CN103411213B - Fan for Circulating Fluidized Bed Boiler power consumption prognoses system and method - Google Patents

Fan for Circulating Fluidized Bed Boiler power consumption prognoses system and method Download PDF

Info

Publication number
CN103411213B
CN103411213B CN201310335904.5A CN201310335904A CN103411213B CN 103411213 B CN103411213 B CN 103411213B CN 201310335904 A CN201310335904 A CN 201310335904A CN 103411213 B CN103411213 B CN 103411213B
Authority
CN
China
Prior art keywords
mrow
msub
mover
fan
msubsup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310335904.5A
Other languages
Chinese (zh)
Other versions
CN103411213A (en
Inventor
刘兴高
吴家标
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201310335904.5A priority Critical patent/CN103411213B/en
Publication of CN103411213A publication Critical patent/CN103411213A/en
Application granted granted Critical
Publication of CN103411213B publication Critical patent/CN103411213B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Feedback Control In General (AREA)

Abstract

The invention discloses a kind of Fan for Circulating Fluidized Bed Boiler power consumption prognoses system and method, system comprises the field intelligent instrument, database, database interface, control station and the host computer that are connected with CFBB; Field intelligent instrument is connected with control station, database and host computer, and host computer comprises: standardization module, for gathering the training sample of key variables from database, and column criterion of going forward side by side process; Forecasting mechanism forms module, for setting up forecast model; Prediction Executive Module, for real-time estimate blower fan power consumption; Model modification module; Signal acquisition module; Result display module.The present invention predicts blower fan power consumption according to the operating condition of CFBB and performance variable, so that suggestion and guides operation, thus reduce the blower fan power consumption of CFBB, effective raising boiler operating efficiency, and lay the foundation for being optimized operational efficiency further.

