CN103365207B - A kind of control method of industrial process and equipment - Google Patents
A kind of control method of industrial process and equipment Download PDFInfo
- Publication number
- CN103365207B CN103365207B CN201210084637.4A CN201210084637A CN103365207B CN 103365207 B CN103365207 B CN 103365207B CN 201210084637 A CN201210084637 A CN 201210084637A CN 103365207 B CN103365207 B CN 103365207B
- Authority
- CN
- China
- Prior art keywords
- steady
- state
- state input
- input variable
- variables
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 60
- 238000000034 method Methods 0.000 title claims abstract description 55
- 238000004364 calculation method Methods 0.000 claims abstract description 28
- 238000005457 optimization Methods 0.000 claims description 34
- 238000012886 linear function Methods 0.000 claims description 10
- 238000012887 quadratic function Methods 0.000 description 8
- 230000008901 benefit Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 238000004886 process control Methods 0.000 description 3
- 239000000470 constituent Substances 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Landscapes
- Feedback Control In General (AREA)
Abstract
本发明公开了一种工业过程的控制方法和设备。该方法包括:针对每个输入变量在稳态下对应的稳态输入变量设置稳态输入变量权值,并针对至少一个稳态输入变量设置稳态输入变量目标值。基于目标函数和关于多个稳态输出变量与多个稳态输入变量之间的稳态函数关系模型进行优化计算,以获得在满足预先设定的条件的情况下,使目标函数取得极值的下一时刻稳态输入变量的值,作为下一时刻稳态输入变量值。将下一时刻稳态输入变量值传到基础控制回路对工业设备的可控变量实施控制。本发明所提供的方法能够在兼顾系统经济性能的前提下实现基于目标设定点的工业过程控制。
The invention discloses an industrial process control method and equipment. The method includes: setting a steady-state input variable weight for each input variable in a steady-state corresponding to a steady-state input variable, and setting a steady-state input variable target value for at least one steady-state input variable. Based on the objective function and the steady-state function relationship model between multiple steady-state output variables and multiple steady-state input variables, optimize the calculation to obtain the extreme value of the objective function under the condition of meeting the preset conditions. The value of the steady-state input variable at the next moment is used as the value of the steady-state input variable at the next moment. The value of the steady-state input variable at the next moment is transmitted to the basic control loop to control the controllable variable of the industrial equipment. The method provided by the invention can realize the industrial process control based on the target set point under the premise of taking into account the economic performance of the system.
Description
技术领域 technical field
本发明涉及工业过程控制领域,尤其涉及一种工业过程的控制方法和设备。The invention relates to the field of industrial process control, in particular to an industrial process control method and equipment.
背景技术 Background technique
工业过程中使用的过程控制系统,通常具有多个输入变量以及随这些输入变量的改变而变化的多个输出变量。这些多个输入变量通常是执行工业过程的工业设备的可控变量,而多个输出变量可以是工业过程的运行结果有关的变量。工业过程的多变量控制可以分为两层,上层为稳态优化,下层为动态控制。实际的工业过程都是动态的,因此系统的状态也是不断变换的。工业过程的稳态是指当时间趋于无穷时系统所体现出的稳定状态。工业过程的稳态优化是在一定的系统性能和给定的约束条件下,获得当系统为稳定状态时,使生产过程性能更优的系统稳态操作点。稳态操作点可以由输入变量的稳态值和输出变量的稳态值来表示。进而,可以按照所获得的稳态操作点中的输入变量的稳态值来设置可控变量,实施工业过程控制。Process control systems used in industrial processes typically have multiple input variables and multiple output variables that vary as those input variables change. The plurality of input variables are typically controllable variables of the industrial equipment performing the industrial process, while the plurality of output variables may be variables related to the outcome of the operation of the industrial process. The multivariable control of industrial process can be divided into two layers, the upper layer is steady-state optimization, and the lower layer is dynamic control. The actual industrial process is dynamic, so the state of the system is constantly changing. The steady state of an industrial process refers to the steady state of the system when the time tends to infinity. Steady-state optimization of industrial process is to obtain the steady-state operating point of the system that makes the production process performance better when the system is in a steady state under certain system performance and given constraints. The steady-state operating point may be represented by a steady-state value of the input variable and a steady-state value of the output variable. Furthermore, the controllable variable can be set according to the obtained steady-state value of the input variable in the steady-state operating point to implement industrial process control.
为获得系统的稳态操作点,工业过程的稳态优化方法可以使用反映生产过程经济性能目标函数来实现。这些经济性能可以是生产过程所产生的经济效益或者所消耗的成本等。面向经济性能的稳态优化意在获得当经济性能最优时的稳态操作点,进而使用该稳态操作点的输入变量值和输出变量值进行过程控制,以实现更好的经济性能目标。In order to obtain the steady-state operating point of the system, the steady-state optimization method of industrial process can be realized by using the objective function reflecting the economic performance of the production process. These economic properties can be the economic benefits generated by the production process or the costs consumed. Steady-state optimization for economic performance aims to obtain the steady-state operating point when the economic performance is optimal, and then use the input and output variable values of the steady-state operating point for process control to achieve better economic performance goals.
通常,现有的工业过程的稳态优化方法是在系统当前时刻操作点的基础上寻找使生产过程经济性能最优的下一时刻的工作点。这种方法所要达到的目标是基于系统当前时刻操作点获得系统下一时刻的新的操作点,虽然这种方法考虑了生产过程的经济性能,但这种方法仅仅基于系统当前时刻的操作点,不是对任意稳态设定目标点的跟踪。Usually, the existing steady-state optimization method of the industrial process is to find the working point at the next moment to optimize the economic performance of the production process on the basis of the current operating point of the system. The goal of this method is to obtain the new operating point of the system at the next moment based on the current operating point of the system. Although this method considers the economic performance of the production process, this method is only based on the operating point of the system at the current moment. Not tracking to an arbitrary steady state set target point.
例如,在一种稳态优化方法中,计算体现经济性能的目标函数在满足一定边界条件的情况下的极小值。For example, in a steady-state optimization method, the minimum value of the objective function that reflects economic performance is calculated when certain boundary conditions are met.
目标函数可以为:The objective function can be:
其中,CT=[c1c2…cm]为一组代价系数。Wherein, C T =[c 1 c 2 ...c m ] is a set of cost coefficients.
表示一组下一时刻稳态输入变量与当前时刻稳态输入变量之差。 Indicates the difference between a set of steady-state input variables at the next moment and the steady-state input variables at the current moment.
