CN103366396A - 基于局部阴影图的高质量软阴影快速生成方法 - Google Patents

基于局部阴影图的高质量软阴影快速生成方法 Download PDF

Info

Publication number
CN103366396A
CN103366396A CN2013102827955A CN201310282795A CN103366396A CN 103366396 A CN103366396 A CN 103366396A CN 2013102827955 A CN2013102827955 A CN 2013102827955A CN 201310282795 A CN201310282795 A CN 201310282795A CN 103366396 A CN103366396 A CN 103366396A
Authority
CN
China
Prior art keywords
echo
shadow
light source
generates
soft shadows
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013102827955A
Other languages
English (en)
Other versions
CN103366396B (zh
Inventor
王莉莉
张鑫维
马志强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN201310282795.5A priority Critical patent/CN103366396B/zh
Publication of CN103366396A publication Critical patent/CN103366396A/zh
Application granted granted Critical
Publication of CN103366396B publication Critical patent/CN103366396B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Or Creating Images (AREA)
  • Image Generation (AREA)

Abstract

本发明提出了一种基于局部阴影图的高质量软阴影快速生成方法,该方法的流程图包括以下两个部分:自适应光源采样,通过将生成的部分阴影图反投影到相机视点下来判断是否进一步细分光源采样点,从而实现对光源进行自适应采样,生成足够保证高质量阴影的阴影图;局部阴影图加速,在反投影阴影图时计算可见阴影像素对应的面光源阴影图区域,并以此调整阴影图生成的投影矩阵和视口,从而加速阴影图的生成。本方法在保证高质量阴影的同时,能大大提高渲染效率,尤其适用于不可见阴影部分较多的场景。本方法支持动态面光源、动态可变形场景且无须预计算,具有实施简单、效果逼真、渲染高效等优点。