Description

Circulating fluidized bed boiler fan power consumption prediction system and method
Technical Field
The invention relates to the field of energy engineering, in particular to a power consumption prediction system and method for a circulating fluidized bed boiler fan.
Background
The circulating fluidized bed boiler has the advantages of less pollutant discharge, wide fuel adaptability, strong load regulation capacity and the like, and is more and more widely applied to industries such as electric power, heat supply and the like in recent years. With the increasing shortage of energy and the continuous enhancement of energy-saving and environment-friendly awareness of people, users urgently need to dig the operation potential of the boiler unit and improve the operation efficiency of the unit. However, most circulating fluidized bed boilers have the characteristics of low automation degree and dependence on manual experience in operation, so that the energy-saving potential of the boiler is difficult to fully exploit, and a significant reason for the situation is lack of a reasonable prediction system and method. The primary fan, the secondary fan and the induced draft fan are main power consumption auxiliary equipment of the circulating fluidized bed boiler, and the unit value of the electric energy is much larger than the heat loss of the boiler because the electric energy is secondary energy, so that the power consumption of the three fans has an important influence on the overall operation efficiency of the circulating fluidized bed boiler. Based on the consideration of the energy-saving purpose, a prediction system of the power consumption of the fan of the circulating fluidized bed boiler is established, and the prediction system has important significance on the high-energy-efficiency operation, the operation analysis and the operation optimization of the circulating fluidized bed boiler.
Disclosure of Invention
The invention aims to provide a system and a method for predicting heat loss of exhaust smoke of a circulating fluidized bed boiler aiming at the defects of the prior art.
The technical scheme adopted by the invention for solving the technical problems is as follows: a power consumption prediction system for a fan of a circulating fluidized bed boiler comprises an on-site intelligent instrument, a database, a data interface, a control station and an upper computer, wherein the on-site intelligent instrument, the database, the data interface, the control station and the upper computer are connected with the circulating fluidized bed boiler; on-spot intelligent instrument and control station, database and host computer are connected, the host computer include:
a standardization processing module for collecting historical records of operation condition variables and operation variables from the database, forming a training sample matrix X of independent variables, and collecting corresponding primary fan current, secondary fan current and guideHistorical records of fan current signals form a dependent variable training sample matrix Y, the training sample X, Y is standardized, the mean value of each variable is 0, the variance is 1, and a standardized independent variable training sample matrix X is obtained*(nxp), normalized dependent variable training sample matrix Y*(n × 3), using the following procedure to complete:
1.1) averaging:
<math> <mrow> <msub> <mover> <mi>x</mi> <mo>&OverBar;</mo> </mover> <mi>j</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>ij</mi> </msub> <mo>,</mo> <mrow> <mo>(</mo> <mi>i</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>n</mi> <mo>;</mo> <mi>j</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>p</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mover> <mi>y</mi> <mo>&OverBar;</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>y</mi> <mi>ik</mi> </msub> <mo>,</mo> <mrow> <mo>(</mo> <mi>i</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>n</mi> <mo>;</mo> <mi>k</mi> <mo>=</mo> <mn>1,2,3</mn> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </math>
1.2) calculating the standard deviation
<math> <mrow> <msub> <mi>s</mi> <mrow> <mi>x</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>=</mo> <msqrt> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msup> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>ij</mi> </msub> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>&OverBar;</mo> </mover> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </msqrt> <mo>,</mo> <mrow> <mo>(</mo> <mi>i</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>n</mi> <mo>;</mo> <mi>j</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>p</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>s</mi> <mrow> <mi>y</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>=</mo> <msqrt> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msup> <mrow> <mo>(</mo> <msub> <mi>y</mi> <mi>ik</mi> </msub> <mo>-</mo> <msub> <mover> <mi>y</mi> <mo>&OverBar;</mo> </mover> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </msqrt> <mo>,</mo> <mrow> <mo>(</mo> <mi>i</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>n</mi> <mo>;</mo> <mi>k</mi> <mo>=</mo> <mn>1,2,3</mn> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> </math>
1.3) normalization
<math> <mrow> <msubsup> <mi>x</mi> <mi>ij</mi> <mo>*</mo> </msubsup> <mo>=</mo> <mfrac> <mrow> <msub> <mi>x</mi> <mi>ij</mi> </msub> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>&OverBar;</mo> </mover> <mi>j</mi> </msub> </mrow> <msub> <mi>s</mi> <mrow> <mi>x</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </mfrac> <mo>,</mo> <mrow> <mo>(</mo> <mi>i</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>n</mi> <mo>;</mo> <mi>j</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>p</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msubsup> <mi>y</mi> <mi>ik</mi> <mo>*</mo> </msubsup> <mo>=</mo> <mfrac> <mrow> <msub> <mi>y</mi> <mi>ik</mi> </msub> <mo>-</mo> <msub> <mover> <mi>y</mi> <mo>&OverBar;</mo> </mover> <mi>k</mi> </msub> </mrow> <msub> <mi>s</mi> <mrow> <mi>y</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> </mfrac> <mo>,</mo> <mrow> <mo>(</mo> <mi>i</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>n</mi> <mo>;</mo> <mi>k</mi> <mo>=</mo> <mn>1,2,3</mn> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein x isij、yikIs the original value of the training sample point, n is the number of training samples, p is the number of independent variables,is the mean of the training samples, sx,j、sy,kIn order to train the standard deviation of the sample,for training sample pointsAnd normalizing the values, wherein subscripts i, j and k respectively represent an ith training sample point, a jth independent variable and a kth dependent variable.
The prediction mechanism forming module is used for establishing a prediction model and comprises the following implementation steps:
2.1) solving a prediction coefficient matrix beta according to the formula (7):
β=(X*TX*)-1X*TY* (7)
wherein, the superscript: t, -1 respectively represents the transposition of the matrix and the inverse of the matrix;
2.2) transferring and storing the prediction coefficient matrix beta to a prediction execution module.
The prediction execution module is used for predicting the power consumption of the fan according to the operation condition of the circulating fluidized bed boiler and the set operation variable, and the implementation steps are as follows:
3.1) processing the input independent variable signal according to the formula (8):
<math> <mrow> <msubsup> <mrow> <mi>x</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mi>j</mi> <mo>*</mo> </msubsup> <mo>=</mo> <mfrac> <mrow> <msub> <mrow> <mi>x</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mi>j</mi> </msub> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>&OverBar;</mo> </mover> <mi>j</mi> </msub> </mrow> <msub> <mi>s</mi> <mrow> <mi>x</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </mfrac> <mo>,</mo> <mrow> <mo>(</mo> <mi>j</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>p</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein, x (t)jFor the jth original value of the independent variable at the time t,is the mean, s, of the jth independent variable training samplex,jFor the standard deviation of the jth independent variable training sample,is the jth independent variable dimensionless value at the t moment, and t represents time and unit is second;
3.2) solving the dimensionless predicted values of the primary fan current, the secondary fan current and the induced fan current according to the following formula:
<math> <mrow> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mover> <mi>y</mi> <mo>^</mo> </mover> <msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mn>1</mn> <mo>*</mo> </msubsup> </mtd> <mtd> <mover> <mi>y</mi> <mo>^</mo> </mover> <msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mn>2</mn> <mo>*</mo> </msubsup> </mtd> <mtd> <mover> <mi>y</mi> <mo>^</mo> </mover> <msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mn>3</mn> <mo>*</mo> </msubsup> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mi>x</mi> <msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mn>1</mn> <mo>*</mo> </msubsup> </mtd> <mtd> <mi>x</mi> <msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mn>2</mn> <mo>*</mo> </msubsup> </mtd> <mtd> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mtd> <mtd> <mi>x</mi> <msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>p</mi> <mo>*</mo> </msubsup> </mtd> </mtr> </mtable> </mfenced> <mi>&beta;</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein,respectively carrying out dimensionless predicted values of primary fan current, secondary fan current and induced fan current at the time t;
3.3) solving the original dimensional prediction values of the primary fan current, the secondary fan current and the induced fan current according to the following formula:
<math> <mrow> <mover> <mi>y</mi> <mo>^</mo> </mover> <msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>k</mi> </msub> <mo>=</mo> <mover> <mi>y</mi> <mo>^</mo> </mover> <msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>k</mi> <mo>*</mo> </msubsup> <mo>&CenterDot;</mo> <msub> <mi>s</mi> <mrow> <mi>y</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>y</mi> <mo>&OverBar;</mo> </mover> <mi>k</mi> </msub> <mo>,</mo> <mrow> <mo>(</mo> <mi>k</mi> <mo>=</mo> <mn>1,2,3</mn> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein,respectively obtaining original dimensional predicted values of primary fan current, secondary fan current and induced fan current at the time t, namely current predicted values of all fans;
3.4) calculating the predicted value of the power consumption of the fan of the circulating fluidized bed boiler according to the following formula:
wherein, U1、U2、U3The power supply voltages of the primary fan, the secondary fan and the induced draft fan are respectively, and the unit is kV; respectively a primary air fan and a secondary airThe unit of the current prediction values of the machine and the induced draft fan is A;the power factors of the primary fan, the secondary fan and the induced draft fan are respectively; p is the predicted value of the power consumption of the fan of the circulating fluidized bed boiler, and the unit is kW.
As a preferred solution: the host computer still include: and the model updating module is used for comparing the actual primary fan current, secondary fan current and induced fan current with predicted values according to a set time interval, if the relative error is more than 10%, adding new data into training sample data, and executing the standardization processing module and the prediction mechanism forming module again.