工业过程的稳态优化方法不仅可以实现使经济性能达到更优的过程控制,还可以实现以任意稳态设定点为目标的目标点跟踪。目标点跟踪是指在设定稳态设定点之后,在系统当前时刻稳态操作点的基础上,寻找下一个时刻新的稳态操作点,使新的稳态操作点尽可能地接近所设定的稳态设定点。Steady-state optimization methods for industrial processes can not only achieve better process control to achieve better economic performance, but also achieve target point tracking with an arbitrary steady-state set point as the goal. Target point tracking refers to finding a new steady-state operating point at the next moment on the basis of the steady-state operating point at the current moment of the system after setting the steady-state set point, so that the new steady-state operating point is as close as possible to the desired point. Set the steady-state set point.
在一种对目标设定点进行跟踪的方法中,首先,设定目标设定点,该目标设定点由系统上层的非线性稳态优化器进行实时优化而得到,In a method for tracking the target set point, firstly, the target set point is set, which is obtained by real-time optimization by the nonlinear steady-state optimizer in the upper layer of the system,
随后选择二次型目标函数进行计算,该目标函数的公式表示为:Then select the quadratic objective function for calculation, the formula of the objective function is expressed as:
该目标函数的含义是,在系统当前时刻稳态操作点的基础上,寻找下一个时刻新的稳态操作点(U∞(k+1),Y∞(k+1)),使新的稳态操作点与给定的目标设定点(UT,YT)在最小二乘意义下距离最短,即最接近目标设定点。The meaning of this objective function is to find a new steady-state operating point (U ∞ (k+1), Y ∞ (k+1)) at the next moment based on the steady-state operating point of the system at the current moment, so that the new The distance between the steady-state operating point and the given target set point ( UT, Y T ) is the shortest in the sense of least squares, that is, the closest to the target set point.
这种方法虽然可以在一定程度上使新的稳态工作点(U∞(k+1),Y∞(k+1))接近(UT,YT),但是这种目标设定点跟踪方法仅以与目标设定之间的接近程度为目的,没有考虑经济性能,对于工业过程控制来说实用性差。Although this method can make the new steady-state operating point (U ∞ (k+1), Y ∞ (k+1)) close to (U T , Y T ) to a certain extent, this target set point tracking The method is only aimed at the closeness to the target setting, without considering the economic performance, and has poor practicability for industrial process control.
发明内容 Contents of the invention
本发明实施例所要解决的技术问题是在兼顾一定经济性能的前提下对通过设定目标设定点实现工业过程的控制。The technical problem to be solved by the embodiment of the present invention is to realize the control of the industrial process by setting the target set point under the premise of taking certain economic performance into consideration.
为解决上述技术问题,根据本发明的一个方面,本发明实施例提供了一种工业过程的控制方法,所述工业过程具有多个输入变量以及随所述多个输入变量的改变而变化的多个输出变量,所述多个输入变量是执行所述工业过程的工业设备的可控变量,所述多个输出变量是与所述工业过程的运行结果有关的变量,所述多个输入变量和所述多个输出变量在稳态下对应的多个稳态输入变量和多个稳态输出变量需要满足预先设定的条件,In order to solve the above technical problem, according to one aspect of the present invention, an embodiment of the present invention provides a method for controlling an industrial process, the industrial process has multiple input variables and multiple output variables, the plurality of input variables are controllable variables of the industrial equipment performing the industrial process, the plurality of output variables are variables related to the operation results of the industrial process, the plurality of input variables and The plurality of steady-state input variables and the plurality of steady-state output variables corresponding to the plurality of output variables in a steady state need to meet preset conditions,
其特征在于,所述方法包括:It is characterized in that the method comprises:
步骤1.针对每个稳态输入变量设置稳态输入变量权值,并针对至少一个稳态输入变量设置稳态输入变量目标值;Step 1. Set the steady-state input variable weight for each steady-state input variable, and set the steady-state input variable target value for at least one steady-state input variable;
步骤2.基于目标函数和关于所述多个稳态输出变量与所述多个稳态输入变量之间的稳态函数关系模型进行优化计算,以获得在满足所述预先设定的条件的情况下,使所述目标函数取得极值的下一时刻稳态输入变量的值,作为下一时刻稳态输入变量值,所述目标函数是以所述稳态输入变量权值、所述稳态输入变量目标值为参数,并且以所述下一时刻稳态输入变量为变量的函数;Step 2. Carry out optimization calculation based on the objective function and the steady-state functional relationship model between the multiple steady-state output variables and the multiple steady-state input variables, so as to obtain Next, make the objective function obtain the value of the steady-state input variable at the next moment of extreme value as the value of the steady-state input variable at the next moment, the objective function is based on the weight of the steady-state input variable, the steady-state The target value of the input variable is a parameter, and the steady-state input variable at the next moment is a function of the variable;
步骤3.将所述下一时刻稳态输入变量值传到基础控制回路对所述工业设备的可控变量实施控制。Step 3. Sending the value of the steady-state input variable at the next moment to the basic control loop to control the controllable variable of the industrial equipment.
优选地,所述目标函数是所述下一时刻稳态输入变量与所述稳态输入变量目标值之差与所述稳态输入变量权值的乘积的一次函数或二次函数。Preferably, the objective function is a linear function or a quadratic function of the product of the difference between the steady-state input variable at the next moment and the target value of the steady-state input variable and the weight of the steady-state input variable.
优选地,所述稳态输入变量权值是所述稳态输入变量值发生单位变化所涉及的成本值。Preferably, the weight of the steady-state input variable is a cost value involved in a unit change in the value of the steady-state input variable.
优选地,所述多个稳态输入变量和所述多个稳态输出变量之间的稳态函数关系模型为稳态输出增量是稳态输入增量与扰动输入增量的线性组合与修正误差之和,线性组合的系数根据对象稳态模型来确定,Preferably, the steady-state functional relationship model between the plurality of steady-state input variables and the plurality of steady-state output variables is that the steady-state output increment is a linear combination and correction of the steady-state input increment and the disturbance input increment The sum of the errors, the coefficients of the linear combination are determined according to the steady-state model of the object,
所述稳态输出增量是下一时刻稳态输出变量与当前时刻稳态输出变量之间的差值,The steady-state output increment is the difference between the steady-state output variable at the next moment and the steady-state output variable at the current moment,
所述稳态输入增量是下一时刻稳态输入变量与当前时刻稳态输入变量之间的差值,The steady-state input increment is the difference between the steady-state input variable at the next moment and the steady-state input variable at the current moment,
所述扰动输入增量是当前时刻扰动输入值与上一时刻扰动输入值之间的差值。The disturbance input increment is the difference between the disturbance input value at the current moment and the disturbance input value at the previous moment.