Description

基于局部阴影图的高质量软阴影快速生成方法
技术领域
本发明属于高质量软阴影的技术领域,具体涉及一种基于多阴影图的软阴影生成方法。
背景技术
在真实的自然界中,任何场景都可以看到软阴影。许多硬阴影生成方法已经广泛地应用于游戏、动画以及虚拟现实系统中,然而如何快速地生成高质量的软阴影,增强虚拟场景的真实感,使场景显得更逼真依旧是一个复杂的任务,具有很高的研究价值。这些年,人们已经提出了很多关于软阴影生成的方法,主要集中在对于Shadow Maps算法和Shadow Volumes算法的改进及扩展的研究上。因为基于物理的软阴影生成方法需要大量的可见性计算,现在的交互式应用大多数采用基于单张阴影图的方法,通过启发式方法来近似软阴影的半影区(部分光源被遮挡住的区域)。这些方法虽然能快速的绘制出近似的软阴影效果,可与真实的阴影效果还是不相同的。
Wyman等人于2003年在“Penumbra Maps:Approximate Soft Shadows in Real-Time”中通过分析光源下物体的轮廓来生成“半影图”,并结合单张阴影图来估计并渲染半影区域。Fernando于2005年在“Percentage-closer Soft Shadows”中将Percentage Closer Filtering方法和局部搜索相结合,通过比较阴影图对应位置附近的所有深度值来确定阴影值;这种方法能根据光源、遮挡物、接收物三者之间的关系调整过滤范围,在软化了阴影边界,减少锯齿现象的同时,避免半影区大小一样带来的不真实感。为了减少该方法中大量的纹理查询操作,Donnelly等人于2006年在“Variance Shadow Maps”以及Annen等人于2009年在“ConvolutionShadow Maps”中分别提出了一些经典的预过滤方法,使近似软阴影的生成达到了实时。
Guennebaud等人于2006年和2007年分别在“Real-time Soft Shadow Mapping byBackprojection”和“High-Quality Adaptive Soft Shadow Mapping”、Atty等人于2006年在“SoftShadow Maps:Efficient Sampling of Light Source Visibility”、Aszódi等人于2006年在“Real-time Soft Shadows with Shadow Accumulation”以及Schwarzm等人于2007在“BitmaskSoft Shadows”中提出了一类称之为Backprojection的方法。该类算法不仅将阴影图用作于生成阴影时的深度比较,而且其看作为一种简单的场景离散化表示。对于屏幕像素点p,阴影图上的每个纹元被从p点反投影到光源上。通过计算光源上被遮挡部分大小即可求得p点的阴影值。这些算法能比较准确地产生软阴影,可当遮挡物存在重叠或者光源离遮挡物过近时,Backprojection算法容易产生错误的阴影。同时将大量的阴影图纹元反投影,也产生较大的开销。
一种最直观的基于阴影图的高质量软阴影算法是将面光源离散为多个点光源。首先,通过对面光源进行多点采样,在每个采样点生成一张场景的阴影图;然后,利用形成的多张阴影图共同渲染物体的阴影。这种算法较好的模拟出软阴影的形成,当采样点足够多时该算法生成可以出高质量的软阴影。这种算法的不足也显而易见,多张阴影图意味着多次场景渲染,当要求的阴影图太多时,渲染效率就得不到保证。
Heckbert等人与1997年在“Simulating Soft Shadows with Graphics Hardware”中提出一种只对均匀分布的少数光源采样点进行采样来生成软阴影的方法,先为每个阴影遮挡物计算一个“衰减图”,然后利用其来渲染物体光影。Agrawala于2000年在“Efficient Image-basedMethods for Rendering Soft Shadows”提出为整个场景创建一个“分层衰减图”,从而使渲染速率达到实时。