Further, the host computer still include:
and the signal acquisition module is used for acquiring real-time data from the field intelligent instrument according to a set sampling time interval and acquiring historical data from the database.
And the result display module is used for reading the setting parameters from the control station, transmitting the predicted value of the power consumption of the fan to the control station for display and giving an operation suggestion: under the current working condition, how to adjust the operation variables is most beneficial to reducing the power consumption of the fan, so that the control station staff can adjust the operation conditions in time according to the predicted value and the operation suggestion of the power consumption of the fan, reduce the power consumption of the fan and improve the operation efficiency of the boiler. The method is characterized in that the current value of the operation variable fluctuates up and down and is substituted into a fan power consumption prediction system to obtain a new fan power consumption prediction value, so that the new fan power consumption prediction value can be obtained visually by comparing the current value with the current value.
As another preferred solution: the independent variables include: the operation condition variables are as follows: main steam flow, environment temperature, water supply temperature, hearth negative pressure, bed pressure, coal moisture, coal volatile matter, coal ash and coal sulfur; the operation variables are as follows: the total air volume of the primary air and the total air volume of the secondary air.
A power consumption prediction method for a fan of a circulating fluidized bed boiler comprises the following steps:
1) collecting historical records of operation condition variables and operation variables from a database to form an independent variable training sample matrix X, collecting corresponding historical records of primary fan current, secondary fan current and induced fan current signals to form a dependent variable training sample matrix Y, standardizing a training sample X, Y to enable the mean value of each variable to be 0 and the variance to be 1, and obtaining the standardized independent variable training sample matrix X*(nxp), normalized dependent variable training sample matrix Y*(n × 3), using the following procedure to complete:
1.1) averaging:
<math> <mrow> <msub> <mover> <mi>x</mi> <mo>&OverBar;</mo> </mover> <mi>j</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>ij</mi> </msub> <mo>,</mo> <mrow> <mo>(</mo> <mi>i</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>n</mi> <mo>;</mo> <mi>j</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>p</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mover> <mi>y</mi> <mo>&OverBar;</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>y</mi> <mi>ik</mi> </msub> <mo>,</mo> <mrow> <mo>(</mo> <mi>i</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>n</mi> <mo>;</mo> <mi>k</mi> <mo>=</mo> <mn>1,2,3</mn> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </math>
1.2) calculating the standard deviation
<math> <mrow> <msub> <mi>s</mi> <mrow> <mi>x</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>=</mo> <msqrt> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msup> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>ij</mi> </msub> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>&OverBar;</mo> </mover> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </msqrt> <mo>,</mo> <mrow> <mo>(</mo> <mi>i</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>n</mi> <mo>;</mo> <mi>j</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>p</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>s</mi> <mrow> <mi>y</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>=</mo> <msqrt> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msup> <mrow> <mo>(</mo> <msub> <mi>y</mi> <mi>ik</mi> </msub> <mo>-</mo> <msub> <mover> <mi>y</mi> <mo>&OverBar;</mo> </mover> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </msqrt> <mo>,</mo> <mrow> <mo>(</mo> <mi>i</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>n</mi> <mo>;</mo> <mi>k</mi> <mo>=</mo> <mn>1,2,3</mn> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> </math>
1.3) normalization
<math> <mrow> <msubsup> <mi>x</mi> <mi>ij</mi> <mo>*</mo> </msubsup> <mo>=</mo> <mfrac> <mrow> <msub> <mi>x</mi> <mi>ij</mi> </msub> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>&OverBar;</mo> </mover> <mi>j</mi> </msub> </mrow> <msub> <mi>s</mi> <mrow> <mi>x</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </mfrac> <mo>,</mo> <mrow> <mo>(</mo> <mi>i</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>n</mi> <mo>;</mo> <mi>j</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>p</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msubsup> <mi>y</mi> <mi>ik</mi> <mo>*</mo> </msubsup> <mo>=</mo> <mfrac> <mrow> <msub> <mi>y</mi> <mi>ik</mi> </msub> <mo>-</mo> <msub> <mover> <mi>y</mi> <mo>&OverBar;</mo> </mover> <mi>k</mi> </msub> </mrow> <msub> <mi>s</mi> <mrow> <mi>y</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> </mfrac> <mo>,</mo> <mrow> <mo>(</mo> <mi>i</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>n</mi> <mo>;</mo> <mi>k</mi> <mo>=</mo> <mn>1,2,3</mn> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein x isij、yikIs the original value of the training sample point, n is the number of training samples, p is the number of independent variables,is the mean of the training samples, sx,j、sy,kIn order to train the standard deviation of the sample,the subscripts i, j, and k represent the ith training sample point, the jth independent variable, and the kth dependent variable, respectively.
2) And establishing a prediction model by the obtained standardized training sample through the following processes:
2.1) solving a prediction coefficient matrix beta according to the formula (7):
β=(X*TX*)-1X*TY* (7)
wherein, the superscript: t, -1 respectively represents the transposition of the matrix and the inverse of the matrix;
2.2) storing the obtained prediction coefficient matrix beta.
3) The method comprises the following steps of taking operating condition variables and set operating variables of the circulating fluidized bed boiler as input signals, and predicting the power consumption of a fan according to a prediction coefficient vector, wherein the method comprises the following steps:
3.1) processing the input independent variable signal according to the formula (8):
<math> <mrow> <msubsup> <mrow> <mi>x</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mi>j</mi> <mo>*</mo> </msubsup> <mo>=</mo> <mfrac> <mrow> <msub> <mrow> <mi>x</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mi>j</mi> </msub> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>&OverBar;</mo> </mover> <mi>j</mi> </msub> </mrow> <msub> <mi>s</mi> <mrow> <mi>x</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </mfrac> <mo>,</mo> <mrow> <mo>(</mo> <mi>j</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>p</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein, x (t)jFor the jth original value of the independent variable at the time t,is the mean, s, of the jth independent variable training samplex,jFor the standard deviation of the jth independent variable training sample,is the jth independent variable dimensionless value at the t moment, and t represents time and unit is second;
3.2) solving the dimensionless predicted values of the primary fan current, the secondary fan current and the induced fan current according to the following formula:
<math> <mrow> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mover> <mi>y</mi> <mo>^</mo> </mover> <msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mn>1</mn> <mo>*</mo> </msubsup> </mtd> <mtd> <mover> <mi>y</mi> <mo>^</mo> </mover> <msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mn>2</mn> <mo>*</mo> </msubsup> </mtd> <mtd> <mover> <mi>y</mi> <mo>^</mo> </mover> <msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mn>3</mn> <mo>*</mo> </msubsup> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mi>x</mi> <msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mn>1</mn> <mo>*</mo> </msubsup> </mtd> <mtd> <mi>x</mi> <msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mn>2</mn> <mo>*</mo> </msubsup> </mtd> <mtd> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mtd> <mtd> <mi>x</mi> <msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>p</mi> <mo>*</mo> </msubsup> </mtd> </mtr> </mtable> </mfenced> <mi>&beta;</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein,primary fan current and secondary fan current at t momentThe non-dimensionalization predicted values of the current and the induced draft fan current;
3.3) solving the original dimensional prediction values of the primary fan current, the secondary fan current and the induced fan current according to the following formula:
<math> <mrow> <mover> <mi>y</mi> <mo>^</mo> </mover> <msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>k</mi> </msub> <mo>=</mo> <mover> <mi>y</mi> <mo>^</mo> </mover> <msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>k</mi> <mo>*</mo> </msubsup> <mo>&CenterDot;</mo> <msub> <mi>s</mi> <mrow> <mi>y</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>y</mi> <mo>&OverBar;</mo> </mover> <mi>k</mi> </msub> <mo>,</mo> <mrow> <mo>(</mo> <mi>k</mi> <mo>=</mo> <mn>1,2,3</mn> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein,respectively obtaining original dimensional predicted values of primary fan current, secondary fan current and induced fan current at the time t, namely current predicted values of all fans;
3.4) calculating the predicted value of the power consumption of the fan of the circulating fluidized bed boiler according to the following formula:
wherein, U1、U2、U3Are respectively one timeThe unit of the power supply voltage of the draught fan, the secondary fan and the induced draft fan is kV; respectively obtaining current predicted values of a primary fan, a secondary fan and an induced draft fan, wherein the unit is A;the power factors of the primary fan, the secondary fan and the induced draft fan are respectively; p is the predicted value of the power consumption of the fan of the circulating fluidized bed boiler, and the unit is kW.
As a preferred solution: the method further comprises the following steps: 4) acquiring field intelligent instrument signals according to a set sampling time interval, comparing the obtained actual primary fan current, secondary fan current and induced fan current with predicted values, if the relative error is more than 10%, adding new data into training sample data, and re-executing the steps 1) and 2) so as to update the prediction model.
Further, in the step 3), reading the setting parameters from the control station, transmitting the predicted value of the power consumption of the fan to the control station for displaying, and giving an operation suggestion: under the current working condition, how to adjust the operation variables is most beneficial to reducing the power consumption of the fan, so that the control station staff can adjust the operation conditions in time according to the predicted value and the operation suggestion of the power consumption of the fan, reduce the power consumption of the fan and improve the operation efficiency of the boiler. The method is characterized in that the current value of the operation variable fluctuates up and down and is substituted into a fan power consumption prediction system to obtain a new fan power consumption prediction value, so that the new fan power consumption prediction value can be obtained visually by comparing the current value with the current value.