优选地,该控制方法还包括:Preferably, the control method also includes:
为所述至少一个稳态输入变量设定稳态输入变量目标范围,所述稳态输入变量目标值在所述稳态输入变量目标范围之中;setting a steady-state input variable target range for the at least one steady-state input variable, the steady-state input variable target value being within the steady-state input variable target range;
多次重复执行所述步骤2和步骤3,以使得最终得到的所述至少一个稳态输入变量的下一时刻稳态输入变量值在所述稳态输入变量目标范围之内。Step 2 and Step 3 are repeatedly executed, so that the finally obtained steady-state input variable value of the at least one steady-state input variable at the next moment is within the target range of the steady-state input variable.
优选地,还包括:Preferably, it also includes:
为所述至少一个稳态输出变量设定稳态输出变量目标范围,setting a steady-state output variable target range for the at least one steady-state output variable,
其中,通过多次重复执行所述步骤2和步骤3,还使得根据所述下一时刻稳态输入变量值,通过所述稳态函数关系模型获得的所述至少一个稳态输出变量的下一时刻稳态输出变量值在所述稳态输出变量目标范围之内。Wherein, by repeatedly executing the steps 2 and 3, the next value of the at least one steady-state output variable obtained through the steady-state functional relationship model is also made according to the value of the steady-state input variable at the next moment. The value of the steady-state output variable at any moment is within the target range of the steady-state output variable.
优选地,所述多个稳态输入变量中部分稳态输入变量为未设置目标设定点的第一稳态输入变量,部分稳态输入变量为设置了目标设定点的第二稳态输入变量,所述目标设定点包括稳态输入变量目标值,Preferably, part of the steady-state input variables among the plurality of steady-state input variables are first steady-state input variables without a target set point, and part of the steady-state input variables are second steady-state input variables with a target set point set variable, the target setpoint includes a steady-state input variable target value,
所述目标函数为:The objective function is:
下一时刻第一稳态输入变量与当前时刻第一稳态输入变量之差与第一稳态输入变量权值的乘积的一次函数,加上下一时刻第二稳态输入变量与稳态输入变量目标值之差与第二稳态输入变量权值的乘积的一次函数,或者The linear function of the product of the difference between the first steady-state input variable at the next moment and the first steady-state input variable at the current moment and the weight of the first steady-state input variable, plus the second steady-state input variable and the steady-state input variable at the next moment a linear function of the product of the difference between the target value and the weight of the second steady-state input variable, or
下一时刻第一稳态输入变量与当前时刻第一稳态输入变量之差与第一稳态输入变量权值的乘积的二次函数,加上下一时刻第二稳态输入变量与稳态输入变量目标值之差与第二稳态输入变量权值的乘积的二次函数。The quadratic function of the product of the difference between the first steady-state input variable at the next moment and the first steady-state input variable at the current moment and the weight of the first steady-state input variable, plus the second steady-state input variable at the next moment and the steady-state input A quadratic function of the product of the difference between the variable's target value and the weight of the second steady-state input variable.
根据本发明的第二个方面,还提供一种工业过程的控制设备,所述工业过程具有多个输入变量以及随所述多个输入变量的改变而变化的多个输出变量,所述多个输入变量是执行所述工业过程的工业设备的可控变量,所述多个输出变量是与所述工业过程的运行结果有关的变量,所述多个输入变量和所述多个输出变量在稳态下对应的多个稳态输入变量和多个稳态输出变量需要满足预先设定的条件,According to a second aspect of the present invention, there is also provided a control device for an industrial process, the industrial process has a plurality of input variables and a plurality of output variables that vary with changes in the input variables, the plurality of The input variables are controllable variables of industrial equipment that executes the industrial process, the plurality of output variables are variables related to the operation results of the industrial process, and the plurality of input variables and the plurality of output variables are stable The corresponding multiple steady-state input variables and multiple steady-state output variables in the state need to meet the preset conditions,
其特征在于,该控制设备包括:It is characterized in that the control device includes:
设置装置,用于针对每个稳态输入变量设置稳态输入变量权值,并针对至少一个稳态输入变量设置稳态输入变量目标值;A setting device is used to set the steady-state input variable weight for each steady-state input variable, and set the steady-state input variable target value for at least one steady-state input variable;
优化计算装置,用于基于目标函数和关于所述多个稳态输出变量与所述多个稳态输入变量之间的稳态函数关系模型进行优化计算,以获得在满足所述预先设定的条件的情况下,使所述目标函数取得极值的下一时刻稳态输入变量的值,作为下一时刻稳态输入变量值,所述目标函数是以所述稳态输入变量权值、所述稳态输入变量目标值为参数,并且以所述下一时刻稳态输入变量为变量的函数;An optimization calculation device, configured to perform optimization calculations based on the objective function and the steady-state function relationship model between the plurality of steady-state output variables and the plurality of steady-state input variables, so as to obtain In the case of conditions, the objective function obtains the value of the steady-state input variable at the next moment of the extremum value as the steady-state input variable value at the next moment, and the objective function is based on the weight of the steady-state input variable, the The target value of the steady-state input variable is a parameter, and the steady-state input variable at the next moment is a function of the variable;
工业设备控制装置,用于将所述下一时刻稳态输入变量值传到基础控制回路对所述工业设备的可控变量实施控制。The industrial equipment control device is used to transmit the steady-state input variable value at the next moment to the basic control loop to control the controllable variables of the industrial equipment.
优选地,所述目标函数是所述下一时刻稳态输入变量与所述稳态输入变量目标值之差与所述稳态输入变量权值的乘积的一次函数或二次函数。Preferably, the objective function is a linear function or a quadratic function of the product of the difference between the steady-state input variable at the next moment and the target value of the steady-state input variable and the weight of the steady-state input variable.
优选地,该控制设备还包括:Preferably, the control device also includes:
目标范围设定装置,用于为所述至少一个稳态输入变量设定稳态输入变量目标范围,所述稳态输入变量目标值在所述稳态输入变量目标范围之中,target range setting means for setting a steady-state input variable target range for said at least one steady-state input variable, said steady-state input variable target value being within said steady-state input variable target range,
所述优化计算装置多次重复执行所述优化计算,以使得最终得到的所述至少一个稳态输入变量的下一时刻稳态输入变量值在所述稳态输入变量目标范围之内。The optimization calculation means executes the optimization calculation multiple times, so that the finally obtained value of the steady-state input variable at the next moment of the at least one steady-state input variable is within the target range of the steady-state input variable.