St-Amour等人于2005年在“Soft Shadows from Extended Light Sources withPenumbra Deep Shadow Maps”中将多张阴影图的可见性信息存在一个预处理的三维压缩可见性数据结构中,用以生成阴影。Sintorn等人于2008年在“Sample-based Visibility for SoftShadows Using Alias-free Shadow Maps”中利用CUDA支持的非规则数据结构,准确的计算每个像素的阴影值。Scherzer等人于2009年在“Real-Time Soft Shadows Using TemporalCoherence”中利用帧间连续性,将对光源的采样平均到多个帧中。尽管对于一些场景,该方法能快速收敛,得到高质量的软阴影效果,但不适用于产生快速移动物体的软阴影。
Michael等人于2012年在“Fast Accurate Soft Shadows with Adaptive Light SourceSampling”中提出了一种自适应光源采样方法(FASS)。该方法首先对光源的几个点进行采样,生成阴影图。然后对这几张阴影图产生的场景阴影进行比较,选出能提高阴影质量的采样点进一步生成新的阴影图。当场景简单且视点离物体较远时,该算法能根据阴影的变化自适应地选择较少的采样点,从而提高软阴影的渲染效率。然而当视点靠近阴影,半影区在屏幕的面积变大,该算法得到的采样点数目很容易就到达最大值,从而导致效率急剧下降。
发明内容
本发明解决的技术问题是:基于多阴影图的软阴影方法存在阴影图生成时间过长的缺陷;且当视点靠近某一物体的阴影时,场景中可见的阴影变少,渲染时只有部分阴影图的信息会被利用到。因此需要设计出一种方法,在保证高质量的软阴影同时,减少阴影图生成时间,从而来提高绘制效率。方法本身要保持多阴影图渲染方法的特性,支持含有可移动可变形物体的完全动态场景,同时支持移动的面光源属性。
本发明的技术解决方案为:借鉴FASS方法来自适应采样光源,减少需要的阴影图数目;同时利用局部阴影图的思想加速后续过程中每一张阴影图的生成。由此提出了一种基于局部阴影图的高质量软阴影快速绘制方法,包括如下步骤:
(1)初始化光源采样点,根据场景大小确定阴影图生成的投影矩阵和视口以及其他初始化设置。
(2)利用自适应方法对光源进行采样,确定只生成能保证高质量软阴影的最少数目阴影图;同时通过初始阴影图信息自适应调整阴影图生成的投影矩阵和视口,从而生成局部阴影图来加速后续阴影图生成的过程。
(3)应用步骤(2)得到的阴影图生成软阴影,从视点位置绘制一遍整个场景,使用Phong光照模型结合阴影图上的可见性信息,渲染得到整个场景的光影效果。
在减少阴影图生成时间的处理上,一方面借鉴FASS方法的做法,采样自适应光源采样方法减少不必要的阴影图,另一方面利用局部阴影图技术对阴影图的生成进行加速,其特征在于:根据光源初始采样点生成的阴影图信息,调整投影矩阵和视口,从而利用更精细的光源视景体使后续生成的阴影图成为局部阴影图,只保留了对可见阴影有贡献的部分,加速了整个软阴影的绘制。具体包括以下步骤:
(1)采样点阴影图生成分两个阶段:首先是初始采样点处阴影图,这时候生成的阴影图是完整的阴影图,采用统一的只依赖于场景的透视投影矩阵和视口生成,不随视点的移动而变化;接下来是为了提高阴影质量而产生的细分采样点处的阴影图,这些阴影图随当前视点对应的ALSMR改变而改变,属于局部阴影图。
(2)每一帧对光源进行自适应采样,只生成能保证高质量软阴影最少数目的阴影图:通过将生成的四张相邻采样点的阴影图反投到场景中,再根据阴影灰度值变化来统计需要细分的像素点;由需要细分的像素点个数来确定是否需要进一步采样,从而达到了减少阴影图数目,加快渲染的目的。
(3)快速求取面光源阴影图范围(Area Light Shadow Maps Range,以下简称ALSMR)ALSMR:记录视点下每个可见阴影像素对应的阴影图位置(U,V),并根据其在各初始阴影图上的位置信息得到该阴影像素的面光源阴影图范围,可以证明该像素在面光源上任何一采样点生成的阴影图上的位置不会超过该范围。
