CN103377558A - System and method for managing and controlling traffic flow - Google Patents

System and method for managing and controlling traffic flow Download PDF

Info

Publication number
CN103377558A
CN103377558A CN2012101257131A CN201210125713A CN103377558A CN 103377558 A CN103377558 A CN 103377558A CN 2012101257131 A CN2012101257131 A CN 2012101257131A CN 201210125713 A CN201210125713 A CN 201210125713A CN 103377558 A CN103377558 A CN 103377558A
Authority
CN
China
Prior art keywords
real
road
vehicles
traffic
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012101257131A
Other languages
Chinese (zh)
Inventor
李后贤
李章荣
罗治平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hongfujin Precision Industry Shenzhen Co Ltd
Hon Hai Precision Industry Co Ltd
Original Assignee
Hongfujin Precision Industry Shenzhen Co Ltd
Hon Hai Precision Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hongfujin Precision Industry Shenzhen Co Ltd, Hon Hai Precision Industry Co Ltd filed Critical Hongfujin Precision Industry Shenzhen Co Ltd
Priority to CN2012101257131A priority Critical patent/CN103377558A/en
Publication of CN103377558A publication Critical patent/CN103377558A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Traffic Control Systems (AREA)

Abstract

本发明提供一种交通流量管控系统,应用于与UAV及交通号志通讯连接的控制主机。该UAV拍摄各道路的实时影像、侦测每张实时影像的拍摄地点的位置坐标及拍摄该实时影像时UAV的拍摄方向,并通过网络模块将该实时影像、位置坐标及拍摄方向等数据传送至控制主机。该交通流量管控系统分析所述实时影像,得到实时影像中人型、车辆的数量数据,将各实时影像中人型、车辆的数量数据根据该所述位置坐标及拍摄方向等信息标记于电子地图相应的位置,并根据电子地图上标记的各道路的人型、车辆的数量数据动态调整各道路的交通号志的管控状态。本发明还提供一种交通流量管控方法。

The invention provides a traffic flow management and control system, which is applied to a control host connected to a UAV and a traffic signal in communication. The UAV shoots real-time images of each road, detects the position coordinates of the shooting location of each real-time image and the shooting direction of the UAV when shooting the real-time image, and transmits the data such as the real-time image, position coordinates and shooting direction to Control host. The traffic flow control system analyzes the real-time images to obtain the number data of people and vehicles in the real-time images, and marks the numbers of people and vehicles in each real-time image on the electronic map according to the location coordinates and shooting directions. The corresponding position, and dynamically adjust the control status of the traffic signals of each road according to the human shape and the number of vehicles marked on the electronic map. The invention also provides a traffic flow control method.

Description

交通流量管控系统及方法Traffic flow control system and method

技术领域 technical field

本发明涉及一种信息监控系统及方法,尤其系一种交通流量管控系统及方法。 The invention relates to an information monitoring system and method, in particular to a traffic flow control system and method.

背景技术 Background technique

目前,交通管控指引方法一般是于交通高峰时间或路人通报路况时,依赖交警等人力亲赴现场确认路段车流量等状况并加以指挥,或由人员至现场以手动方式进行交通讯号之管控作业,以协助疏导交通状况。这种方法不仅对交通管制人员之人力需求较大,相关路况亦依赖人员定期巡逻或路人实时通报。 At present, the traffic control guidance method generally relies on the traffic police and other manpower to go to the scene to confirm the traffic flow and other conditions of the road section and give instructions during peak traffic hours or when passers-by report the road conditions, or the personnel go to the scene to manually control traffic signals. to assist in the flow of traffic. This method not only requires a large amount of manpower for traffic control personnel, but also relies on regular patrols by personnel or real-time notifications from passers-by for relevant road conditions.

发明内容 Contents of the invention

鉴于以上内容,有必要提供一种交通流量管控系统及方法,可以实时获取交通流量信息并根据交通流量信息动态调整交通讯号的管控状态。 In view of the above, it is necessary to provide a traffic flow control system and method, which can obtain traffic flow information in real time and dynamically adjust the control status of traffic signals according to the traffic flow information.

