相位谱;
步骤4、对得到的各幅度谱进行SVD(奇异值分解);
Figure 76319DEST_PATH_IMAGE009
                                                  (4)
Figure 402127DEST_PATH_IMAGE010
                                                  (5)
Figure 563985DEST_PATH_IMAGE011
                                                  (6)
其中,左奇异矩阵为,右奇异矩阵为,同时奇异值矩阵为
Figure 233367DEST_PATH_IMAGE014
,且其对角线元素按照降序排列,分别为
Figure 366408DEST_PATH_IMAGE015
Figure 983597DEST_PATH_IMAGE016
Figure 823377DEST_PATH_IMAGE017
Figure 366353DEST_PATH_IMAGE018
为各奇异值矩阵的秩;
步骤5、根据设定的阈值,选择每个特征幅度谱的非主要分量;
根据信号处理理论,奇异值表征了数据的各特征分量能量的分布,而一般海上图像中的潜在目标由于距离等原因多为小目标,因此可选择设定的阈值
Figure 658794DEST_PATH_IMAGE019
(一般的选择阈值为0.6-0.8之间)提取其非主要分量;
即选择满足的最小个特征分量,与原幅度谱差的绝对值作为非主要分量的幅度谱,其中,P是指排序前p个奇异值,r是指排序前r个奇异值,均为正整数;
对每个特征均利用上述方法计算幅度谱的非主要分量有:
Figure 547226DEST_PATH_IMAGE022
                                          (7)
Figure 592542DEST_PATH_IMAGE023
                                           (8)
                                           (9)
其中,
Figure 661178DEST_PATH_IMAGE025
表示各特征幅度谱的非主要分量,
Figure 749220DEST_PATH_IMAGE026
Figure 78570DEST_PATH_IMAGE027
Figure 575673DEST_PATH_IMAGE028
分别由各矩阵的前
Figure 306868DEST_PATH_IMAGE029
个矢量构成;
步骤6、将各特征提取的幅度谱非主要分量与原相位谱结合进行傅里叶逆变换,得到各个特征的显著图;
Figure 628128DEST_PATH_IMAGE037
                                    (10)
Figure 2013104084618100002DEST_PATH_IMAGE038
                                     (11)
Figure 179195DEST_PATH_IMAGE032
                                    (12)
其中,
Figure 748498DEST_PATH_IMAGE033
表示傅里叶逆变换,exp是指数运算,即
Figure 334200DEST_PATH_IMAGE034
的意思,参数φ表示相位谱,j是虚数单位;
步骤7、对步骤7得到的各显著图进行空间域的高斯滤波以去除杂波噪声;
步骤8、将两个颜色通道的显著图进行线性合并,得到颜色通道显著图SMcolor
Figure 560782DEST_PATH_IMAGE035
                                           (13)
步骤9、将颜色通道显著图与亮度显著图融合为总显著图SM;
                                            (14)。
本发明可应用于海难搜救、海事巡逻、基于视觉的船舶避碰、反海盗监控、值班瞭望、海事执法取证光电监控等领域,即应用显著性检测突出海上场景中的船舶等潜在目标,抑制背景,为后续的目标检测和目标跟踪、识别提供基础。
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。

Claims (1)