As another preferred solution: the independent variables include: the operation condition variables are as follows: main steam flow, environment temperature, water supply temperature, hearth negative pressure, bed pressure, coal moisture, coal volatile matter, coal ash and coal sulfur; the operation variables are as follows: the total air volume of the primary air and the total air volume of the secondary air.
The invention has the following beneficial effects: the power consumption of the fan of the circulating fluidized bed boiler is predicted, production operation is suggested and guided, the power consumption of the fan is reduced, the energy-saving potential of the device is excavated, and the production benefit is improved.
Drawings
Fig. 1 is a hardware configuration diagram of the system proposed by the present invention.
FIG. 2 is a functional block diagram of the upper computer of the present invention.
Detailed Description
The invention is further illustrated by the following figures and examples.
Example 1
Referring to fig. 1 and 2, a power consumption prediction system for a fan of a circulating fluidized bed boiler comprises an intelligent field instrument 2, a data interface 3, a database 4, a control station 5 and an upper computer 6, wherein the intelligent field instrument 2 is connected with a field bus, the data bus is connected with the data interface 3, the data interface 3 is connected with the database 4, the control station 5 and the upper computer 6, and the upper computer 6 comprises:
a standardization processing module 7, configured to collect historical records of operating condition variables and operating variables from the database, form a training sample matrix X of independent variables, collect historical records of corresponding primary fan current, secondary fan current, and induced fan current signals, form a training sample matrix Y of dependent variables, standardize the training sample X, Y to make the mean value of each variable 0 and the variance 1, and obtain a standardized training sample matrix X of independent variables*(nxp), normalized dependent variable training sample matrix Y*(n×3)The method is completed by adopting the following processes:
1.1) averaging:
<math> <mrow> <msub> <mover> <mi>x</mi> <mo>&OverBar;</mo> </mover> <mi>j</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>ij</mi> </msub> <mo>,</mo> <mrow> <mo>(</mo> <mi>i</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>n</mi> <mo>;</mo> <mi>j</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>p</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mover> <mi>y</mi> <mo>&OverBar;</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>y</mi> <mi>ik</mi> </msub> <mo>,</mo> <mrow> <mo>(</mo> <mi>i</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>n</mi> <mo>;</mo> <mi>k</mi> <mo>=</mo> <mn>1,2,3</mn> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </math>
1.2) calculating the standard deviation
<math> <mrow> <msub> <mi>s</mi> <mrow> <mi>x</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>=</mo> <msqrt> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msup> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>ij</mi> </msub> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>&OverBar;</mo> </mover> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </msqrt> <mo>,</mo> <mrow> <mo>(</mo> <mi>i</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>n</mi> <mo>;</mo> <mi>j</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>p</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>s</mi> <mrow> <mi>y</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>=</mo> <msqrt> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msup> <mrow> <mo>(</mo> <msub> <mi>y</mi> <mi>ik</mi> </msub> <mo>-</mo> <msub> <mover> <mi>y</mi> <mo>&OverBar;</mo> </mover> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </msqrt> <mo>,</mo> <mrow> <mo>(</mo> <mi>i</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>n</mi> <mo>;</mo> <mi>k</mi> <mo>=</mo> <mn>1,2,3</mn> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> </math>
1.3) normalization
<math> <mrow> <msubsup> <mi>x</mi> <mi>ij</mi> <mo>*</mo> </msubsup> <mo>=</mo> <mfrac> <mrow> <msub> <mi>x</mi> <mi>ij</mi> </msub> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>&OverBar;</mo> </mover> <mi>j</mi> </msub> </mrow> <msub> <mi>s</mi> <mrow> <mi>x</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </mfrac> <mo>,</mo> <mrow> <mo>(</mo> <mi>i</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>n</mi> <mo>;</mo> <mi>j</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>p</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msubsup> <mi>y</mi> <mi>ik</mi> <mo>*</mo> </msubsup> <mo>=</mo> <mfrac> <mrow> <msub> <mi>y</mi> <mi>ik</mi> </msub> <mo>-</mo> <msub> <mover> <mi>y</mi> <mo>&OverBar;</mo> </mover> <mi>k</mi> </msub> </mrow> <msub> <mi>s</mi> <mrow> <mi>y</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> </mfrac> <mo>,</mo> <mrow> <mo>(</mo> <mi>i</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>n</mi> <mo>;</mo> <mi>k</mi> <mo>=</mo> <mn>1,2,3</mn> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein x isij、yikIs the original value of the training sample point, n is the number of training samples, p is the number of independent variables,is the mean of the training samples, sx,j、sy,kIn order to train the standard deviation of the sample,the subscripts i, j, and k represent the ith training sample point, the jth independent variable, and the kth dependent variable, respectively.
A prediction mechanism forming module 8, configured to build a prediction model, which includes the following steps:
2.1) solving a prediction coefficient matrix beta according to the formula (7):
β=(X*TX*)-1X*TY* (7)
wherein, the superscript: t, -1 respectively represents the transposition of the matrix and the inverse of the matrix;
2.2) transferring and storing the prediction coefficient matrix beta to a prediction execution module.
The prediction execution module 9 is used for predicting the power consumption of the fan according to the operation condition of the circulating fluidized bed boiler and the set operation variable, and the implementation steps are as follows:
3.1) processing the input independent variable signal according to the formula (8):
<math> <mrow> <msubsup> <mrow> <mi>x</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mi>j</mi> <mo>*</mo> </msubsup> <mo>=</mo> <mfrac> <mrow> <msub> <mrow> <mi>x</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mi>j</mi> </msub> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>&OverBar;</mo> </mover> <mi>j</mi> </msub> </mrow> <msub> <mi>s</mi> <mrow> <mi>x</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </mfrac> <mo>,</mo> <mrow> <mo>(</mo> <mi>j</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>p</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein, x (t)jFor the jth original value of the independent variable at the time t,is the mean, s, of the jth independent variable training samplex,jFor the standard deviation of the jth independent variable training sample,is the jth independent variable dimensionless value at the t moment, and t represents time and unit is second;
3.2) solving the dimensionless predicted values of the primary fan current, the secondary fan current and the induced fan current according to the following formula:
<math> <mrow> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mover> <mi>y</mi> <mo>^</mo> </mover> <msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mn>1</mn> <mo>*</mo> </msubsup> </mtd> <mtd> <mover> <mi>y</mi> <mo>^</mo> </mover> <msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mn>2</mn> <mo>*</mo> </msubsup> </mtd> <mtd> <mover> <mi>y</mi> <mo>^</mo> </mover> <msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mn>3</mn> <mo>*</mo> </msubsup> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mi>x</mi> <msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mn>1</mn> <mo>*</mo> </msubsup> </mtd> <mtd> <mi>x</mi> <msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mn>2</mn> <mo>*</mo> </msubsup> </mtd> <mtd> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mtd> <mtd> <mi>x</mi> <msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>p</mi> <mo>*</mo> </msubsup> </mtd> </mtr> </mtable> </mfenced> <mi>&beta;</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein,respectively carrying out dimensionless predicted values of primary fan current, secondary fan current and induced fan current at the time t;
3.3) solving the original dimensional prediction values of the primary fan current, the secondary fan current and the induced fan current according to the following formula:
<math> <mrow> <mover> <mi>y</mi> <mo>^</mo> </mover> <msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>k</mi> </msub> <mo>=</mo> <mover> <mi>y</mi> <mo>^</mo> </mover> <msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>k</mi> <mo>*</mo> </msubsup> <mo>&CenterDot;</mo> <msub> <mi>s</mi> <mrow> <mi>y</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>y</mi> <mo>&OverBar;</mo> </mover> <mi>k</mi> </msub> <mo>,</mo> <mrow> <mo>(</mo> <mi>k</mi> <mo>=</mo> <mn>1,2,3</mn> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein,respectively obtaining original dimensional predicted values of primary fan current, secondary fan current and induced fan current at the time t, namely current predicted values of all fans;
3.4) calculating the predicted value of the power consumption of the fan of the circulating fluidized bed boiler according to the following formula:
wherein, U1、U2、U3The power supply voltages of the primary fan, the secondary fan and the induced draft fan are respectively, and the unit is kV; respectively obtaining current predicted values of a primary fan, a secondary fan and an induced draft fan, wherein the unit is A;the power factors of the primary fan, the secondary fan and the induced draft fan are respectively; p is the air of the circulating fluidized bed boilerAnd predicting the power consumption of the machine in kW.
The upper computer 6 further comprises: and the signal acquisition module 11 is used for acquiring real-time data from the field intelligent instrument according to a set sampling time interval and acquiring historical data from a database.
The upper computer 6 further comprises: and the model updating module 12 is used for comparing the actual primary fan current, secondary fan current and induced fan current with predicted values according to a set time interval, adding new data into training sample data if the relative error is more than 10%, and executing the standardization processing module and the prediction mechanism forming module again.
The upper computer 6 further comprises: and the result display module 10 is used for reading the setting parameters from the control station, transmitting the predicted value of the power consumption of the fan to the control station for display, and giving an operation suggestion: under the current working condition, how to adjust the operation variables is most beneficial to reducing the power consumption of the fan, so that the control station staff can adjust the operation conditions in time according to the predicted value and the operation suggestion of the power consumption of the fan, reduce the power consumption of the fan and improve the operation efficiency of the boiler. The method is characterized in that the current value of the operation variable fluctuates up and down and is substituted into a fan power consumption prediction system to obtain a new fan power consumption prediction value, so that the new fan power consumption prediction value can be obtained visually by comparing the current value with the current value.