一种交通流量管控系统,应用于控制交通号志管控状态的控制主机。该交通流量管控系统接收无人飞行载具UAV利用影像捕获单元拍摄的各道路的实时影像,利用全球定位系统GPS侦测的每张实时影像的拍摄地点的位置坐标数据,及利用电子罗盘侦测的拍摄该实时影像时影像捕获单元的拍摄方向数据。之后,该系统利用车辆、人型侦测技术分析所述实时影像,得到各道路实时影像中人型、车辆的影像信息;统计各道路的实时影像中人型、车辆的数量,将各实时影像中人型、车辆的数量根据该实时影像的拍摄地点的位置坐标及所述拍摄方向等信息标记于电子地图相应的位置;并根据电子地图上标记的各道路的人型、车辆的数量数据动态调整各道路的交通号志的管控状态。 A traffic flow control system, which is applied to a control host for controlling the control state of traffic signals. The traffic flow control system receives the real-time images of the roads captured by the image capture unit of the unmanned aerial vehicle UAV, the position coordinate data of the shooting location of each real-time image detected by the global positioning system GPS, and the electronic compass to detect The shooting direction data of the image capture unit when shooting the real-time image. Afterwards, the system analyzes the real-time images using vehicle and human-type detection technology to obtain the image information of people and vehicles in the real-time images of each road; The number of people and vehicles in the middle is marked on the corresponding position of the electronic map according to the location coordinates of the shooting location of the real-time image and the shooting direction; and according to the data of the number of people and vehicles on each road marked on the electronic map Adjust the control status of traffic signals on each road.

一种交通流量管控方法,应用于控制交通号志管控状态的控制主机。该方法包括:(A)接收无人飞行载具UAV利用影像捕获单元拍摄的各道路的实时影像,利用全球定位系统GPS侦测的每张实时影像的拍摄地点的位置坐标数据,及利用电子罗盘侦测的拍摄该实时影像时影像捕获单元的拍摄方向数据;(B)利用车辆、人型侦测技术分析所述实时影像,得到各道路实时影像中人型、车辆的影像信息;(C)统计各道路的实时影像中人型、车辆的数量,将各实时影像中人型、车辆的数量根据该实时影像的拍摄地点的位置坐标及所述拍摄方向等信息标记于电子地图相应的位置;及(D)根据电子地图上标记的各道路的人型、车辆的数量数据动态调整各道路的交通号志的管控状态。 A traffic flow control method is applied to a control host for controlling the control status of traffic signals. The method includes: (A) receiving the real-time images of each road taken by the image capture unit of the unmanned aerial vehicle UAV, utilizing the position coordinate data of the shooting location of each real-time image detected by the global positioning system GPS, and utilizing the electronic compass The shooting direction data of the image capture unit when the detected real-time image is taken; (B) analyze the real-time image by using vehicle and human type detection technology to obtain the image information of human type and vehicle in the real-time image of each road; (C) Count the number of people and vehicles in the real-time images of each road, and mark the numbers of people and vehicles in each real-time image on the corresponding position of the electronic map according to the location coordinates of the shooting location of the real-time images and the shooting direction and other information; And (D) dynamically adjust the control status of the traffic signals of each road according to the number data of people and vehicles on each road marked on the electronic map.

相较于现有技术,本发明提供的交通流量管控系统及方法,可以实时获取交通流量信息并根据交通流量信息动态调整交通讯号的管控状态。 Compared with the prior art, the traffic flow control system and method provided by the present invention can acquire traffic flow information in real time and dynamically adjust the control status of traffic signals according to the traffic flow information.

附图说明 Description of drawings

图1是本发明交通流量管控系统较佳实施方式之应用环境图。 FIG. 1 is an application environment diagram of a preferred embodiment of the traffic flow control system of the present invention.

图2是本发明交通流量管控方法较佳实施方式之流程图。 Fig. 2 is a flowchart of a preferred embodiment of the traffic flow control method of the present invention.

图3是UAV及安装于UAV上的影像捕获单元之示意图。 FIG. 3 is a schematic diagram of a UAV and an image capture unit installed on the UAV.

图4是图3中所示的UAV停留于一条道路上空拍摄该道路的实时影像之示意图。 FIG. 4 is a schematic diagram of the UAV shown in FIG. 3 hovering over a road and shooting a real-time image of the road.

图5是一条道路某个时刻的实时影像中人型、车辆的影像信息之示意图。 FIG. 5 is a schematic diagram of image information of human figures and vehicles in real-time images of a road at a certain moment.

图6是于电子地图标示各道路各方向人、车数量数据之示意图。 FIG. 6 is a schematic diagram showing the number data of people and vehicles in each direction of each road on an electronic map.

主要元件符号说明 Description of main component symbols

UAVUAV 11 控制主机control host 22 存储系统Storage System 33 交通号志traffic signal 44 GPSGPS 1111 影像捕获单元image capture unit 1212 电子罗盘Electronic compass 1313 网络模块network module 14、2114, 21 处理器processor 22twenty two 交通流量管控系统traffic flow control system 23twenty three 分析模块analysis module 231231 标记模块marking module 232232 控制模块control module 233233 电子地图digital map 24twenty four

如下具体实施方式将结合上述附图进一步说明本发明。 The following specific embodiments will further illustrate the present invention in conjunction with the above-mentioned drawings.