1.一种基于频谱奇异值分解的海上目标显著性检测方法,其特征在于,该检测方法包含以下步骤:
步骤1、提取可见光海上图像                                               
Figure 2013104084618100001DEST_PATH_IMAGE002
步骤2、将海上图像
Figure 4699DEST_PATH_IMAGE002
由RGB颜色空间转换至CIELab颜色空间,并提取亮度L和两个颜色通道a,b作为基本特征
Figure 2013104084618100001DEST_PATH_IMAGE004
步骤3、将各特征图像分别进行傅里叶变换,得到各个特征的幅度谱;
                                        (1)
Figure 2013104084618100001DEST_PATH_IMAGE008
                                        (2)
Figure 2013104084618100001DEST_PATH_IMAGE010
                                         (3)
其中,
Figure 2013104084618100001DEST_PATH_IMAGE012
表示傅里叶变换,
Figure 2013104084618100001DEST_PATH_IMAGE014
是各特征的幅度谱,幅度谱是对图像中不同频率信号分布情况的表征方式,
Figure 2013104084618100001DEST_PATH_IMAGE016
是各特征的相位谱;
步骤4、对得到的各幅度谱进行奇异值分解;
                                              (4)
Figure 2013104084618100001DEST_PATH_IMAGE020
                                              (5)
Figure 2013104084618100001DEST_PATH_IMAGE022
                                              (6)
其中,左奇异矩阵为
Figure 2013104084618100001DEST_PATH_IMAGE024
,右奇异矩阵为
Figure 2013104084618100001DEST_PATH_IMAGE026
,同时奇异值矩阵为
Figure 2013104084618100001DEST_PATH_IMAGE028
,且其对角线元素按照降序排列,分别为
Figure 2013104084618100001DEST_PATH_IMAGE030
Figure 2013104084618100001DEST_PATH_IMAGE032
Figure 2013104084618100001DEST_PATH_IMAGE036
为各奇异值矩阵的秩;
步骤5、根据设定的阈值
Figure 2013104084618100001DEST_PATH_IMAGE038
,选择每个特征幅度谱的非主要分量;
选择满足
Figure 2013104084618100001DEST_PATH_IMAGE040
的最小
Figure 2013104084618100001DEST_PATH_IMAGE042
个特征分量,与原幅度谱差的绝对值作为非主要分量的幅度谱,其中,P是指排序前p个奇异值,r是指排序前r个奇异值,均为正整数;
对每个特征均利用上述方法计算幅度谱的非主要分量有:
                                      (7)
Figure DEST_PATH_IMAGE046
                                       (8)
Figure DEST_PATH_IMAGE048
                                       (9)
其中,
Figure DEST_PATH_IMAGE050
表示各特征幅度谱的非主要分量,
Figure DEST_PATH_IMAGE052
Figure DEST_PATH_IMAGE054
分别由各矩阵的前个矢量构成;
步骤6、将各特征提取的幅度谱非主要分量与原相位谱结合进行傅里叶逆变换,得到各个特征的显著图;
                                 (10)
Figure DEST_PATH_IMAGE062
                                 (11)
Figure DEST_PATH_IMAGE064
                                 (12)
其中,
Figure DEST_PATH_IMAGE066
表示傅里叶逆变换,exp是指数运算,即
Figure DEST_PATH_IMAGE068
的意思,参数φ表示相位谱,j是虚数单位;
步骤7、对步骤7得到的各显著图进行空间域的高斯滤波以去除杂波噪声;
步骤8、将两个颜色通道的显著图进行线性合并,得到颜色通道显著图SMcolor
Figure DEST_PATH_IMAGE070
                                        (13)
步骤9、将颜色通道显著图与亮度显著图融合为总显著图SM;
Figure DEST_PATH_IMAGE072
                                         (14)。
CN201310408461.8A 2013-09-10 2013-09-10 基于频谱奇异值分解的海上目标显著性检测方法 Expired - Fee Related CN103413127B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310408461.8A CN103413127B (zh) 2013-09-10 2013-09-10 基于频谱奇异值分解的海上目标显著性检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310408461.8A CN103413127B (zh) 2013-09-10 2013-09-10 基于频谱奇异值分解的海上目标显著性检测方法

Publications (2)

Publication Number Publication Date
CN103413127A true CN103413127A (zh) 2013-11-27
CN103413127B CN103413127B (zh) 2016-06-08

Family

ID=49606136

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310408461.8A Expired - Fee Related CN103413127B (zh) 2013-09-10 2013-09-10 基于频谱奇异值分解的海上目标显著性检测方法

Country Status (1)