The hardware part of the upper computer 6 comprises: the I/O element is used for collecting data and transmitting information; the data memory is used for storing data samples, operation parameters and the like required by operation; a program memory storing a software program for realizing the functional module; an arithmetic unit that executes a program to realize a designated function; and the display module displays the set parameters and the running result and gives an operation suggestion.
Example 2
Referring to fig. 1 and 2, a method for predicting the power consumption of a fan of a circulating fluidized bed boiler comprises the following steps:
1) collecting historical records of operation condition variables and operation variables from a database to form an independent variable training sample matrix X, collecting corresponding historical records of primary fan current, secondary fan current and induced fan current signals to form a dependent variable training sample matrix Y, standardizing a training sample X, Y to enable the mean value of each variable to be 0 and the variance to be 1, and obtaining the standardized independent variable training sample matrix X*(nxp), normalized dependent variable training sample matrix Y*(n × 3), using the following procedure to complete:
1.1) averaging:
<math> <mrow> <msub> <mover> <mi>x</mi> <mo>&OverBar;</mo> </mover> <mi>j</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>ij</mi> </msub> <mo>,</mo> <mrow> <mo>(</mo> <mi>i</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>n</mi> <mo>;</mo> <mi>j</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>p</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mover> <mi>y</mi> <mo>&OverBar;</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>y</mi> <mi>ik</mi> </msub> <mo>,</mo> <mrow> <mo>(</mo> <mi>i</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>n</mi> <mo>;</mo> <mi>k</mi> <mo>=</mo> <mn>1,2,3</mn> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </math>
1.2) calculating the standard deviation
<math> <mrow> <msub> <mi>s</mi> <mrow> <mi>x</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>=</mo> <msqrt> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msup> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>ij</mi> </msub> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>&OverBar;</mo> </mover> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </msqrt> <mo>,</mo> <mrow> <mo>(</mo> <mi>i</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>n</mi> <mo>;</mo> <mi>j</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>p</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>s</mi> <mrow> <mi>y</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>=</mo> <msqrt> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msup> <mrow> <mo>(</mo> <msub> <mi>y</mi> <mi>ik</mi> </msub> <mo>-</mo> <msub> <mover> <mi>y</mi> <mo>&OverBar;</mo> </mover> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </msqrt> <mo>,</mo> <mrow> <mo>(</mo> <mi>i</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>n</mi> <mo>;</mo> <mi>k</mi> <mo>=</mo> <mn>1,2,3</mn> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> </math>
1.3) normalization
<math> <mrow> <msubsup> <mi>x</mi> <mi>ij</mi> <mo>*</mo> </msubsup> <mo>=</mo> <mfrac> <mrow> <msub> <mi>x</mi> <mi>ij</mi> </msub> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>&OverBar;</mo> </mover> <mi>j</mi> </msub> </mrow> <msub> <mi>s</mi> <mrow> <mi>x</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </mfrac> <mo>,</mo> <mrow> <mo>(</mo> <mi>i</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>n</mi> <mo>;</mo> <mi>j</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>p</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msubsup> <mi>y</mi> <mi>ik</mi> <mo>*</mo> </msubsup> <mo>=</mo> <mfrac> <mrow> <msub> <mi>y</mi> <mi>ik</mi> </msub> <mo>-</mo> <msub> <mover> <mi>y</mi> <mo>&OverBar;</mo> </mover> <mi>k</mi> </msub> </mrow> <msub> <mi>s</mi> <mrow> <mi>y</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> </mfrac> <mo>,</mo> <mrow> <mo>(</mo> <mi>i</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>n</mi> <mo>;</mo> <mi>k</mi> <mo>=</mo> <mn>1,2,3</mn> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein x isij、yikIs the original value of the training sample point, n is the number of training samples, p is the number of independent variables,is the mean of the training samples, sx,j、sy,kIn order to train the standard deviation of the sample,the subscripts i, j, and k represent the ith training sample point, the jth independent variable, and the kth dependent variable, respectively.
2) And establishing a prediction model by the obtained standardized training sample through the following processes:
2.1) solving a prediction coefficient matrix beta according to the formula (7):
β=(X*TX*)-1X*TY* (7)
wherein, the superscript: t, -1 respectively represents the transposition of the matrix and the inverse of the matrix;
2.2) storing the obtained prediction coefficient matrix beta.
3) The method comprises the following steps of taking operating condition variables and set operating variables of the circulating fluidized bed boiler as input signals, and predicting the power consumption of a fan according to a prediction coefficient vector, wherein the method comprises the following steps:
3.1) processing the input independent variable signal according to the formula (8):
<math> <mrow> <msubsup> <mrow> <mi>x</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mi>j</mi> <mo>*</mo> </msubsup> <mo>=</mo> <mfrac> <mrow> <msub> <mrow> <mi>x</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mi>j</mi> </msub> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>&OverBar;</mo> </mover> <mi>j</mi> </msub> </mrow> <msub> <mi>s</mi> <mrow> <mi>x</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </mfrac> <mo>,</mo> <mrow> <mo>(</mo> <mi>j</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>p</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein, x (t)jFor the jth original value of the independent variable at the time t,is the mean, s, of the jth independent variable training samplex,jFor the standard deviation of the jth independent variable training sample,is the jth independent variable dimensionless value at the t moment, and t represents time and unit is second;
3.2) solving the dimensionless predicted values of the primary fan current, the secondary fan current and the induced fan current according to the following formula:
<math> <mrow> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mover> <mi>y</mi> <mo>^</mo> </mover> <msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mn>1</mn> <mo>*</mo> </msubsup> </mtd> <mtd> <mover> <mi>y</mi> <mo>^</mo> </mover> <msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mn>2</mn> <mo>*</mo> </msubsup> </mtd> <mtd> <mover> <mi>y</mi> <mo>^</mo> </mover> <msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mn>3</mn> <mo>*</mo> </msubsup> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mi>x</mi> <msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mn>1</mn> <mo>*</mo> </msubsup> </mtd> <mtd> <mi>x</mi> <msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mn>2</mn> <mo>*</mo> </msubsup> </mtd> <mtd> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mtd> <mtd> <mi>x</mi> <msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>p</mi> <mo>*</mo> </msubsup> </mtd> </mtr> </mtable> </mfenced> <mi>&beta;</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow> </math>
where, what is t?Respectively carrying out dimensionless predicted values of primary fan current, secondary fan current and induced fan current at the time t;
3.3) solving the original dimensional prediction values of the primary fan current, the secondary fan current and the induced fan current according to the following formula:
<math> <mrow> <mover> <mi>y</mi> <mo>^</mo> </mover> <msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>k</mi> </msub> <mo>=</mo> <mover> <mi>y</mi> <mo>^</mo> </mover> <msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>k</mi> <mo>*</mo> </msubsup> <mo>&CenterDot;</mo> <msub> <mi>s</mi> <mrow> <mi>y</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>y</mi> <mo>&OverBar;</mo> </mover> <mi>k</mi> </msub> <mo>,</mo> <mrow> <mo>(</mo> <mi>k</mi> <mo>=</mo> <mn>1,2,3</mn> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein,respectively obtaining original dimensional predicted values of primary fan current, secondary fan current and induced fan current at the time t, namely current predicted values of all fans;
3.4) calculating the predicted value of the power consumption of the fan of the circulating fluidized bed boiler according to the following formula:
wherein, U1、U2、U3The power supply voltages of the primary fan, the secondary fan and the induced draft fan are respectively, and the unit is kV; respectively obtaining current predicted values of a primary fan, a secondary fan and an induced draft fan, wherein the unit is A;the power factors of the primary fan, the secondary fan and the induced draft fan are respectively; p is the predicted value of the power consumption of the fan of the circulating fluidized bed boiler, and the unit is kW.
The method further comprises the following steps: 4) acquiring field intelligent instrument signals according to a set sampling time interval, comparing the obtained actual primary fan current, secondary fan current and induced fan current with predicted values, if the relative error is more than 10%, adding new data into training sample data, and re-executing the steps 1) and 2) so as to update the prediction model.
In the step 3), reading the setting parameters from the control station, transmitting the predicted value of the power consumption of the fan to the control station for display, and giving an operation suggestion: under the current working condition, how to adjust the operation variables is most beneficial to reducing the power consumption of the fan, so that the control station staff can adjust the operation conditions in time according to the predicted value and the operation suggestion of the power consumption of the fan, reduce the power consumption of the fan and improve the operation efficiency of the boiler. The method is characterized in that the current value of the operation variable fluctuates up and down and is substituted into a fan power consumption prediction system to obtain a new fan power consumption prediction value, so that the new fan power consumption prediction value can be obtained visually by comparing the current value with the current value.
The independent variables include: the operation condition variables are as follows: main steam flow, environment temperature, water supply temperature, hearth negative pressure, bed pressure, coal moisture, coal volatile matter, coal ash and coal sulfur; the operation variables are as follows: the total air volume of the primary air and the total air volume of the secondary air.
While the system and method for predicting the power consumption of a circulating fluidized bed boiler fan have been described with reference to the above embodiments, it will be apparent to those skilled in the art that the present technology can be implemented by modifying or appropriately changing or combining the apparatus and method of operation described herein without departing from the spirit, scope and spirit of the present invention. It is expressly intended that all such similar substitutes and modifications which would be obvious to those skilled in the art are deemed to be within the spirit, scope and content of the invention.