如图3-A所示,分别在面光源两个顶点S1和S2处采样,生成的p的阴影示意图;图3-B则显示在采样点位置不变情况下,将p点逆向平移与l1(l1为S1与S2之间的距离)成比例的相应位移l2后,得到空间点p’。投影p’就可以得到相同的阴影示意图。如此,对于同一个三维空间点p,在面光源上任意一点Sr的采样都可以等价于将空间点逆向平移与lr(lr=Sr-S1)相应的位移后,在初始位置S1处采样得到的阴影图。由于光源面积有限,所以一定存在p的面光源阴影图范围ALSMR,使得p对于在该面光源上任意一点的采样得到的阴影图对应位置不会超过该范围。利用Ping-pong技术在GPU端快速合并所有可见阴影像素对应的ALSMR。如图4所示,对p点在四张阴影图上的UV坐标值取极小值和极大值,即可得到p点的ALSMR(图中最右边正方形中的红色区域)。由于本发明是要通过只生成对可见阴影有贡献的阴影图部分来提高软阴影渲染的效率,故只考虑处于阴影中的屏幕像素对应的空间点p(以下简称“可见阴影点”)的ALSMR。通过比较可见阴影点的ALSMR对应UV方向上的最大值和最小值,可将所有可见阴影点的ALSMR合并,由此得到的当前视点下总ALSMR,将为后续局部阴影图的生成提供必要参数。
(4)根据可见阴影区域的ALSMR,重新调整阴影图生成的投影矩阵和视口,产生能生成局部阴影图的更精细视景体。
(5)单pass的多阴影图软阴影渲染:利用纹理数组和统一缓冲对象进行多阴影图的软阴影绘制。通过将生成的多张阴影图存放到纹理数组中,将与之对应的投影矩阵存在UBO中一起传给shader,实现在一个pass中利用多张阴影图对软阴影进行绘制,提高了渲染效率。
本发明具有以下有益效果:第一,提出了局部阴影图技术,对于多阴影图渲染方法起到普遍性的加速作用。第二,结合自适应光源采样方法,提出了基于局部阴影图的高质量软阴影快速生成方法,大大提高了多阴影图渲染方法的效率。
附图说明
图1算法整体流程图;
图2完整阴影图和局部阴影图;
图3局部阴影图技术说明图;
图4可见阴影像素ALSMR示意图;
图5局部阴影图生成示意图;
图6ALSMR合并示意图;
图7本发明方法与已有方法的软阴影效果对比图。
具体实施方式
下面结合附图以及本发明的具体实施方式进一步说明本发明。
(1)成采样点阴影图
本发明的软阴影方法是基于多张阴影图的,这些阴影图分两个阶段分别生成。第一个阶段生成初始采样点处阴影图(对于矩形面光源,即面光源四个顶点处的阴影图)。初始阴影图是完整的阴影图,采用统一的只依赖于场景的透视投影矩阵和视口生成,不随视点的移动而变化。第二个阶段生成为提高阴影质量而产生的细分采样点处的阴影图。生成这些阴影图的投影矩阵和视口随当前视点对应的ALSMR而改变,这些细分采样点处得到的是局部阴影图。
ALSMR表示绘制当前视点下的阴影所需要的阴影图区域,其以外的阴影图信息在当前帧没有被用到,可以不用生成。由此可以根据ALSMR自适应调整后续阴影图生成的视景体大小(图5中蓝色视景体)。为了保证与初始阴影图分辨率的一致,本发明在后续阴影图的生成过程中采用与初始采样点阴影图一致的视景体前后裁剪面及相机方向,同时对视口的位置和大小也做了相应调整。
(2)阴影图比较
在获得了光源采样点的阴影图后,需要将阴影图进行比较,用以判断是否应该进一步细分采样点,获得更多的阴影图来提升阴影质量。阴影图比较分为反投阴影图和统计需要细分的像素点两个步骤。
反投阴影图:将在四个相邻采样点得到的阴影图重投到视点下。这一步类似于传统Shadow Maps算法的第二步。不过,此处不是将阴影图中的信息直接用于光照渲染,而是在shader中计算每个片段(fragment)在多少张阴影图中处于光源照亮处。片段的数值由0到4变化,0表示该片段对于四张阴影图对应的采样位置全不可见,处于完全阴影中;4表示该片段能被四个采样点位置的光源全部照亮,处于完全照亮处。如果比较的阴影图是初始阴影图,这一步中还要记录每个处于阴影中的片段在相应阴影图中所对应的UV坐标,用以求取ALSMR(具体见步骤(3))。