Country Link
CN (1) CN103413127B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103973976A (zh) * 2014-04-14 2014-08-06 杭州电子科技大学 一种利用光学成像的显著性提取装置及方法
CN104537681A (zh) * 2015-01-21 2015-04-22 北京联合大学 一种谱分离的视觉显著区域提取方法及系统
CN106991682A (zh) * 2016-01-21 2017-07-28 深圳中兴力维技术有限公司 自动港口货船的提取方法及装置
CN107169516A (zh) * 2017-05-11 2017-09-15 上海海事大学 基于k‑l变换的海上小目标显著性检测方法
CN107239760A (zh) * 2017-06-05 2017-10-10 中国人民解放军军事医学科学院基础医学研究所 一种视频数据处理方法及系统
CN107967474A (zh) * 2017-11-24 2018-04-27 上海海事大学 一种基于卷积神经网络的海面目标显著性检测方法
CN111770246A (zh) * 2019-04-02 2020-10-13 上海富瀚微电子股份有限公司 一种图像降噪装置及方法
CN111881725A (zh) * 2020-06-14 2020-11-03 浙江大学 一种融合空频域特征的光学遥感图像船舶目标检测方法
CN112001239A (zh) * 2020-07-15 2020-11-27 成都信息工程大学 基于多重svd显著性融合的sar图像目标检测优化方法
CN113591708A (zh) * 2021-07-30 2021-11-02 金陵科技学院 基于星载高光谱图像的气象灾害监测方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101980248A (zh) * 2010-11-09 2011-02-23 西安电子科技大学 基于改进视觉注意力模型的自然场景目标检测方法
CN102800086A (zh) * 2012-06-21 2012-11-28 上海海事大学 一种海上场景显著性检测方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101980248A (zh) * 2010-11-09 2011-02-23 西安电子科技大学 基于改进视觉注意力模型的自然场景目标检测方法
CN102800086A (zh) * 2012-06-21 2012-11-28 上海海事大学 一种海上场景显著性检测方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LEI REN: "TARGET DETECTION IN MARITIME SEARCH AND RESCUE USING SVD", 《PROCEEDINGS OF THE 2011 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS》 *
任蕾,施朝健,冉鑫;: "应用奇异值分解的海上场景显著性检测", 《计算机工程与应用》 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103973976B (zh) * 2014-04-14 2017-06-06 杭州电子科技大学 一种利用光学成像的显著性提取装置及方法
CN103973976A (zh) * 2014-04-14 2014-08-06 杭州电子科技大学 一种利用光学成像的显著性提取装置及方法
CN104537681A (zh) * 2015-01-21 2015-04-22 北京联合大学 一种谱分离的视觉显著区域提取方法及系统
CN106991682B (zh) * 2016-01-21 2019-12-20 深圳力维智联技术有限公司 自动港口货船的提取方法及装置
CN106991682A (zh) * 2016-01-21 2017-07-28 深圳中兴力维技术有限公司 自动港口货船的提取方法及装置
CN107169516A (zh) * 2017-05-11 2017-09-15 上海海事大学 基于k‑l变换的海上小目标显著性检测方法
CN107169516B (zh) * 2017-05-11 2020-10-23 上海海事大学 基于k-l变换的海上小目标显著性检测方法
CN107239760B (zh) * 2017-06-05 2020-07-17 中国人民解放军军事医学科学院基础医学研究所 一种视频数据处理方法及系统
CN107239760A (zh) * 2017-06-05 2017-10-10 中国人民解放军军事医学科学院基础医学研究所 一种视频数据处理方法及系统
CN107967474A (zh) * 2017-11-24 2018-04-27 上海海事大学 一种基于卷积神经网络的海面目标显著性检测方法
CN111770246A (zh) * 2019-04-02 2020-10-13 上海富瀚微电子股份有限公司 一种图像降噪装置及方法
CN111881725A (zh) * 2020-06-14 2020-11-03 浙江大学 一种融合空频域特征的光学遥感图像船舶目标检测方法
CN111881725B (zh) * 2020-06-14 2024-01-12 浙江大学 一种融合空频域特征的光学遥感图像船舶目标检测方法
CN112001239A (zh) * 2020-07-15 2020-11-27 成都信息工程大学 基于多重svd显著性融合的sar图像目标检测优化方法
CN112001239B (zh) * 2020-07-15 2023-11-28 成都信息工程大学 基于多重svd显著性融合的sar图像目标检测优化方法
CN113591708A (zh) * 2021-07-30 2021-11-02 金陵科技学院 基于星载高光谱图像的气象灾害监测方法
CN113591708B (zh) * 2021-07-30 2023-06-23 金陵科技学院 基于星载高光谱图像的气象灾害监测方法

Also Published As

Publication number Publication date
CN103413127B (zh) 2016-06-08

Similar Documents

Publication Publication Date Title
CN103413127A (zh) 基于频谱奇异值分解的海上目标显著性检测方法
CA3032487C (en) Saliency-based method for extracting road target from night vision infrared image
CN102609701B (zh) 基于最佳尺度的高分辨率合成孔径雷达遥感检测方法
CN104700381B (zh) 一种基于显著目标的红外与可见光图像融合方法
CN103761731A (zh) 一种基于非下采样轮廓波变换的红外空中小目标检测方法
CN102156881B (zh) 基于多尺度图像相位信息的海难搜救目标检测方法
Lipschutz et al. New methods for horizon line detection in infrared and visible sea images
Song et al. Automatic ship detection for optical satellite images based on visual attention model and LBP
CN102800086A (zh) 一种海上场景显著性检测方法
Zhou et al. PSFNet: Efficient Detection of SAR Image Based on Petty-Specialized Feature Aggregation
Song et al. Ship detection in haze and low-light remote sensing images via colour balance and DCNN
Chen et al. Port ship detection in complex environments
CN107464255B (zh) 一种基于信息量与多尺度异常检测的船舶目标检测方法
Chen et al. Ship target detection algorithm based on decision-level fusion of visible and SAR images
CN107169516B (zh) 基于k-l变换的海上小目标显著性检测方法
CN112669332A (zh) 一种基于双向局部极大值和峰值局部奇异性判断海天条件和检测红外目标的方法
Wu et al. SARFB: Strengthened asymmetric receptive field block for accurate infrared ship detection
Raj et al. A novel Ship detection method from SAR image with reduced false alarm
Shen et al. Polarization calculation and underwater target detection inspired by biological visual imaging
Gershikov Is color important for horizon line detection?
Mai et al. An improved method for Vietnam License Plate location
Klimkowska et al. A prealiminary study of ship detection from UAV images based on color space conversion and image segmentation
Pulpito et al. Infrared saliency enhancement techniques for extended naval target detection in open sea scenario
CN109583319B (zh) 一种基于海面红外遥感图像的舰船检测方法
Ren et al. Target detection of maritime search and rescue: Saliency accumulation method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160608

Termination date: 20190910