Claims (2)

1. A power consumption prediction system for a fan of a circulating fluidized bed boiler is characterized by comprising an on-site intelligent instrument, a database, a data interface, a control station and an upper computer which are connected with the circulating fluidized bed boiler; on-spot intelligent instrument and control station, database and host computer are connected, the host computer include:
a standardization processing module for collecting historical records of operation condition variables and operation variables from the database, forming a training sample matrix X of independent variables, and collecting corresponding primary fan current, secondary fan current and induced fan current signalsHistorical records are formed to form a dependent variable training sample matrix Y, the training sample matrix X, Y is standardized to enable the mean value of each variable to be 0 and the variance to be 1, and a standardized independent variable training sample matrix X is obtained*(nxp), normalized dependent variable training sample matrix Y*(n × 3), using the following procedure to complete:
1.1) averaging:
<math> <mrow> <msub> <mover> <mi>x</mi> <mo>&OverBar;</mo> </mover> <mi>j</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>ij</mi> </msub> <mo>,</mo> <mrow> <mo>(</mo> <mi>i</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>n</mi> <mo>;</mo> <mi>j</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>p</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mover> <mi>y</mi> <mo>&OverBar;</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>y</mi> <mi>ik</mi> </msub> <mo>,</mo> <mrow> <mo>(</mo> <mi>i</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>n</mi> <mo>;</mo> <mi>k</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mn>3</mn> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </math>
1.2) calculating the standard deviation
<math> <mrow> <msub> <mi>s</mi> <mrow> <mi>x</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>=</mo> <msqrt> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msup> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>ij</mi> </msub> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>&OverBar;</mo> </mover> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </msqrt> <mo>,</mo> <mrow> <mo>(</mo> <mi>i</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>n</mi> <mo>;</mo> <mi>j</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>p</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>s</mi> <mrow> <mi>y</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>=</mo> <msqrt> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msup> <mrow> <mo>(</mo> <msub> <mi>y</mi> <mi>ik</mi> </msub> <mo>-</mo> <msub> <mover> <mi>y</mi> <mo>&OverBar;</mo> </mover> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </msqrt> <mo>,</mo> <mrow> <mo>(</mo> <mi>i</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>n</mi> <mo>;</mo> <mi>k</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mn>3</mn> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> </math>
1.3) normalization
<math> <mrow> <msubsup> <mi>x</mi> <mi>ij</mi> <mo>*</mo> </msubsup> <mo>=</mo> <mfrac> <mrow> <msub> <mi>x</mi> <mi>ij</mi> </msub> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>&OverBar;</mo> </mover> <mi>j</mi> </msub> </mrow> <msub> <mi>s</mi> <mrow> <mi>x</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </mfrac> <mo>,</mo> <mrow> <mo>(</mo> <mi>i</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>n</mi> <mo>;</mo> <mi>j</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>p</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msubsup> <mi>y</mi> <mi>ik</mi> <mo>*</mo> </msubsup> <mo>=</mo> <mfrac> <mrow> <msub> <mi>y</mi> <mi>ik</mi> </msub> <mo>-</mo> <msub> <mover> <mi>y</mi> <mo>&OverBar;</mo> </mover> <mi>k</mi> </msub> </mrow> <msub> <mi>s</mi> <mrow> <mi>y</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> </mfrac> <mo>,</mo> <mrow> <mo>(</mo> <mi>i</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>n</mi> <mo>;</mo> <mi>k</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mn>3</mn> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein x isij、yikIs the original value of the training sample point, n is the number of training samples, p is the number of independent variables,is the mean of the training samples, sx,j、sy,kIn order to train the standard deviation of the sample,the normalized values of the training sample points are shown, wherein subscripts i, j and k respectively represent the ith training sample point, the jth independent variable and the kth dependent variable;
the prediction mechanism forming module is used for establishing a prediction model and comprises the following implementation steps:
2.1) solving a prediction coefficient matrix beta according to the formula (7):
β=(X*TX*)-1X*TY* (7)
wherein, the superscript: t, -1 respectively represents the transposition of the matrix and the inverse of the matrix;
2.2) transferring and storing the prediction coefficient matrix beta to a prediction execution module;
the prediction execution module is used for predicting the power consumption of the fan according to the operation condition of the circulating fluidized bed boiler and the set operation variable, and the implementation steps are as follows:
3.1) processing the input independent variable signal according to the formula (8):
<math> <mrow> <mi>x</mi> <msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>j</mi> <mo>*</mo> </msubsup> <mo>=</mo> <mfrac> <mrow> <mi>x</mi> <msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>j</mi> </msub> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>&OverBar;</mo> </mover> <mi>j</mi> </msub> </mrow> <msub> <mi>s</mi> <mrow> <mi>x</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </mfrac> <mo>,</mo> <mrow> <mo>(</mo> <mi>j</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>p</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein, x (t)jFor the jth original value of the independent variable at the time t,is the mean, s, of the jth independent variable training samplex,jFor the standard deviation of the jth independent variable training sample,is the jth independent variable dimensionless value at the t moment, and t represents time and unit is second;
3.2) solving the dimensionless predicted values of the primary fan current, the secondary fan current and the induced fan current according to the following formula:
<math> <mrow> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mover> <mi>y</mi> <mo>^</mo> </mover> <msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mn>1</mn> <mo>*</mo> </msubsup> </mtd> <mtd> <mover> <mi>y</mi> <mo>^</mo> </mover> <msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mn>2</mn> <mo>*</mo> </msubsup> </mtd> <mtd> <mover> <mi>y</mi> <mo>^</mo> </mover> <msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mn>3</mn> <mo>*</mo> </msubsup> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mi>x</mi> <msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mn>1</mn> <mo>*</mo> </msubsup> </mtd> <mtd> <mi>x</mi> <msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mn>2</mn> <mo>*</mo> </msubsup> </mtd> <mtd> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mtd> <mtd> <mi>x</mi> <msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>p</mi> <mo>*</mo> </msubsup> </mtd> </mtr> </mtable> </mfenced> <mi>&beta;</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein,respectively carrying out dimensionless predicted values of primary fan current, secondary fan current and induced fan current at the time t;
3.3) solving the original dimensional prediction values of the primary fan current, the secondary fan current and the induced fan current according to the following formula:
<math> <mrow> <mover> <mi>y</mi> <mo>^</mo> </mover> <msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>k</mi> </msub> <mo>=</mo> <mover> <mi>y</mi> <mo>^</mo> </mover> <msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>k</mi> <mo>*</mo> </msubsup> <mo>&CenterDot;</mo> <msub> <mi>s</mi> <mrow> <mi>y</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>y</mi> <mo>&OverBar;</mo> </mover> <mi>k</mi> </msub> <mo>,</mo> <mrow> <mo>(</mo> <mi>k</mi> <mo>=</mo> <mn>1,2,3</mn> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein,respectively obtaining original dimensional predicted values of primary fan current, secondary fan current and induced fan current at the time t, namely current predicted values of all fans;
3.4) calculating the predicted value of the power consumption of the fan of the circulating fluidized bed boiler according to the following formula:
<math> <mrow> <mi>P</mi> <mo>=</mo> <msqrt> <mn>3</mn> </msqrt> <mo>[</mo> <msub> <mi>U</mi> <mn>1</mn> </msub> <mover> <mi>y</mi> <mo>^</mo> </mover> <msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mn>1</mn> </msub> <mi>cos</mi> <msub> <mrow> <mo>(</mo> <mi>&phi;</mi> <mo>)</mo> </mrow> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>U</mi> <mn>2</mn> </msub> <mover> <mi>y</mi> <mo>^</mo> </mover> <msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mn>2</mn> </msub> <mi>cos</mi> <msub> <mrow> <mo>(</mo> <mi>&phi;</mi> <mo>)</mo> </mrow> <mn>2</mn> </msub> <mo>+</mo> <msub> <mi>U</mi> <mn>3</mn> </msub> <mover> <mi>y</mi> <mo>^</mo> </mover> <msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mn>3</mn> </msub> <mi>cos</mi> <msub> <mrow> <mo>(</mo> <mi>&phi;</mi> <mo>)</mo> </mrow> <mn>3</mn> </msub> <mo>]</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein, U1、U2、U3The power supply voltages of the primary fan, the secondary fan and the induced draft fan are respectively, and the unit is kV; respectively obtaining predicted values of currents of the primary fan, the secondary fan and the induced fan at the time t, wherein the unit is A; the power factors of the primary fan, the secondary fan and the induced draft fan are respectively; p is the predicted value of the power consumption of the fan of the circulating fluidized bed boiler and the unit is kW;
the host computer still include:
the signal acquisition module is used for acquiring real-time data from the field intelligent instrument and historical data from the database according to a set sampling time interval;
the model updating module is used for comparing the actual primary fan current, secondary fan current and induced fan current with predicted values according to a set time interval, if the relative error is more than 10%, adding new data into training sample data, and executing the standardization processing module and the prediction mechanism forming module again;
and the result display module is used for reading the setting parameters from the control station, transmitting the predicted value of the power consumption of the fan to the control station for display and giving an operation suggestion: under the current working condition, how to adjust the operation variables is most beneficial to reducing the power consumption of the fan, so that a control station worker can adjust the operation conditions in time according to the predicted value and the operation suggestion of the power consumption of the fan, reduce the power consumption of the fan and improve the operation efficiency of the boiler; how to adjust the operation variables is most beneficial to reducing the power consumption of the fan, and the simple method is to substitute the current values of the operation variables into a fan power consumption prediction system to obtain a new fan power consumption prediction value, so that the new fan power consumption prediction value can be obtained very intuitively by comparing the sizes of the operation variables;
the independent variables include: the operation condition variables are as follows: main steam flow, environment temperature, water supply temperature, hearth negative pressure, bed pressure, coal moisture, coal volatile matter, coal ash and coal sulfur; the operation variables are as follows: the total air volume of the primary air and the total air volume of the secondary air.