通过本发明所提供的工业过程的控制方法,基于目标函数和稳态输入变量与稳态输出变量之间的稳态函数关系模型进行优化计算,目标函数是以预先设定的稳态输入变量权值和稳态输入变量目标值为参数,计算使目标函数取得极值的下一时刻稳态输入变量,作为下一时刻稳态输入变量。稳态输入变量权值的设定和目标函数极值的取得体现了对系统经济性能的考虑,同时,通过设定稳态输入变量目标值作为目标设定点进行跟踪,实现在兼顾系统经济性能的前提下对目标设定点的跟踪,从而所获得的下一时刻稳态输入变量更具有实用性,进而将工业设备的可控变量设置为所获得的下一时刻稳态输入变量值以实现性能更优的工业过程控制。Through the control method of the industrial process provided by the present invention, the optimization calculation is carried out based on the objective function and the steady-state function relationship model between the steady-state input variable and the steady-state output variable, and the objective function is based on the weight of the preset steady-state input variable The target value of the value and the steady-state input variable is a parameter, and the steady-state input variable at the next moment that makes the objective function obtain the extreme value is calculated as the steady-state input variable at the next moment. The setting of the weight value of the steady-state input variable and the acquisition of the extreme value of the objective function reflect the consideration of the economic performance of the system. Under the premise of tracking the target set point, the steady-state input variable obtained at the next moment is more practical, and then the controllable variable of the industrial equipment is set to the obtained steady-state input variable value at the next moment to achieve Better performance industrial process control.
附图说明 Description of drawings
通过以下参照附图对本发明的示例性实施例的详细描述,本发明的其它特征及其优点将会变得清楚。Other features of the present invention and advantages thereof will become apparent from the following detailed description of exemplary embodiments of the present invention with reference to the accompanying drawings.
构成说明书的一部分的附图描述了本发明的实施例,并且连同说明书一起用于解释本发明的原理。The accompanying drawings, which constitute a part of this specification, illustrate the embodiments of the invention and together with the description serve to explain the principles of the invention.
参照附图,根据下面的详细描述,可以更加清楚地理解本发明,其中:The present invention can be more clearly understood from the following detailed description with reference to the accompanying drawings, in which:
图1示出了本发明所提供的控制方法实施例的流程示意图;Fig. 1 shows a schematic flow chart of an embodiment of a control method provided by the present invention;
图2示出了本发明设定稳态输入变量目标范围的示意图;Fig. 2 shows the schematic diagram of setting the steady-state input variable target range in the present invention;
图3示出了本发明设定稳态输出变量目标范围的示意图;Fig. 3 shows the schematic diagram of setting the target range of the steady-state output variable in the present invention;
图4示出了本发明所提供的控制方法实施例中的下一时刻稳态输入变量值的轨迹示意图;FIG. 4 shows a schematic diagram of the trajectory of the steady-state input variable value at the next moment in the embodiment of the control method provided by the present invention;
图5示出了本发明所提供的控制设备实施例的结构示意图。Fig. 5 shows a schematic structural diagram of an embodiment of a control device provided by the present invention.
具体实施方式 detailed description
现在将参照附图来详细描述本发明的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的步骤的相对布置、数字表达式和数值不限制本发明的范围。Various exemplary embodiments of the present invention will now be described in detail with reference to the accompanying drawings. It should be noted that the relative arrangement of steps, numerical expressions and numerical values set forth in these examples do not limit the scope of the present invention unless specifically stated otherwise.
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。The following description of at least one exemplary embodiment is merely illustrative in nature and in no way taken as limiting the invention, its application or uses.
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。Techniques, methods and devices known to those of ordinary skill in the relevant art may not be discussed in detail, but where appropriate, such techniques, methods and devices should be considered part of the Authorized Specification.
在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。In all examples shown and discussed herein, any specific values should be construed as exemplary only, and not as limitations. Therefore, other examples of the exemplary embodiment may have different values.
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。It should be noted that like numerals and letters denote like items in the following figures, therefore, once an item is defined in one figure, it does not require further discussion in subsequent figures.
工业过程具有多个控制输入变量以及随这些多个输入变量的改变而变化的多个输出变量。多个输入变量是执行工业过程的工业设备的可控变量,多个输出变量是与工业过程的运行结果有关的变量,对于线性多变量过程来说,多个输入变量以及多个输出变量之间的对应可以用一定的函数关系模型进行描述。函数关系模型是由系统的本质特性而确定的,利用系统的函数关系模型可以根据控制输入变量获得控制输出变量,反之亦然。An industrial process has multiple control input variables and multiple output variables that vary as these multiple input variables change. Multiple input variables are controllable variables of industrial equipment that execute industrial processes, and multiple output variables are variables related to the operating results of industrial processes. For a linear multivariable process, the relationship between multiple input variables and multiple output variables The correspondence of can be described by a certain functional relationship model. The functional relational model is determined by the essential characteristics of the system, and the control output variable can be obtained according to the control input variable by using the functional relational model of the system, and vice versa.
工业过程系统的输入变量和输出变量之间的函数关系模型可以有多种。在获得系统的函数关系模型后,还需要对函数关系模型进行稳态化处理,以获得系统在达到稳态时的稳态输入变量和稳态输出变量之间的稳态函数关系模型,稳态输入变量和稳态输出变量对应于系统的输入变量和输出变量在稳态下的表示。There are many kinds of functional relationship models between the input variables and output variables of the industrial process system. After obtaining the functional relationship model of the system, it is necessary to perform a steady-state treatment on the functional relationship model to obtain the steady-state functional relationship model between the steady-state input variables and the steady-state output variables when the system reaches a steady state. Input variables and steady-state output variables correspond to the representation of the input variables and output variables of the system in a steady state.
工业过程的多个稳态输入变量和多个稳态输出变量的稳态函数关系模型可以有多种。例如,一种稳态函数关系模型可以表示为稳态输出增量是稳态输入增量与扰动输入增量的线性组合与修正误差之和,线性组合的系数根据对象稳态模型来确定,其中,稳态输出增量是下一时刻稳态输出变量与当前时刻稳态输出变量之间的差值,稳态输入增量是下一时刻稳态输入变量与当前时刻稳态输入变量之间的差值,扰动输入增量是当前时刻扰动输入值与上一时刻扰动输入值之间的差值。There can be many kinds of steady-state functional relationship models of multiple steady-state input variables and multiple steady-state output variables of the industrial process. For example, a steady-state functional relationship model can be expressed as that the steady-state output increment is the sum of the linear combination of the steady-state input increment and the disturbance input increment and the correction error, and the coefficient of the linear combination is determined according to the object steady-state model, where , the steady-state output increment is the difference between the steady-state output variable at the next moment and the steady-state output variable at the current moment, and the steady-state input increment is the difference between the steady-state input variable at the next moment and the steady-state input variable at the current moment Difference, the disturbance input increment is the difference between the disturbance input value at the current moment and the disturbance input value at the previous moment.
对于实际的工业生产过程,稳态输入变量和稳态输出变量分别存在一定边界约束条件。因此,多个稳态输入变量和多个稳态输出变量需要满足一定预先设定的条件,使得下一时刻稳态输入变量和下一时刻稳态输出变量位于各自的边界约束条件的上边界值和下边界值之间。For the actual industrial production process, there are certain boundary constraints on the steady-state input variables and steady-state output variables respectively. Therefore, multiple steady-state input variables and multiple steady-state output variables need to meet certain preset conditions, so that the steady-state input variables at the next moment and the steady-state output variables at the next moment are located at the upper boundary values of their respective boundary constraints and the lower boundary value.