具体实施方式 Detailed ways

参阅图1所示,系本发明交通流量管控系统23较佳实施方式之应用环境图。该交通流量管控系统23应用于控制交通号志4的管控状态的控制主机2。该交通号志4是以交互更迭之光色讯号,设置于交岔路口或其它特殊地点,用以将道路通行权指定给车辆驾驶人与行人管制其行止及转向之交通管制设施。该交通号志4包括车辆管制号志,行人专用号志,及特种交通号志(例如盲人提示音)。 Referring to FIG. 1 , it is an application environment diagram of a preferred embodiment of the traffic flow control system 23 of the present invention. The traffic flow control system 23 is applied to the control host 2 that controls the control state of the traffic signal 4 . The traffic signal 4 is a traffic control facility for assigning the right of way to vehicle drivers and pedestrians to control their walking and turning with alternating light and color signals. The traffic signal 4 includes a traffic control signal, a pedestrian-only signal, and a special traffic signal (such as a prompt for the blind).

该控制主机2与无人飞行载具(Unmanned Aerial Vehicle,UAV)1通过网络通讯连接。该UAV1包括全球定位系统(global position system,GPS)11、影像捕获单元12、电子罗盘13及网络模块14。 The control host 2 is connected to an unmanned aerial vehicle (Unmanned Aerial Vehicle, UAV) 1 through network communication. The UAV1 includes a global positioning system (global position system, GPS) 11 , an image capture unit 12 , an electronic compass 13 and a network module 14 .

参阅图3所示,影像捕获单元12安装于UAV1的机头部位,影像捕获单元12的镜头与UAV1的机头朝向一致。在本实施方式中,该影像捕获单元12为具有夜间拍摄功能之数字摄相机。该UAV1利用影像捕获单元12拍摄各道路的实时影像。参阅图4所示,系该UAV1停留于一条道路上空拍摄该道路的实时影像的示意图。 Referring to FIG. 3 , the image capture unit 12 is installed on the nose of the UAV1 , and the lens of the image capture unit 12 is aligned with the nose of the UAV1 . In this embodiment, the image capture unit 12 is a digital camera with a night shooting function. The UAV1 utilizes the image capture unit 12 to capture real-time images of each road. Referring to FIG. 4 , it is a schematic diagram of the UAV1 staying above a road to shoot real-time images of the road.

GPS11侦测每张实时影像的拍摄地点的坐标信息,即影像捕获单元12拍摄每张实时影像时该UAV1所处位置的坐标信息。电子罗盘13侦测拍摄每张实时影像时影像捕获单元12的方向(以下称作每张实时影像的拍摄方向)。 The GPS 11 detects the coordinate information of the shooting location of each real-time image, that is, the coordinate information of the location of the UAV 1 when the image capture unit 12 shoots each real-time image. The electronic compass 13 detects the direction of the image capture unit 12 when shooting each real-time image (hereinafter referred to as the shooting direction of each real-time image).

UAV1通过网络模块14将拍摄得到的各道路的实时影像、每张影像的拍摄地点的位置坐标及拍摄方向等数据传送至控制主机2。 The UAV 1 transmits the captured real-time images of each road, the location coordinates of the shooting location of each image, and the shooting direction to the control host 2 through the network module 14 .

参阅图1所示,该控制主机2还包括网络模块21、处理器22及电子地图24。该控制主机2通过网络模块21接收UAV1传送的各道路的实时影像、每张影像的拍摄地点的位置坐标及拍摄方向等数据,并存储至存储系统3。该存储系统3可以为该控制主机2内部的存储装置,也可以为与该控制主机2相连接的外部存储装置,例如数据库服务器等。 Referring to FIG. 1 , the control host 2 also includes a network module 21 , a processor 22 and an electronic map 24 . The control host 2 receives the real-time images of each road transmitted by the UAV 1 through the network module 21 , the location coordinates of the shooting location of each image, the shooting direction and other data, and stores them in the storage system 3 . The storage system 3 can be a storage device inside the control host 2, or an external storage device connected to the control host 2, such as a database server.

该交通流量管控系统23分析上述接收的数据,利用车辆、人型侦测技术分析所述实时影像,得到各道路实时影像中人型、车辆的数量数据,将各实时影像中人型、车辆的数量数据根据该实时影像的拍摄地点的位置坐标及拍摄方向等信息标记于电子地图相应的位置,并根据电子地图上标记的各道路的人型、车辆的数量数据动态调整各道路的交通号志4的管控状态。 The traffic flow control system 23 analyzes the received data, analyzes the real-time images using vehicle and human shape detection technology, obtains the number data of people and vehicles in the real-time images of each road, and compares the numbers of people and vehicles in the real-time images The quantity data is marked on the corresponding position of the electronic map according to the location coordinates and shooting direction of the shooting location of the real-time image, and the traffic signs of each road are dynamically adjusted according to the number of people and vehicles on each road marked on the electronic map 4 control status.