统计需要细分的像素点:将反投阴影图中得到的结果送到新的pass中处理。在pixelshader中,查询每个片段周围8个片段。如果存在某个片段,其周围8个片段被照亮的采样点数都与当前片段相同,则说明这四张阴影图产生的硬阴影边界太大,用于绘制软阴影会出现“带状边缘”的误差,需要对光源的采样点进一步细分。否则,说明已经产生足够多的阴影图来保证渲染除高质量的软阴影。这一步的具体实现可以利用硬件的遮挡查询(OcclusionQuery)功能。在做以上处理时,抛弃掉存在数值不相同的邻近片段的片段。最后统计该pass中通过测试的片段数,当通过测试的数目为0时,说明所有可见阴影部分达到了足够的细化程度,停止光源采样细分。
(3)快速求取ALSMR
在对初始阴影图进行比较的过程中,需要快速求得当前视点下的ALSMR。为此,将用于反投阴影图的pixel shader增加一张四通道输出纹理,用以保存每个屏幕像素对应的ALSMR。纹理的四个通道分别对应着ALSMR在UV两个方向上的最小值和最大值,记为(Umin,Vmin,Umax,Vmax),其初始值为(1,1,0,0,)。在将初始阴影图重投到当前视点下时,如果每个屏幕像素在某张阴影图的深度比较后处在阴影中,则记录像素在该阴影图中对应的UV坐标值,并用其更新ALSMR。
在获得屏幕每个像素的ALSMR后,需要将其合并以得到当前视点的总ALSMR。本文利用Ping-pong技术在GPU上快速实现,整个过程类似于纹理的Mipmap生成。不过这里新一层Mipmap的生成不是对上一层纹理颜色进行过滤,而是将其对应的四个像素ALSMR合并起来存在新的一层中。最后一层Mipmap是1x1的纹理,其四个通道对应的数值即当前视点下场景的ALSMR。
(4)调整阴影图生成的投影矩阵和视口
将步骤(3)得到的ALSMR信息传输到CPU端后,可以根据此得到新的阴影投影矩阵和新的视口位置和大小,在后续阶段生成局部阴影图。
(5)利用生成的阴影图渲染软阴影
为了获得高质量的软阴影,必须对所有的阴影图进行查询和深度比较。在统计了所有的阴影图信息后才能估计出每个像素对光源的可见度,进而计算出阴影值。一种传统的做法是利用延迟渲染技术。该做法对于每一张阴影图,做一个渲染pass,产生的阴影则乘以一个相应的权值。将所有pass的阴影值累加起来则得到最终的阴影效果图。这种方法对于阴影图数目较多时,渲染效率不高。
本发明利用OpenGL3.1的新特性——纹理数组和统一缓冲对象进行多阴影图的软阴影绘制。较新图形显示卡能最多将2048张相同大小和格式的纹理传给shader程序,并且使shader能随机访问这些纹理;同时也支持将最多65536byte的外部数据以UBO方式传给shader程序,供其随机访问。将生成的多张阴影图存放到纹理数组中,将与之对应的投影矩阵存在UBO中一起传给shader,这样就可以在在一个pass中,利用多张阴影图对软阴影进行了绘制,大大提升了渲染效率。
本发明的方法使用OpenGL4.1和Cg2.0在MS Visual Studio2010环境下编程实现。所有实验在一台配置Intel Core i7-3770CPU,6GB内存,显存为1GB的Nvidia Geforce570GTX机器上测试完成。
当场景较简单,在大多数视点下都可以将场景看全时本文的算法和FASS差不多,不能达到很好的性能提升。为了表现本文算法在复杂的、较大规模的场景中的优势,本文设计了三种测试场景——Bunny、小树林和牛群进行实验。所有实验的渲染分辨率均为512x512,采用512x512的32bit浮点类型纹理作为阴影图,以GL_LINEAR方式存储深度。光源采样点细分最大层为4层,最多可采样生成289张阴影图。
三种实验场景下阴影效果比较如如图7所示,从左往右每一列的图像分别是A)作为对比的Reference(用规则采样生成289张阴影图渲染得到),B)本说明的方法渲染结果,C)本说明的方法和Reference作差的结果(为分辨需要,将差异放大5倍),D)FASS渲染结果,E)本说明的方法与FASS得到的渲染结果作差(为分辨需要,将结果放大100倍)。从图中可以看出,本说明的方法与FASS所绘制的效果完全一样,需要的阴影图数目也是一样;与Reference相比,效果相差非常小。表1反映了用三种不同的方法绘制场景软阴影的渲染效率,表中的三个场景与图7中显示的阴影效果图相对应。
表1三种实验场景下方法效率的比较单位:帧/秒
Figure BDA00003473758300071
*括号中为渲染场景的方法所需要的阴影图数目