此外,稳态输入变量和稳态输出变量在优化与控制的执行过程中还将受到稳态增量约束条件的限制,稳态输入增量和稳态输出增量分别位于各自的增量约束条件的上边界值和下边界值之间。稳态输入增量是下一时刻稳态输入变量与当前时刻稳态输入变量之间的差值,稳态输出增量是下一时刻稳态输出变量与当前时刻稳态输出变量之间的差值,In addition, the steady-state input variables and steady-state output variables will also be restricted by the steady-state incremental constraints during the execution of optimization and control, and the steady-state input increments and steady-state output increments are located in their respective incremental constraint between the upper and lower bounds of . The steady-state input increment is the difference between the steady-state input variable at the next moment and the steady-state input variable at the current moment, and the steady-state output increment is the difference between the steady-state output variable at the next moment and the steady-state output variable at the current moment value,
参考图1所示,该图是本发明工业过程的控制方法一种实施例的流程示意图,下面详细介绍本发明工业过程的控制方法实施例的步骤。Referring to FIG. 1 , which is a schematic flowchart of an embodiment of the industrial process control method of the present invention, the steps of the embodiment of the industrial process control method of the present invention will be described in detail below.
在各实施例中所描述的工业过程具有多个输入变量以及随多个输入变量的改变而变化的多个输出变量。多个输入变量是执行工业过程的工业设备的可控变量,多个输出变量是与工业过程的运行结果有关的变量。多个稳态输入变量和多个稳态输出变量是系统的多个输入变量和多个输出变量在系统处于稳态下的表示,多个稳态输入变量和多个稳态输出变量与多个输入变量和多个输出变量相对应。The industrial processes described in the various embodiments have multiple input variables and multiple output variables that vary as the multiple input variables change. The plurality of input variables are controllable variables of the industrial equipment performing the industrial process, and the plurality of output variables are variables related to the operation result of the industrial process. Multiple steady-state input variables and multiple steady-state output variables are representations of multiple input variables and multiple output variables of the system when the system is in a steady state. Multiple steady-state input variables and multiple steady-state output variables are related to multiple The input variables correspond to a plurality of output variables.
多个稳态输入变量和多个稳态输出变量满足预先设定的条件,既前述边界约束条件和增量约束条件。The plurality of steady-state input variables and the plurality of steady-state output variables satisfy preset conditions, namely the aforementioned boundary constraint conditions and incremental constraint conditions.
在步骤101中,为每个稳态输入变量设置稳态输入变量权值,并针对至少一个稳态输入变量设置稳态输入变量目标值。In step 101, a steady-state input variable weight is set for each steady-state input variable, and a steady-state input variable target value is set for at least one steady-state input variable.
由于稳态输入增量ΔU∞(k)与稳态输出增量ΔY∞(k)存在上述稳态函数关系模型所表示的线性相关关系,因此,可以将两者统一用稳态输入增量ΔU∞(k)表示。Since there is a linear correlation between the steady-state input increment ΔU ∞ (k) and the steady-state output increment ΔY ∞ (k) represented by the above-mentioned steady-state functional relationship model, the two can be unified as the steady-state input increment ΔU ∞ (k) means.
在使用稳态输入增量ΔU∞(k)表示稳态输出增量ΔY∞(k)之后,针对具体工业过程,为稳态输入增量ΔU∞(k)设置稳态输入变量权值。设置权值的方法可以是将稳态输入变量的单位增量所产生的效益或成本进行标准化,使用标准化后的参量来表示各个稳态输入变量的效益或成本。即稳态输入变量权值是稳态输入变量值发生单位变化所涉及的成本值。可以使用±符号来区分成本与效益,+表示成本,-表示效益。例如,每个稳态输入变量的稳态输入变量权值的集合可以表示为CT=[c1c2…cm],m为稳态输入变量的个数。After the steady-state input increment ΔU ∞ (k) is used to represent the steady-state output increment ΔY ∞ (k), the steady-state input variable weight is set for the steady-state input increment ΔU ∞ (k) for a specific industrial process. The method of setting the weight may be to standardize the benefit or cost generated by the unit increment of the steady-state input variable, and use the standardized parameter to represent the benefit or cost of each steady-state input variable. That is, the steady-state input variable weight is the cost value involved in the unit change of the steady-state input variable value. Costs and benefits can be distinguished using the ± symbol, + for costs and - for benefits. For example, the set of steady-state input variable weights for each steady-state input variable can be expressed as C T =[c 1 c 2 . . . c m ], where m is the number of steady-state input variables.
工业过程的多个稳态输入变量可能具有不同的特点,其中一部分稳态输入变量需要设定目标设定点,通过稳态优化的目标跟踪方法计算下一时刻的稳态操作点,在达到经济性能最优的情况下,使下一时刻的稳态操作点尽可能地接近设定的目标设定点。但是,对于另一部分稳态输入变量不设定目标设定点,仅通过稳态优化的目标跟踪方法的计算使下一时刻的稳态操作点,在达到经济性能最优的情况下,下一时刻的稳态操作点尽可能地接近当前时刻的稳态输入变量值。Multiple steady-state input variables of an industrial process may have different characteristics, and some of the steady-state input variables need to set target set points. The steady-state operating point at the next moment is calculated by the target tracking method of steady-state optimization. In the case of optimal performance, make the steady-state operating point at the next moment as close as possible to the set target set point. However, for another part of the steady-state input variables, the target set point is not set, and the steady-state operating point at the next moment is only calculated by the target tracking method of steady-state optimization. When the economic performance is optimal, the next The steady-state operating point at the moment is as close as possible to the steady-state input variable value at the current moment.
对于需要设定目标设定点的稳态输入变量来说,除需要设置稳态输入变量权值之外,还需要设置稳态输入变量目标值UT。For the steady-state input variable that needs to set the target set point, in addition to setting the weight of the steady-state input variable, it is also necessary to set the target value U T of the steady-state input variable.
目标设定点是所期望的系统稳态操作点,目标设定点包括稳态输入变量目标值UT和稳态输出变量目标值YT。由于稳态输入变量目标值UT和稳态输出变量目标值YT之间存在的线性相关关系,因此,通过设置稳态输入变量目标值UT和它们之间的线性相关关系,可以获得稳态输出变量目标值YT。The target set point is the expected steady-state operating point of the system, and the target set point includes a steady-state input variable target value U T and a steady-state output variable target value Y T . Due to the linear correlation between the steady-state input variable target value U T and the steady-state output variable target value Y T , by setting the steady-state input variable target value U T and the linear correlation between them, the steady-state State output variable target value Y T .