参阅图1所示,该交通流量管控系统23包括分析模块231、标记模块232及控制模块233。该模块231-233包括计算器程序化代码,这些代码存储于存储系统3,处理器22执行这些计算器程序化代码,提供该交通流量管控系统23的上述功能。该模块231-233的具体功能请参阅下文关于图2的说明。 Referring to FIG. 1 , the traffic flow control system 23 includes an analysis module 231 , a marking module 232 and a control module 233 . The modules 231 - 233 include computer programming codes, which are stored in the storage system 3 , and the processor 22 executes these computer programming codes to provide the above-mentioned functions of the traffic flow control system 23 . For the specific functions of the modules 231-233, please refer to the description of FIG. 2 below.

参阅图2所示,系本发明交通流量管控方法较佳实施方式之流程图。 Referring to Fig. 2, it is a flow chart of a preferred embodiment of the traffic flow control method of the present invention.

步骤S10,UAV1利用影像捕获单元12拍摄各道路的实时影像,并利用GPS11及电子罗盘13侦测每张实时影像的拍摄地点的位置坐标及拍摄方向。参阅图4所示,系该UAV1停留于一条道路上空拍摄该道路的实时影像的示意图。UAV1在拍摄该道路的实时影像时,GPS11侦测得到UAV1的经度坐标为152.6248,纬度坐标为25.8214,电子罗盘13侦测得到该影像捕获单元12的方向(即该实时影像的拍摄方向)为N-W15°。其中,第一个英文字母N表示影像捕获单元12的主要拍摄方向为正北方,第二个英文字母W表示影像捕获单元12的偏移方向为西方,数字15°表示影像捕获单元12由正北方向西方偏移的角度。 Step S10 , the UAV1 uses the image capture unit 12 to capture real-time images of each road, and uses the GPS 11 and the electronic compass 13 to detect the location coordinates and shooting directions of the shooting locations of each real-time image. Referring to FIG. 4 , it is a schematic diagram of the UAV1 staying above a road to shoot real-time images of the road. When UAV1 is taking the real-time image of this road, GPS11 detects that the longitude coordinate of UAV1 is 152.6248, and the latitude coordinate is 25.8214. -W15°. Wherein, the first English letter N indicates that the main shooting direction of the image capture unit 12 is due north, the second English letter W indicates that the offset direction of the image capture unit 12 is the west, and the number 15° indicates that the image capture unit 12 starts from the true north. The angle by which the direction is offset west.

步骤S20,UAV1通过网络模块14将拍摄得到的各道路的实时影像、每张影像的拍摄地点的位置坐标及拍摄方向数据传送至控制主机2。 In step S20 , the UAV 1 transmits the captured real-time images of each road, the location coordinates of the shooting location of each image, and the shooting direction data to the control host 2 through the network module 14 .

步骤S30,控制主机2通过网络模块21接收上述数据后,分析模块231利用车辆、人型侦测技术分析所述实时影像,得到各道路实时影像中人型、车辆的影像信息。参阅图5,为一条道路某个时刻的实时影像,分析模块231分析得到该实时影像中的人型、车辆的影像信息,并以矩形加数位编号的方式标示该实时影像中的人型、车辆的影像区域。 In step S30, after the control host 2 receives the above data through the network module 21, the analysis module 231 analyzes the real-time images using the vehicle and human shape detection technology to obtain image information of human shapes and vehicles in the real-time images of each road. Referring to Fig. 5, it is a real-time image of a road at a certain moment, and the analysis module 231 analyzes the image information of the people and vehicles in the real-time image, and marks the people and vehicles in the real-time image in the form of a rectangle plus a digital number image area.

所示人型侦测技术包括,但不限于,人型特征信息统计法和特征样本比对分类法(Template Matching Method)。 The shown human type detection techniques include, but are not limited to, human type feature information statistics method and feature sample comparison classification method (Template Matching Method).

具体而言,人型特征信息统计法包括如下步骤: Specifically, the statistical method of humanoid feature information includes the following steps:

(1) 以影像处理方式将实时影像背景单纯化; (1) Simplify the real-time image background by image processing;

(2) 将实时影像数据与数据库中超过十万张以上的各姿势的人型特征点数据进行比对; (2) Compare the real-time image data with more than 100,000 humanoid feature point data of each posture in the database;

(3) 以统计方式按实时影像内的特征点数据推估是否有人型信息存在实时影像中。 (3) Statistically estimate whether humanoid information exists in the real-time image according to the feature point data in the real-time image.