2. A method for predicting power consumption of a fan of a circulating fluidized bed boiler by using the system for predicting power consumption of a fan of a circulating fluidized bed boiler according to claim 1, wherein the method for predicting power consumption of a fan comprises the following steps:
1) collecting historical records of operation condition variables and operation variables from a database to form an independent variable training sample matrix X, collecting corresponding historical records of primary fan current, secondary fan current and induced fan current signals to form a dependent variable training sample matrix Y, standardizing the training sample matrix X, Y to enable the mean value of each variable to be 0 and the variance to be 1, and obtaining the standardized independent variable training sample matrix X*(nxp), normalized dependent variable training sample matrix Y*(n × 3), using the following procedure to complete:
1.1) averaging:
<math> <mrow> <msub> <mover> <mi>x</mi> <mo>&OverBar;</mo> </mover> <mi>j</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>ij</mi> </msub> <mo>,</mo> <mrow> <mo>(</mo> <mi>i</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>n</mi> <mo>;</mo> <mi>j</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>p</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mover> <mi>y</mi> <mo>&OverBar;</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>y</mi> <mi>ik</mi> </msub> <mo>,</mo> <mrow> <mo>(</mo> <mi>i</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>n</mi> <mo>;</mo> <mi>k</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mn>3</mn> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </math>
1.2) calculating the standard deviation
<math> <mrow> <msub> <mi>s</mi> <mrow> <mi>x</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>=</mo> <msqrt> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msup> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>ij</mi> </msub> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>&OverBar;</mo> </mover> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </msqrt> <mo>,</mo> <mrow> <mo>(</mo> <mi>i</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>n</mi> <mo>;</mo> <mi>j</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>p</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>s</mi> <mrow> <mi>y</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>=</mo> <msqrt> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msup> <mrow> <mo>(</mo> <msub> <mi>y</mi> <mi>ik</mi> </msub> <mo>-</mo> <msub> <mover> <mi>y</mi> <mo>&OverBar;</mo> </mover> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </msqrt> <mo>,</mo> <mrow> <mo>(</mo> <mi>i</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>n</mi> <mo>;</mo> <mi>k</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mn>3</mn> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> </math>
1.3) normalization
<math> <mrow> <msubsup> <mi>x</mi> <mi>ij</mi> <mo>*</mo> </msubsup> <mo>=</mo> <mfrac> <mrow> <msub> <mi>x</mi> <mi>ij</mi> </msub> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>&OverBar;</mo> </mover> <mi>j</mi> </msub> </mrow> <msub> <mi>s</mi> <mrow> <mi>x</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </mfrac> <mo>,</mo> <mrow> <mo>(</mo> <mi>i</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>n</mi> <mo>;</mo> <mi>j</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>p</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msubsup> <mi>y</mi> <mi>ik</mi> <mo>*</mo> </msubsup> <mo>=</mo> <mfrac> <mrow> <msub> <mi>y</mi> <mi>ik</mi> </msub> <mo>-</mo> <msub> <mover> <mi>y</mi> <mo>&OverBar;</mo> </mover> <mi>k</mi> </msub> </mrow> <msub> <mi>s</mi> <mrow> <mi>y</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> </mfrac> <mo>,</mo> <mrow> <mo>(</mo> <mi>i</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>n</mi> <mo>;</mo> <mi>k</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mn>3</mn> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein x isij、yikIs the original value of the training sample point, n is the number of training samples, p is the number of independent variables,is the mean of the training samples, sx,j、sy,kIn order to train the standard deviation of the sample,the normalized values of the training sample points are shown, wherein subscripts i, j and k respectively represent the ith training sample point, the jth independent variable and the kth dependent variable;
2) and establishing a prediction model by the obtained standardized training sample through the following processes:
2.1) solving a prediction coefficient matrix beta according to the formula (7):
β=(X*TX*)-1X*TY* (7)
wherein, the superscript: t, -1 respectively represents the transposition of the matrix and the inverse of the matrix;
2.2) storing the obtained prediction coefficient matrix beta;
3) the method comprises the following steps of taking operating condition variables and set operating variables of the circulating fluidized bed boiler as input signals, and predicting the power consumption of a fan according to a prediction coefficient vector, wherein the method comprises the following steps:
3.1) processing the input independent variable signal according to the formula (8):
<math> <mrow> <mi>x</mi> <msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>j</mi> <mo>*</mo> </msubsup> <mo>=</mo> <mfrac> <mrow> <mi>x</mi> <msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>j</mi> </msub> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>&OverBar;</mo> </mover> <mi>j</mi> </msub> </mrow> <msub> <mi>s</mi> <mrow> <mi>x</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </mfrac> <mo>,</mo> <mrow> <mo>(</mo> <mi>j</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>p</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein, x (t)jFor the jth original value of the independent variable at the time t,is the mean, s, of the jth independent variable training samplex,jFor the standard deviation of the jth independent variable training sample,is the jth independent variable dimensionless value at the t moment, and t represents time and unit is second;
3.2) solving the dimensionless predicted values of the primary fan current, the secondary fan current and the induced fan current according to the following formula:
<math> <mrow> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mover> <mi>y</mi> <mo>^</mo> </mover> <msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mn>1</mn> <mo>*</mo> </msubsup> </mtd> <mtd> <mover> <mi>y</mi> <mo>^</mo> </mover> <msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mn>2</mn> <mo>*</mo> </msubsup> </mtd> <mtd> <mover> <mi>y</mi> <mo>^</mo> </mover> <msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mn>3</mn> <mo>*</mo> </msubsup> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mi>x</mi> <msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mn>1</mn> <mo>*</mo> </msubsup> </mtd> <mtd> <mi>x</mi> <msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mn>2</mn> <mo>*</mo> </msubsup> </mtd> <mtd> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mtd> <mtd> <mi>x</mi> <msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>p</mi> <mo>*</mo> </msubsup> </mtd> </mtr> </mtable> </mfenced> <mi>&beta;</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein,respectively carrying out dimensionless predicted values of primary fan current, secondary fan current and induced fan current at the time t;
3.3) solving the original dimensional prediction values of the primary fan current, the secondary fan current and the induced fan current according to the following formula:
<math> <mrow> <mover> <mi>y</mi> <mo>^</mo> </mover> <msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>k</mi> </msub> <mo>=</mo> <mover> <mi>y</mi> <mo>^</mo> </mover> <msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>k</mi> <mo>*</mo> </msubsup> <mo>&CenterDot;</mo> <msub> <mi>s</mi> <mrow> <mi>y</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>y</mi> <mo>&OverBar;</mo> </mover> <mi>k</mi> </msub> <mo>,</mo> <mrow> <mo>(</mo> <mi>k</mi> <mo>=</mo> <mn>1,2,3</mn> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein,respectively obtaining original dimensional predicted values of primary fan current, secondary fan current and induced fan current at the time t, namely current predicted values of all fans;
3.4) calculating the predicted value of the power consumption of the fan of the circulating fluidized bed boiler according to the following formula:
<math> <mrow> <mi>P</mi> <mo>=</mo> <msqrt> <mn>3</mn> </msqrt> <mo>[</mo> <msub> <mi>U</mi> <mn>1</mn> </msub> <mover> <mi>y</mi> <mo>^</mo> </mover> <msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mn>1</mn> </msub> <mi>cos</mi> <msub> <mrow> <mo>(</mo> <mi>&phi;</mi> <mo>)</mo> </mrow> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>U</mi> <mn>2</mn> </msub> <mover> <mi>y</mi> <mo>^</mo> </mover> <msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mn>2</mn> </msub> <mi>cos</mi> <msub> <mrow> <mo>(</mo> <mi>&phi;</mi> <mo>)</mo> </mrow> <mn>2</mn> </msub> <mo>+</mo> <msub> <mi>U</mi> <mn>3</mn> </msub> <mover> <mi>y</mi> <mo>^</mo> </mover> <msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mn>3</mn> </msub> <mi>cos</mi> <msub> <mrow> <mo>(</mo> <mi>&phi;</mi> <mo>)</mo> </mrow> <mn>3</mn> </msub> <mo>]</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein, U1、U2、U3The power supply voltages of the primary fan, the secondary fan and the induced draft fan are respectively, and the unit is kV; respectively obtaining current predicted values of a primary fan, a secondary fan and an induced draft fan, wherein the unit is A;the power factors of the primary fan, the secondary fan and the induced draft fan are respectively; p is the predicted value of the power consumption of the fan of the circulating fluidized bed boiler and the unit is kW;
the method further comprises the following steps: 4) acquiring on-site intelligent instrument signals according to a set sampling time interval, comparing the obtained actual primary fan current, secondary fan current and induced fan current with predicted values, if the relative error is more than 10%, adding new data into training sample data, and re-executing the steps 1) and 2) to update the prediction model;
in the step 3), reading the setting parameters from the control station, transmitting the predicted value of the power consumption of the fan to the control station for display, and giving an operation suggestion: under the current working condition, how to adjust the operation variables is most beneficial to reducing the power consumption of the fan, so that a control station worker can adjust the operation conditions in time according to the predicted value and the operation suggestion of the power consumption of the fan, reduce the power consumption of the fan and improve the operation efficiency of the boiler; how to adjust the operation variables is most beneficial to reducing the power consumption of the fan, and the simple method is to substitute the current values of the operation variables into a fan power consumption prediction system to obtain a new fan power consumption prediction value, so that the new fan power consumption prediction value can be obtained very intuitively by comparing the sizes of the operation variables;
the independent variables include: the operation condition variables are as follows: main steam flow, environment temperature, water supply temperature, hearth negative pressure, bed pressure, coal moisture, coal volatile matter, coal ash and coal sulfur; the operation variables are as follows: the total air volume of the primary air and the total air volume of the secondary air.
CN201310335904.5A 2013-08-05 2013-08-05 Fan for Circulating Fluidized Bed Boiler power consumption prognoses system and method Expired - Fee Related CN103411213B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310335904.5A CN103411213B (en) 2013-08-05 2013-08-05 Fan for Circulating Fluidized Bed Boiler power consumption prognoses system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310335904.5A CN103411213B (en) 2013-08-05 2013-08-05 Fan for Circulating Fluidized Bed Boiler power consumption prognoses system and method