目标设定点可以是系统上层的优化器优化计算的结果,也可以是工艺人员根据经验给定的理想值。The target set point can be the result of optimization calculation by the optimizer on the upper layer of the system, or it can be an ideal value given by the process personnel based on experience.
在步骤102中,基于目标函数和关于多个稳态输出变量与多个稳态输入变量之间的稳态函数关系模型进行优化计算,以获得在满足预先设定的条件的情况下,使目标函数取得极值的下一时刻稳态输入变量的值,作为下一时刻输入稳态变量值。目标函数是以稳态输入变量权值、稳态输入变量目标值为参数,并且以下一时刻稳态输入变量为变量的函数。In step 102, based on the objective function and the steady-state functional relationship model between multiple steady-state output variables and multiple steady-state input variables, optimization calculations are performed to obtain the objective The function obtains the value of the steady-state input variable at the next moment of the extremum, and uses it as the value of the steady-state input variable at the next moment. The objective function is a function that takes the weight of the steady-state input variable, the target value of the steady-state input variable as parameters, and the steady-state input variable at the next moment as a variable.
为体现工业过程系统的经济性能,目标函数可以选择以稳态输入变量权值和稳态输入变量目标值为参数,并且以下一时刻稳态输入变量为变量的函数。由于稳态输入变量权值与稳态输入变量的某种经济指标相关,因此,在满足预先设定的条件的情况下,使目标函数取得极值的下一时刻稳态输入变量的值,作为下一时刻稳态输入变量值,可以实现该种经济指标的极值,并且通过设定稳态输入变量目标值作为目标设定点进行跟踪,从而可以实现在兼顾系统经济性能的前提下实现对目标设定点的跟踪。In order to reflect the economic performance of the industrial process system, the objective function can be selected as a function that takes the steady-state input variable weight and the steady-state input variable target value as parameters, and the next-time steady-state input variable as a variable. Since the weight of the steady-state input variable is related to a certain economic index of the steady-state input variable, the value of the steady-state input variable at the next moment when the objective function obtains the extreme value is used as The value of the steady-state input variable at the next moment can realize the extreme value of this economic index, and by setting the target value of the steady-state input variable as the target set point for tracking, it can realize the realization of the economic performance of the system under the premise of taking into account the economic performance of the system. Tracking of target set points.
目标函数可以是下一时刻稳态输入变量与稳态输入变量目标值之差与稳态输入变量权值的乘积的一次函数或二次函数。The objective function may be a linear function or a quadratic function of the product of the difference between the steady-state input variable and the target value of the steady-state input variable at the next moment and the weight of the steady-state input variable.
在步骤103中,将下一时刻稳态输入变量值传到基础控制回路对工业设备的可控变量实施控制。将工业设备的可控变量设置为在步骤102中获得的下一时刻稳态输入变量值,从而可以实现更接近设定的稳态输入变量目标值并且兼顾经济性的工业过程控制。In step 103, the value of the steady-state input variable at the next moment is transmitted to the basic control loop to control the controllable variables of the industrial equipment. The controllable variable of the industrial equipment is set to the steady-state input variable value obtained in step 102 at the next moment, so that industrial process control closer to the set steady-state input variable target value and taking into account economy can be realized.
在进行优化计算以获得目标函数在取得极值时的下一时刻稳态输入变量的值的过程中,多个稳态输出变量可以通过多个稳态输入变量与多个稳态输出变量之间的稳态函数关系模型而获得。从而还可以实现基于目标函数获得在预先设定的条件的情况下,最接近设定的目标设定点(UT,YT)的下一个稳定工作状态(U∞(k+1),Y∞(k+1))。In the process of optimizing the calculation to obtain the value of the steady-state input variable at the next moment when the objective function obtains the extreme value, multiple steady-state output variables can pass between multiple steady-state input variables and multiple steady-state output variables obtained from the steady-state functional relationship model. Therefore, it is also possible to obtain the next stable working state (U ∞ ( k+1), Y ∞ (k+1)).
基于目标函数所获得的下一个稳定工作状态(U∞(k+1),Y∞(k+1))除满足上述预先设定的条件以外,即在另一种实施方案中,还可以进一步增加对(U∞(k+1),Y∞(k+1))的软约束条件,既为稳态输入变量设定稳态输入变量目标范围(UTmin,UTmax),输入变量目标值UT在稳态输入变量目标范围之中,并为稳态输出变量设定稳态输出变量目标范围(YTmin,YTmax),满足以下不定式组:The next stable working state (U ∞ (k+1), Y ∞ (k+1)) obtained based on the objective function not only satisfies the above preset conditions, that is, in another embodiment, it can be further Add the soft constraints on (U ∞ (k+1), Y ∞ (k+1)), which means setting the steady-state input variable target range (U Tmin , U Tmax ) for the steady-state input variable, and the input variable target value U T is in the target range of the steady-state input variable, and set the target range of the steady-state output variable (Y Tmin , Y Tmax ) for the steady-state output variable, satisfying the following infinitives:
UTmin≤U∞(k+1)≤UTmax U Tmin ≤ U ∞ (k+1) ≤ U Tmax
YTmin≤Y∞(k+1)≤YTmax Y Tmin ≤ Y ∞ (k+1) ≤ Y Tmax
其中,和分别为设定的稳态输入变量目标范围的下界和上界。通常,软约束条件是相对于前述预先设定的条件更为严格的条件,因此,UTmin、UTmax的取值不同于Umin、Umax,通常来说UTmin≥Umin,UTmax≤Umax。in, and are the lower bound and upper bound of the target range of the set steady-state input variable, respectively. Usually, the soft constraints are stricter conditions than the aforementioned preset conditions. Therefore, the values of U Tmin and U Tmax are different from U min and U max . Generally speaking, UT min ≥ U min , U Tmax ≤ U max .
参考图2所示,(UTmin,UTmax)取值覆盖的范围小于(Umin,Umax),图中UT_range表示UT可以取值的范围。Referring to FIG. 2 , the value range of ( UTmin , U Tmax ) is smaller than that of (U min , U max ), and U T_range in the figure indicates the range of possible values of U T.
参考图3所示,类似地,(YTmin,YTmax)取值覆盖的范围小于(Ymin,Ymax),图3中YT_range表示YT可以取值的范围。Referring to FIG. 3 , similarly, the value range of (Y Tmin , Y Tmax ) is smaller than that of (Y min , Y max ). In FIG. 3 , Y T_range represents the range in which Y T can take values.