特征样本比对分类法包括如下步骤: The characteristic sample comparison classification method includes the following steps:

(1) 先搜集一定数量各姿势的人型特征样本及一定数量的非人型特征样本,例如,搜集一定数量的站姿正面及站姿侧面、坐姿等人型图片; (1) First collect a certain number of humanoid feature samples of each posture and a certain number of non-humanoid feature samples, for example, collect a certain number of humanoid pictures in standing postures, frontal postures, sideways postures, and sitting postures;

(2) 待完成一定数量不同姿势的人型特征样本及一定数量的非人型特征样本搜集后,开始进一步以类神经网络(Artificial Neural Network)训练方式进行持续训练(Training),持续修正错误。如果不使用类神经网络训练方式,亦可改以Ada-Boost 分类法进行分类,经训练完成的人型特征模版(Template)或Ada-Boost分类器便可供后续的人型侦测(Testing)使用。 (2) After completing the collection of a certain number of human-like feature samples in different poses and a certain number of non-human-like feature samples, start further continuous training (Training) with the artificial neural network (Artificial Neural Network) training method, and continue to correct errors. If you do not use the neural network training method, you can also use the Ada-Boost classification method for classification, and the trained humanoid feature template (Template) or Ada-Boost classifier can be used for subsequent humanoid detection (Testing) use.

在本实施方式中,车辆侦测可以采用基于Adaboost cascade的车牌检测技术,在此不再赘述。 In this embodiment, vehicle detection can use Adaboost cascade-based license plate detection technology, which will not be repeated here.

步骤S40,标记模块232统计各道路的实时影像中人型、车辆的数量,将各实时影像中人型、车辆的数量数据根据该实时影像的拍摄地点的位置坐标及拍摄方向等信息标记于电子地图相应的位置。图6显示了电子地图24的部分区域,该电子地图24除了显示道路、建筑物的标志外,还在电子地图24上与UAV1拍摄每张实时影像的拍摄地点相应于的位置处标记分析该实时影像得到的相应道路各个方向的人型、车辆的数量数据。假设UAV1在每个十字路口拍摄得到一张或多张实时影像,参阅图6所示,电子地图24上显示的每个十字路口处标示了指示不同方向的箭头。该箭头用来表示拍摄某一张实时影像时影像捕获单元12的拍摄方向,每个箭头旁标示了2个数字分别表示从该实时影像分析得到的该道路对应该拍摄方向的人型及车辆数量。在本实施方式中,置于圆圈中的数字表示人型数量,未置于圆圈中的数字表示车辆数量。 Step S40, the marking module 232 counts the number of people and vehicles in the real-time images of each road, and marks the number data of people and vehicles in each real-time image on the computer according to the location coordinates and shooting directions of the shooting location of the real-time images. corresponding location on the map. Fig. 6 has shown the partial area of electronic map 24, and this electronic map 24 is except displaying the sign of road, building, also on the electronic map 24 and UAV1 shoots the corresponding position place mark analysis of this real-time image at the shooting location of each piece of real-time image. The data of the number of people and vehicles in each direction of the corresponding road obtained from the image. Assuming that the UAV1 captures one or more real-time images at each intersection, as shown in FIG. 6 , arrows indicating different directions are marked at each intersection displayed on the electronic map 24 . The arrows are used to indicate the shooting direction of the image capture unit 12 when shooting a certain real-time image, and two numbers are marked next to each arrow to indicate the number of people and vehicles on the road corresponding to the shooting direction obtained from the real-time image analysis. . In this embodiment, numbers placed in circles indicate the number of human figures, and numbers not placed in circles indicate the number of vehicles.

步骤S50,控制模块233根据电子地图24上标记的各道路的人型、车辆的数量数据动态调整各道路的交通号志4的管控状态。例如,当一条道路某个通行方向的人型、车辆的数量超过预设阀值时,控制模块233产生控制命令至该道路上的交通号志4延长该道路该通行方向的人、车通行时间。 In step S50, the control module 233 dynamically adjusts the management and control status of the traffic signs 4 on each road according to the human shape and vehicle quantity data on each road marked on the electronic map 24 . For example, when the number of people and vehicles in a certain direction of a road exceeds a preset threshold, the control module 233 generates a control command to the traffic signal 4 on the road to prolong the time for people and vehicles in the direction of the road. .

最后应说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或等同替换,而不脱离本发明技术方案的精神和范围。 Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention without limitation. Although the present invention has been described in detail with reference to the preferred embodiments, those of ordinary skill in the art should understand that the technical solutions of the present invention can be Modifications or equivalent replacements can be made without departing from the spirit and scope of the technical solutions of the present invention.