Claims (2)

1.一种基于局部阴影图的高质量软阴影快速生成方法,其特征在于:主要包括以下三个步骤:
(1)初始化光源采样点,根据场景大小确定阴影图生成的投影矩阵和视口以及其他初始化设置;
(2)利用自适应方法对光源进行采样,确定只生成能保证高质量软阴影的最少数目阴影图;同时通过初始阴影图信息自适应调整阴影图生成的投影矩阵和视口,从而生成局部阴影图来加速后续阴影图生成的过程;
(3)应用步骤(2)得到的阴影图生成软阴影,从视点位置绘制一遍整个场景,使用Phong光照模型结合阴影图上的可见性信息,渲染得到整个场景的光影效果;
其中步骤(2)具体分为5个步骤:生成采样点阴影图;阴影图比较;快速求取面光源阴影图范围;调整阴影图生成的投影矩阵和视口以及利用生成的阴影图渲染软阴影。
2.根据权利1所述的基于局部阴影图的高质量软阴影快速生成方法,其特征在于步骤(2)中,在采用自适应光源采样方法减少不必要的阴影图同时,利用局部阴影图技术对阴影图的生成进行加速,根据光源初始采样点生成的阴影图信息,调整投影矩阵和视口,从而利用更精细的光源视景体使后续生成的阴影图成为局部阴影图,只保留了对可见阴影有贡献的部分,加速了整个软阴影的绘制;具体步骤如下:
(2.1)采样点阴影图生成分两个阶段:首先是初始采样点处阴影图,这时候生成的阴影图是完整的阴影图,采用统一的只依赖于场景的透视投影矩阵和视口生成,不随视点的移动而变化;接下来是为了提高阴影质量而产生的细分采样点处的阴影图,这些阴影图随当前视点对应的ALSMR改变而改变,属于局部阴影图;
(2.2)每一帧对光源进行自适应采样,只生成能保证高质量软阴影最少数目的阴影图:通过将生成的四张相邻采样点的阴影图反投到场景中,再根据阴影灰度值变化来统计需要细分的像素点;由需要细分的像素点个数来确定是否需要进一步采样,从而达到了减少阴影图数目,加快渲染的目的;
(2.3)快速求取ALSMR:记录视点下每个可见阴影像素对应的阴影图位置(U,V),并根据其在各初始阴影图上的位置信息得到该阴影像素的面光源阴影图范围,该像素在面光源上任何一采样点生成的阴影图上的位置不会超过该范围;然后利用Ping-pong技术在GPU端快速合并所有可见阴影像素对应的ALSMR,并将最终得到的总的ALSMR信息传递到CPU端;
(2.4)阴影图生成矩阵和视口的调整:根据可见阴影区域的ALSMR,重新调整阴影图生成的投影矩阵和视口,产生能生成局部阴影图的更精细视景体;
(2.5)单pass的多阴影图软阴影渲染:利用纹理数组(Texture Array)和统一缓冲对象(UBO)进行多阴影图的软阴影绘制;通过将生成的多张阴影图存放到纹理数组中,将与之对应的投影矩阵存在UBO中一起传给shader,实现在一个pass中利用多张阴影图对软阴影进行绘制,提高渲染效率。
CN201310282795.5A 2013-07-06 2013-07-06 基于局部阴影图的高质量软阴影快速生成方法 Expired - Fee Related CN103366396B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310282795.5A CN103366396B (zh) 2013-07-06 2013-07-06 基于局部阴影图的高质量软阴影快速生成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310282795.5A CN103366396B (zh) 2013-07-06 2013-07-06 基于局部阴影图的高质量软阴影快速生成方法