在使用目标函数进行优化计算以实现对目标设定点的跟踪过程中,完成一次优化计算的结果即(U∞(k+1),Y∞(k+1))可能不能满足软约束条件既稳态输入和稳态输出变量目标范围,因此可以使用迭代的方法多次执行优化计算,以使得最终得到的下一时刻稳态输入变量U∞(k+1)在该稳态输入变量目标范围(UTmin,UTmax)之内,并且通过稳态函数关系模型获得的至少一个稳态输出变量的下一时刻输出变量稳态Y∞(k+1)在输出变量目标范围(YTmin,YTmax)之内。In the process of using the objective function for optimization calculation to realize the tracking of the target set point, the result of an optimization calculation (U ∞ (k+1), Y ∞ (k+1)) may not satisfy the soft constraints. Steady-state input and steady-state output variable target range, so the iterative method can be used to perform optimization calculations multiple times, so that the final steady-state input variable U ∞ (k+1) at the next moment is within the steady-state input variable target range (U Tmin , U Tmax ), and the output variable steady state Y ∞ (k+1) at the next moment of at least one steady-state output variable obtained through the steady-state functional relationship model is within the output variable target range (Y Tmin , Y Tmax ).
参考图4所示,该图以下一刻稳态输入变量稳态值为例,示出了经过多次迭代计算后下一时刻稳态输入变量值U∞(k+1)达到稳态输入变量目标范围(UTmin,UTmax)之内的轨迹图。在图4中,ΔU∞′(k)表示下一时刻稳态输入变量U∞(k+1)与稳态输入变量目标值UT之差,ΔU∞(k)表示下一时刻稳态输入变量U∞(k+1)与当前时刻稳态输入变量U∞(k)之差。Referring to Figure 4, this figure is an example of the steady-state value of the steady-state input variable at the next moment, showing that the steady-state input variable value U ∞ (k+1) at the next moment reaches the steady-state input variable target after multiple iterative calculations Trajectory diagram within the range ( UTmin , U Tmax ). In Figure 4, ΔU ∞ ′(k) represents the difference between the steady-state input variable U ∞ (k+1) and the target value U T of the steady-state input variable at the next moment, and ΔU ∞ (k) represents the steady-state input variable at the next moment The difference between the variable U ∞ (k+1) and the steady-state input variable U ∞ (k) at the current moment.
进一步,在获得下一时刻稳态输入变量U∞(k+1)后,可以将U∞(k+1)传到基础控制回路对工业设备的可控变量实施控制。Further, after obtaining the steady-state input variable U ∞ (k+1) at the next moment, U ∞ (k+1) can be transmitted to the basic control loop to control the controllable variables of the industrial equipment.
在将U∞(k+1)传到基础控制回路实施控制后,系统受到基础控制回路的控制,状态将发生改变,从而在下一时刻又可以循环执行上述实施例中步骤102,既根据稳态输入变量目标值,并基于目标函数和稳态函数关系模型进行优化计算,以获得新的下一时刻稳态输入变量值以及新的下一时刻稳态输出变量值,再执行步骤103进行控制,即多次重复执行步骤102和步骤103,以使得最终得到的至少一个稳态输入变量的下一时刻稳态输入变量值在稳态输入变量目标范围之内,并且根据下一时刻稳态输入变量值,通过稳态函数关系模型获得的至少一个稳态输出变量的下一时刻稳态输出变量值在稳态输出变量目标范围之内。After U ∞ (k+1) is transmitted to the basic control loop for control, the system is controlled by the basic control loop, and the state will change, so that step 102 in the above embodiment can be executed cyclically at the next moment, both according to the steady state Input the variable target value, and perform optimization calculation based on the objective function and the steady-state function relationship model to obtain a new steady-state input variable value at the next moment and a new steady-state output variable value at the next moment, and then execute step 103 for control, That is, step 102 and step 103 are repeatedly executed, so that the value of the steady-state input variable at the next moment of the finally obtained at least one steady-state input variable is within the target range of the steady-state input variable, and according to the value of the steady-state input variable at the next moment The value of the steady-state output variable at the next moment of at least one steady-state output variable obtained through the steady-state functional relationship model is within the target range of the steady-state output variable.
在进行循环优化计算的过程中,输入变量目标值设定后通常可以是不改变的。In the process of loop optimization calculation, the target value of the input variable can usually not be changed after being set.
另外,作为一种可选的实施方式,也可以仅为稳态输入变量设定稳态输入变量目标范围(UTmin,UTmax),稳态输入变量目标值在该输入变量目标范围之中。多次重复执行步骤102和步骤103,以使得最终得到的稳态输入变量的下一时刻稳态输入变量值U∞(k+1)在稳态输入变量目标范围(UTmin,UTmax)之内。在这种实施例中,下一时刻稳态输出变量Y∞(k+1)仅需要满足系统预先设定的约束条件。In addition, as an optional implementation, the steady-state input variable target range ( UTmin , U Tmax ) can also be set only for the steady-state input variable, and the steady-state input variable target value is within the input variable target range. Step 102 and step 103 are repeatedly executed, so that the final steady-state input variable value U ∞ (k+1) at the next moment of the steady-state input variable is within the steady-state input variable target range ( UTmin , U Tmax ) Inside. In this embodiment, the steady-state output variable Y ∞ (k+1) at the next moment only needs to meet the constraints preset by the system.
如前所述,根据多个输入变量可能具有不同的特点,在进行一次工业过程控制的计算过程中,针对多个输入变量对应的多个稳态输入变量,可能需要对部分稳态输入变量设定目标设定点,在达到经济性能最优的情况下,通过设定目标设点的方法进行优化计算使下一时刻的稳态操作点尽可能接近设定的目标设定点。对另一部分稳态输入变量不设定目标设定点,在达到经济性能最优的情况下,计算使下一时刻的稳态操作点尽可能接近当前时刻的稳态操作点。As mentioned above, according to the fact that multiple input variables may have different characteristics, in the calculation process of an industrial process control, for multiple steady-state input variables corresponding to multiple input variables, it may be necessary to set some steady-state input variables Set the target set point. Under the condition of achieving the best economic performance, optimize the calculation by setting the target set point method so that the steady-state operating point at the next moment is as close as possible to the set target set point. For another part of the steady-state input variables, the target set point is not set, and the steady-state operating point at the next moment is calculated to be as close as possible to the steady-state operating point at the current moment when the economic performance is optimal.