Claims (8)

1.一种交通流量管控系统,应用于控制交通号志管控状态的控制主机,其特征在于,该交通流量管控系统包括: 1. A traffic flow control system, which is applied to a control host controlling a traffic signal control state, is characterized in that the traffic flow control system comprises: 网络模块,用于接收无人飞行载具UAV利用影像捕获单元拍摄的各道路的实时影像,利用全球定位系统GPS侦测的每张实时影像的拍摄地点的位置坐标数据,及利用电子罗盘侦测的拍摄该实时影像时影像捕获单元的拍摄方向数据; The network module is used to receive the real-time images of each road taken by the image capture unit of the unmanned aerial vehicle UAV, the position coordinate data of the shooting location of each real-time image detected by the global positioning system GPS, and the electronic compass to detect The shooting direction data of the image capture unit when shooting the real-time image; 分析模块,用于利用车辆、人型侦测技术分析所述实时影像,得到各道路实时影像中人型、车辆的影像信息; The analysis module is used to analyze the real-time images using vehicle and human-type detection technology to obtain the image information of human-type and vehicles in the real-time images of each road; 标记模块,用于统计各道路的实时影像中人型、车辆的数量,将各实时影像中人型、车辆的数量根据该实时影像的拍摄地点的位置坐标及所述拍摄方向信息标记于电子地图相应的位置;及 The marking module is used to count the number of people and vehicles in the real-time images of each road, and mark the numbers of people and vehicles in each real-time image on the electronic map according to the position coordinates of the shooting location of the real-time images and the shooting direction information the corresponding location; and 控制模块,用于根据电子地图上标记的各道路的人型、车辆的数量数据动态调整各道路的交通号志的管控状态。 The control module is used to dynamically adjust the control status of the traffic signals of each road according to the data of the number of people and vehicles on each road marked on the electronic map. 2.如权利要求1所述的交通流量管控系统,其特征在于,该交通号志是以交互更迭之光色讯号,设置于交岔路口或其它特殊地点,用以将道路通行权指定给车辆驾驶人与行人管制其行止及转向之交通管制设施。 2. The traffic flow control system according to claim 1, characterized in that the traffic signal is an alternating light and color signal, which is set at a crossroad or other special location to assign the right of way to the vehicle Traffic control facilities for drivers and pedestrians to control their behavior and turn. 3.如权利要求1所述的交通流量管控系统,其特征在于,该人型侦测技术包括人型特征信息统计法和特征样本比对分类法。 3 . The traffic flow control system according to claim 1 , wherein the human shape detection technology includes a statistical method of human shape characteristic information and a method of comparing and classifying characteristic samples. 4 . 4.如权利要求1所述的交通流量管控系统,其特征在于,所述根据电子地图上标记的各道路的人型、车辆的数量数据动态调整各道路的交通号志的管控状态包括:当一条道路某个通行方向的人型、车辆的数量超过预设阀值时,产生控制命令至该道路上的交通号志延长该道路该通行方向的人、车通行时间。 4. The traffic flow management and control system as claimed in claim 1, characterized in that, the dynamic adjustment of the control state of the traffic signal of each road according to the figure of each road marked on the electronic map, the quantity data of vehicles comprises: When the number of people and vehicles in a certain direction of a road exceeds the preset threshold, a control command is generated to the traffic signal on the road to extend the time for people and vehicles in the direction of the road to pass. 5.一种交通流量管控方法,应用于控制交通号志管控状态的控制主机,其特征在于,该方法包括: 5. A traffic flow control method, applied to a control host controlling a traffic signal control state, characterized in that the method comprises: 接收无人飞行载具UAV利用影像捕获单元拍摄的各道路的实时影像,利用全球定位系统GPS侦测的每张实时影像的拍摄地点的位置坐标数据,及利用电子罗盘侦测的拍摄该实时影像时影像捕获单元的拍摄方向数据; Receive the real-time images of each road captured by the image capture unit of the unmanned aerial vehicle UAV, use the global positioning system GPS to detect the position coordinate data of the shooting location of each real-time image, and use the electronic compass to detect and shoot the real-time image shooting direction data of the image capture unit at the time; 利用车辆、人型侦测技术分析所述实时影像,得到各道路实时影像中人型、车辆的影像信息; Analyze the real-time images by using vehicle and human shape detection technology to obtain the image information of human shapes and vehicles in the real-time images of each road; 统计各道路的实时影像中人型、车辆的数量,将各实时影像中人型、车辆的数量根据该实时影像的拍摄地点的位置坐标及所述拍摄方向信息标记于电子地图相应的位置;及 Count the number of people and vehicles in the real-time images of each road, and mark the numbers of people and vehicles in each real-time image on the corresponding position of the electronic map according to the location coordinates of the shooting location of the real-time images and the shooting direction information; and 根据电子地图上标记的各道路的人型、车辆的数量数据动态调整各道路的交通号志的管控状态。 According to the data of the number of people and vehicles on each road marked on the electronic map, the control status of traffic signals on each road is dynamically adjusted. 6.如权利要求5所述的交通流量管控方法,其特征在于,该交通号志是以交互更迭之光色讯号,设置于交岔路口或其它特殊地点,用以将道路通行权指定给车辆驾驶人与行人管制其行止及转向之交通管制设施。 6. The traffic flow control method according to claim 5, characterized in that the traffic signal is an alternating light and color signal, which is set at a crossroad or other special location to assign the right of way to the vehicle Traffic control facilities for drivers and pedestrians to control their behavior and turn. 7.如权利要求5所述的交通流量管控方法,其特征在于,该人型侦测技术包括人型特征信息统计法和特征样本比对分类法。 7 . The traffic flow control method according to claim 5 , wherein the human shape detection technology includes a statistical method of human shape characteristic information and a method of comparing and classifying characteristic samples. 8 . 8.如权利要求5所述的交通流量管控方法,其特征在于,所述根据电子地图上标记的各道路的人型、车辆的数量数据动态调整各道路的交通号志的管控状态包括:当一条道路某个通行方向的人型、车辆的数量超过预设阀值时,产生控制命令至该道路上的交通号志延长该道路该通行方向的人、车通行时间。 8. The traffic flow control method as claimed in claim 5, wherein the dynamic adjustment of the control state of the traffic signal of each road according to the human figure and vehicle quantity data of each road marked on the electronic map comprises: when When the number of people and vehicles in a certain direction of a road exceeds the preset threshold, a control command is generated to the traffic signal on the road to extend the time for people and vehicles in the direction of the road to pass.
CN2012101257131A 2012-04-26 2012-04-26 System and method for managing and controlling traffic flow Pending CN103377558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012101257131A CN103377558A (en) 2012-04-26 2012-04-26 System and method for managing and controlling traffic flow