Publications (2)

Publication Number Publication Date
CN103366396A true CN103366396A (zh) 2013-10-23
CN103366396B CN103366396B (zh) 2016-02-10

Family

ID=49367661

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310282795.5A Expired - Fee Related CN103366396B (zh) 2013-07-06 2013-07-06 基于局部阴影图的高质量软阴影快速生成方法

Country Status (1)

Country Link
CN (1) CN103366396B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104123748A (zh) * 2014-07-18 2014-10-29 无锡梵天信息技术股份有限公司 基于屏幕空间中点光源实现实时动态阴影的方法
CN104966297A (zh) * 2015-06-12 2015-10-07 浙江大学 一种通用的阴影图生成阴影的辅助技术
CN109237999A (zh) * 2018-09-19 2019-01-18 中国电子科技集团公司第二十八研究所 一种批量三维态势目标尾迹实时绘制方法和系统
CN109493406A (zh) * 2018-11-02 2019-03-19 四川大学 快速百分比靠近软阴影绘制方法
CN111131807A (zh) * 2019-12-30 2020-05-08 华人运通(上海)云计算科技有限公司 一种模拟显示车辆灯光投影的方法及系统
CN113177491A (zh) * 2021-05-08 2021-07-27 重庆第二师范学院 一种自适应光源人脸识别系统及方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
MICHAEL SCHWÄRZLER等: "《http://www.researchgate.net/publication/229049769_Real-Time_Soft_Shadows_with_Adaptive_Light_Source_Sampling》", 31 December 2009 *
MICHAEL SCHWÄRZLER等: "《Vision, Modeling, and Visualization》", 31 December 2012 *
刘浏等: "《混合软影绘制算法》", 《中国图象图形学报》 *
周炜等: "《快速反投影软影绘制算法》", 《计算机辅助设计与图形学学报》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104123748A (zh) * 2014-07-18 2014-10-29 无锡梵天信息技术股份有限公司 基于屏幕空间中点光源实现实时动态阴影的方法
CN104966297A (zh) * 2015-06-12 2015-10-07 浙江大学 一种通用的阴影图生成阴影的辅助技术
CN104966297B (zh) * 2015-06-12 2017-09-12 浙江大学 一种通用的阴影图生成阴影的方法
CN109237999A (zh) * 2018-09-19 2019-01-18 中国电子科技集团公司第二十八研究所 一种批量三维态势目标尾迹实时绘制方法和系统
CN109237999B (zh) * 2018-09-19 2020-09-08 中国电子科技集团公司第二十八研究所 一种批量三维态势目标尾迹实时绘制方法和系统
CN109493406A (zh) * 2018-11-02 2019-03-19 四川大学 快速百分比靠近软阴影绘制方法
CN109493406B (zh) * 2018-11-02 2022-11-11 四川大学 快速百分比靠近软阴影绘制方法
CN111131807A (zh) * 2019-12-30 2020-05-08 华人运通(上海)云计算科技有限公司 一种模拟显示车辆灯光投影的方法及系统
CN111131807B (zh) * 2019-12-30 2021-11-23 华人运通(上海)云计算科技有限公司 一种模拟显示车辆灯光投影的方法及系统
CN113177491A (zh) * 2021-05-08 2021-07-27 重庆第二师范学院 一种自适应光源人脸识别系统及方法

Also Published As

Publication number Publication date
CN103366396B (zh) 2016-02-10

Similar Documents

Publication Publication Date Title
CN102768765B (zh) 实时点光源软阴影渲染方法
CN103366396B (zh) 基于局部阴影图的高质量软阴影快速生成方法
CN103903296B (zh) 虚拟家装室内场景设计中的阴影渲染方法
CN108257204B (zh) 运用于Unity引擎的顶点色绘制烘焙方法及系统
CN105205861B (zh) 基于Sphere‑Board的树木三维可视化模型实现方法
CN106204701B (zh) 一种基于光探针插值动态计算间接反射高光的渲染方法
CN101840566A (zh) 一种基于gpu并行计算的实时阴影生成方法及系统
CN103021020A (zh) 一种基于多光源的3d渲染方法
CN103700134A (zh) 基于可控制纹理烘焙的三维矢量模型实时光影延迟着色渲染方法
CN113034656A (zh) 游戏场景中光照信息的渲染方法、装置及设备
CN113034657B (zh) 游戏场景中光照信息的渲染方法、装置及设备
US8085270B2 (en) Apparatus for proccessing drawn-by-human-hand effect using style lines
Franke Delta light propagation volumes for mixed reality
CN102831634A (zh) 一种高效精确的通用软阴影生成方法
Creus et al. R4: Realistic rain rendering in realtime
CN103544731A (zh) 一种基于多相机的快速反射绘制方法
CN110400366A (zh) 一种基于OpenGL的实时洪水灾害可视化仿真方法
CN107689076A (zh) 一种用于虚拟手术系统切割时的高效渲染方法
Krecklau et al. View‐Dependent Realtime Rendering of Procedural Facades with High Geometric Detail
CN106846452A (zh) 一种gpu上针对延迟着色反走样绘制的优化方法
CN105006012A (zh) 一种人体断层数据的体渲染方法及系统
Liu et al. A survey of shadow rendering algorithms: projection shadows and shadow volumes
CN110832549B (zh) 现实世界环境中虚拟对象的经过光线追踪的反射的快速产生方法
Cole et al. Fast high-quality line visibility
Guo et al. Adaptive Lighting Modeling in 3D Reconstruction with Illumination Properties Recovery

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160210

Termination date: 20180706

CF01 Termination of patent right due to non-payment of annual fee