Publications (2)

Publication Number Publication Date
CN103411213A CN103411213A (en) 2013-11-27
CN103411213B true CN103411213B (en) 2015-09-30

Family

ID=49604242

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310335904.5A Expired - Fee Related CN103411213B (en) 2013-08-05 2013-08-05 Fan for Circulating Fluidized Bed Boiler power consumption prognoses system and method

Country Status (1)

Country Link
CN (1) CN103411213B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112413639B (en) * 2020-11-17 2022-10-04 上海呈彧智能科技有限公司 Intelligent control method and system for combustion-supporting air volume of heating furnace group

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101619850B (en) * 2009-08-06 2011-04-13 杭州盘古自动化系统有限公司 Dispatching method and dispatching system based on load online forecasting of thermoelectric power system
CN101713536B (en) * 2009-12-03 2011-06-29 太原理工大学 Control method of combustion system of circulating fluidized bed boiler
JP2011149658A (en) * 2010-01-25 2011-08-04 Jfe Engineering Corp Operation control method for circulating fluidized bed boiler
CN102661759B (en) * 2012-05-11 2014-07-02 西安科技大学 Method for identifying and predicting nonlinear multivariable key parameters of circulating fluidized bed boiler
CN103216826B (en) * 2013-04-02 2015-03-11 国家电网公司 Main steam pressure self-adaptive predictor of generator set of circulating fluidized bed boiler

Also Published As

Publication number Publication date
CN103411213A (en) 2013-11-27

Similar Documents

Publication Publication Date Title
CN102809928B (en) Control optimizing method for energy consumption of thermal equipment of industrial enterprise
US20200219027A1 (en) Knowledge transfer-based modeling method for blast furnace gas scheduling systems
CN103425049B (en) Thermal Efficiency of Circulating Fluidized Bed Boiler prognoses system and method
CN105205326B (en) A kind of power plant&#39;s Real-time Load on-line prediction method
CN103615716B (en) CFBB exhaust gas temperature prognoses system and method
CN110935567A (en) Thermal power generating unit dry-type electric precipitator optimization control method and system
CN103605287B (en) Circulating Fluidized Bed Temperature prognoses system and method
CN110533247B (en) Monthly power consumption prediction method adopting temperature data anomaly point compensation
Li et al. Process identification of the SCR system of coal-fired power plant for de-NOx based on historical operation data
CN113867148B (en) Series control closed loop system identification method based on step response and considering feedforward
CN103411213B (en) Fan for Circulating Fluidized Bed Boiler power consumption prognoses system and method
CN103616913B (en) Circulating fluidized bed boiler induced-draft fan current prediction system and method
CN103592902B (en) Circulating Fluidized Bed Boiler primary air fan current forecasting system and method
CN103413039B (en) Circulating fluid bed boiler secondary air dynamo-electric stream prognoses system and method
CN103413184B (en) Circulating Fluidized Bed Boiler unburned carbon in flue dust prognoses system and method
CN116505556A (en) Wind farm power control system and method based on primary frequency modulation
CN113191083B (en) Optimization design method of flue gas waste heat recovery system considering all-working-condition external parameter change
CN114357023B (en) Data-driven direct air cooling unit operation optimization method and system
CN103617340B (en) CFBB excess air coefficient prediction system and method
CN103425050B (en) Circulating Fluidized Bed Boiler heat loss due to exhaust gas rate prognoses system and method
KR20230028683A (en) IoT-BASED DATA VISUALIZATION METHOD FOR ZERO-ENERGY BUILDINGS
JP3707589B2 (en) Electricity demand forecast method
CN105389624A (en) Intelligent power distribution and utilization dynamic evaluation method
CN211302624U (en) Soft measurement system for wet desulphurization efficiency of coal-fired power plant
CN118210260A (en) Building energy-saving control method, system, equipment and storable medium

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150930

Termination date: 20180805