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012101257131A CN103377558A (en) 2012-04-26 2012-04-26 System and method for managing and controlling traffic flow

Publications (1)

Publication Number Publication Date
CN103377558A true CN103377558A (en) 2013-10-30

Family

ID=49462613

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012101257131A Pending CN103377558A (en) 2012-04-26 2012-04-26 System and method for managing and controlling traffic flow

Country Status (1)

Country Link
CN (1) CN103377558A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104537861A (en) * 2015-01-06 2015-04-22 成都智科立信科技有限公司 Internet-of-Things traffic signal indicating system
CN104954393A (en) * 2014-03-24 2015-09-30 高登智慧科技股份有限公司 Cloud community service system
CN106297338A (en) * 2016-09-14 2017-01-04 深圳市喜悦智慧数据有限公司 A kind of traffic robot's control system and method
CN106548634A (en) * 2016-10-31 2017-03-29 安徽科力信息产业有限责任公司 The method and device of semaphore control parameter is precisely adjusted based on Internet map
CN106652494A (en) * 2015-11-03 2017-05-10 中国移动通信集团公司 Method and device for controlling traffic lights
CN106998451A (en) * 2017-04-21 2017-08-01 湖北天专科技有限公司 The area condition panorama guide system and its method monitored based on unmanned vehicle
CN108682151A (en) * 2018-05-30 2018-10-19 苏州广元智感智能交通技术有限公司 Mobile magnitude of traffic flow statistic device based on wireless signal scan technology and method
CN109979209A (en) * 2017-12-28 2019-07-05 深圳市城市交通规划设计研究中心有限公司 Traffic monitor, method, non-volatile memory medium and system
CN110085045A (en) * 2019-05-05 2019-08-02 方星星 Road and driving Real-time security monitoring, navigation system and safety monitoring method
US10891856B1 (en) * 2015-12-30 2021-01-12 United Services Automobile Association (Usaa) Traffic drone system
CN113421442A (en) * 2021-06-01 2021-09-21 上海大学 Traffic signal lamp control system based on visual analysis

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1945213A (en) * 2006-11-02 2007-04-11 武汉大学 Method for realizing visual position service based on measurable real image
CA2579898A1 (en) * 2006-02-24 2007-08-24 Michael Eineder Method for the processing and representing of ground images obtained by synthetic aperture radar systems (sar)
CN101203894A (en) * 2005-07-11 2008-06-18 通腾科技股份有限公司 Method for determining traffic information and device and executing the method through setting
CN101799987A (en) * 2010-03-10 2010-08-11 北京航空航天大学 Self-adaptive intelligent traffic light and control method thereof
CN102117545A (en) * 2009-12-31 2011-07-06 杨茂君 Intelligent traffic signal lamp control system and control method thereof
CN202150183U (en) * 2010-12-15 2012-02-22 黄钰峰 Traffic management air information acquisition platform
CN102436678A (en) * 2010-09-29 2012-05-02 比亚迪股份有限公司 Three-dimensional road model generation method and system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101203894A (en) * 2005-07-11 2008-06-18 通腾科技股份有限公司 Method for determining traffic information and device and executing the method through setting
CA2579898A1 (en) * 2006-02-24 2007-08-24 Michael Eineder Method for the processing and representing of ground images obtained by synthetic aperture radar systems (sar)
CN1945213A (en) * 2006-11-02 2007-04-11 武汉大学 Method for realizing visual position service based on measurable real image
CN102117545A (en) * 2009-12-31 2011-07-06 杨茂君 Intelligent traffic signal lamp control system and control method thereof
CN101799987A (en) * 2010-03-10 2010-08-11 北京航空航天大学 Self-adaptive intelligent traffic light and control method thereof
CN102436678A (en) * 2010-09-29 2012-05-02 比亚迪股份有限公司 Three-dimensional road model generation method and system
CN202150183U (en) * 2010-12-15 2012-02-22 黄钰峰 Traffic management air information acquisition platform

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104954393A (en) * 2014-03-24 2015-09-30 高登智慧科技股份有限公司 Cloud community service system
CN104537861A (en) * 2015-01-06 2015-04-22 成都智科立信科技有限公司 Internet-of-Things traffic signal indicating system
CN106652494A (en) * 2015-11-03 2017-05-10 中国移动通信集团公司 Method and device for controlling traffic lights
US10891856B1 (en) * 2015-12-30 2021-01-12 United Services Automobile Association (Usaa) Traffic drone system
US11688278B1 (en) 2015-12-30 2023-06-27 United Services Automobile Association (Usaa) Traffic drone system
CN106297338A (en) * 2016-09-14 2017-01-04 深圳市喜悦智慧数据有限公司 A kind of traffic robot's control system and method
CN106548634A (en) * 2016-10-31 2017-03-29 安徽科力信息产业有限责任公司 The method and device of semaphore control parameter is precisely adjusted based on Internet map
CN106548634B (en) * 2016-10-31 2019-05-14 安徽科力信息产业有限责任公司 Method and device based on the accurate adjustment signal machine control parameter of Internet map
CN106998451A (en) * 2017-04-21 2017-08-01 湖北天专科技有限公司 The area condition panorama guide system and its method monitored based on unmanned vehicle
CN109979209A (en) * 2017-12-28 2019-07-05 深圳市城市交通规划设计研究中心有限公司 Traffic monitor, method, non-volatile memory medium and system
CN108682151A (en) * 2018-05-30 2018-10-19 苏州广元智感智能交通技术有限公司 Mobile magnitude of traffic flow statistic device based on wireless signal scan technology and method
CN108682151B (en) * 2018-05-30 2020-11-17 广东矩阵流大数据科技有限公司 Mobile traffic flow statistical device and method based on wireless signal scanning technology
CN110085045A (en) * 2019-05-05 2019-08-02 方星星 Road and driving Real-time security monitoring, navigation system and safety monitoring method
CN113421442A (en) * 2021-06-01 2021-09-21 上海大学 Traffic signal lamp control system based on visual analysis

Similar Documents

Publication Publication Date Title
TWI438728B (en) System and method for controlling traffic flow information
CN103377558A (en) System and method for managing and controlling traffic flow
US11144786B2 (en) Information processing apparatus, method for controlling information processing apparatus, and storage medium
CN110174093B (en) Positioning method, device, equipment and computer readable storage medium
EP3343443B1 (en) Object detection for video camera self-calibration
CN109583415B (en) Traffic light detection and identification method based on fusion of laser radar and camera
US9070305B1 (en) Traffic light detecting system and method
US11263769B2 (en) Image processing device, image processing method, and image processing system
WO2017193933A1 (en) Traffic accident pre-warning method and traffic accident pre-warning device
CN106650705A (en) Region labeling method and device, as well as electronic equipment
RU2017124586A (en) VEHICLE AND RELATED METHOD FOR PROJECTIVE DISPLAY (OPTIONS)
JP7127328B2 (en) Method, device and electronic device for updating map information
CN103076007B (en) Lateral parking detection system and detection method thereof
CN112382085A (en) System and method suitable for intelligent vehicle traffic scene understanding and beyond visual range perception
WO2019198076A1 (en) Real-time raw data- and sensor fusion
CN111444798A (en) Method and device for identifying driving behavior of electric bicycle and computer equipment
Al-Sheary et al. Crowd monitoring system using unmanned aerial vehicle (UAV)
CN113378754B (en) A method for monitoring bare soil on a construction site
CN107067813A (en) A kind of parking stall bootstrap technique and system based on image procossing and pattern-recognition
KR20210066296A (en) Apparatus and method for monitoring city condition
CN106584516A (en) Intelligent photographing robot for tracing specified object
JP2022124993A (en) Identification device, identification program and identification method
KR102664123B1 (en) Apparatus and method for generating vehicle data, and vehicle system
CN106548627A (en) A kind of RFID sensing road monitoring systems based on car networking
CN208335208U (en) Image fusion acquisition system containing meteorological parameters

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20131030