具体地,多个稳态输入变量中部分稳态输入变量为未设置目标设定点的第一稳态输入变量,部分稳态输入变量为设置了目标设定点的第二稳态输入变量,目标设定点包括稳态输入变量目标值,目标函数可以为:Specifically, part of the steady-state input variables among the plurality of steady-state input variables are first steady-state input variables without a target set point, and part of the steady-state input variables are second steady-state input variables with a target set point set, The target set point consists of a steady-state input variable target value, and the target function can be:
下一时刻第一稳态输入变量与当前时刻第一稳态输入变量之差与第一稳态输入变量权值的乘积的一次函数,加上下一时刻第二稳态输入变量与稳态输入变量目标值之差与第二稳态输入变量权值的乘积的一次函数,或者The linear function of the product of the difference between the first steady-state input variable at the next moment and the first steady-state input variable at the current moment and the weight of the first steady-state input variable, plus the second steady-state input variable and the steady-state input variable at the next moment a linear function of the product of the difference between the target value and the weight of the second steady-state input variable, or
下一时刻第一稳态输入变量与当前时刻第一稳态输入变量之差与第一稳态输入变量权值的乘积的二次函数,加上下一时刻第二稳态输入变量与稳态输入变量目标值之差与第二稳态输入变量权值的乘积的二次函数。The quadratic function of the product of the difference between the first steady-state input variable at the next moment and the first steady-state input variable at the current moment and the weight of the first steady-state input variable, plus the second steady-state input variable at the next moment and the steady-state input A quadratic function of the product of the difference between the variable's target value and the weight of the second steady-state input variable.
参考图5所示,本发明还提供了一种与本发明控制方法相对应的工业过程的控制设备,该图为控制设备一种实施例的结构示意图。Referring to Fig. 5, the present invention also provides a control device of an industrial process corresponding to the control method of the present invention, which is a schematic structural diagram of an embodiment of the control device.
工业过程具有多个输入变量以及随多个输入变量的改变而变化的多个输出变量,多个输入变量是执行工业过程的工业设备的可控变量,多个输出变量是与工业过程的运行结果有关的变量,多个输入变量和多个输出变量在稳态下对应的多个稳态输入变量和多个稳态输出变量需要满足预先设定的条件,该控制设备500包括设置装置501、优化计算装置502以及工业设备控制装置503。The industrial process has multiple input variables and multiple output variables that change with the change of the multiple input variables. The multiple input variables are controllable variables of the industrial equipment that executes the industrial process, and the multiple output variables are the operating results of the industrial process. Relevant variables, a plurality of input variables and a plurality of output variables corresponding to a plurality of steady-state input variables and a plurality of steady-state output variables in a steady state need to meet preset conditions, and the control device 500 includes a setting device 501, an optimization A computing device 502 and an industrial equipment control device 503 .
设置装置501用于针对每个稳态输入变量设置稳态输入变量权值,并针对至少一个稳态输入变量设置稳态输入变量目标值。The setting means 501 is used for setting the weight value of the steady-state input variable for each steady-state input variable, and setting the target value of the steady-state input variable for at least one steady-state input variable.
优化计算装置502用于基于目标函数和关于多个稳态输出变量与多个稳态输入变量之间的稳态函数关系模型进行优化计算,以获得在满足预先设定的条件的情况下,使目标函数取得极值的下一时刻稳态输入变量的值,作为下一时刻稳态输入变量值,目标函数是以稳态输入变量权值、稳态输入变量目标值为参数,并且以下一时刻稳态输入变量为变量的函数。The optimization calculation device 502 is used to perform optimization calculations based on the objective function and the steady-state functional relationship model between multiple steady-state output variables and multiple steady-state input variables, so as to obtain The objective function obtains the value of the steady-state input variable at the next moment of extreme value as the value of the steady-state input variable at the next moment. The objective function takes the steady-state input variable weight and the steady-state input variable target value as parameters, and the next moment The steady-state input variable is a function of the variable.
工业设备控制装置503用于将下一时刻稳态输入变量值传到基础控制回路对工业设备的可控变量实施控制。The industrial equipment control device 503 is used to transmit the steady-state input variable value at the next moment to the basic control loop to control the controllable variables of the industrial equipment.
在另一种实施例中,目标函数是下一时刻稳态输入变量与稳态输入变量目标值之差与稳态输入变量权值的乘积的一次函数或二次函数。In another embodiment, the objective function is a linear function or a quadratic function of the product of the difference between the steady-state input variable and the target value of the steady-state input variable at the next moment and the weight of the steady-state input variable.
在另一种实施例中,该控制设备还包括目标范围设定装置。In another embodiment, the control device further comprises target range setting means.
目标范围设定装置用于为至少一个稳态输入变量设定稳态输入变量目标范围,稳态输入变量目标值在稳态输入变量目标范围之中,The target range setting device is used for setting the target range of the steady-state input variable for at least one steady-state input variable, the target value of the steady-state input variable is within the target range of the steady-state input variable,
优化计算装置多次重复执行优化计算,以使得最终得到的至少一个稳态输入变量的下一时刻稳态输入变量值在稳态输入变量目标范围之内。The optimization calculation device executes the optimization calculation multiple times, so that the finally obtained steady-state input variable value of at least one steady-state input variable at the next moment is within the target range of the steady-state input variable.
至此,已经详细描述了根据本发明的一种工业过程的控制方法和设备。为了避免遮蔽本发明的构思,没有描述本领域所公知的一些细节。本领域技术人员根据上面的描述,完全可以明白如何实施这里公开的技术方案。So far, an industrial process control method and device according to the present invention have been described in detail. Certain details well known in the art have not been described in order to avoid obscuring the inventive concept. Based on the above description, those skilled in the art can fully understand how to implement the technical solutions disclosed herein.
另外,本发明实施例设备的构成装置之间的连接关系,仅表示基于本发明的一个信息流向关系示例,不限制为物理连接关系,并且也不一定是实现本发明实施例所必须或仅限的。In addition, the connection relationship between the constituent devices of the device in the embodiment of the present invention is only an example of the information flow relationship based on the present invention, and is not limited to a physical connection relationship, and it is not necessarily necessary or limited to realize the embodiment of the present invention. of.
可能以许多方式来实现本发明的方法和设备。例如,可通过软件、硬件、固件或者软件、硬件、固件的任何组合来实现本发明的方法和系统。用于所述方法的步骤的上述顺序仅是为了进行说明,本发明的方法的步骤不限于以上具体描述的顺序,除非以其它方式特别说明。此外,在一些实施例中,还可将本发明实施为记录在记录介质中的程序,这些程序包括用于实现根据本发明的方法的机器可读指令。因而,本发明还覆盖存储用于执行根据本发明的方法的程序的记录介质。It is possible to implement the method and apparatus of the invention in many ways. For example, the method and system of the present invention may be implemented by software, hardware, firmware or any combination of software, hardware, and firmware. The above sequence of steps used in the method is for illustration only, and the steps of the method of the present invention are not limited to the sequence specifically described above unless specifically stated otherwise. Furthermore, in some embodiments, the present invention can also be implemented as programs recorded in recording media including machine-readable instructions for realizing the method according to the present invention. Thus, the present invention also covers a recording medium storing a program for executing the method according to the present invention.
虽然已经通过示例对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本发明的范围。本领域的技术人员应该理解,可在不脱离本发明的范围和精神的情况下,对以上实施例进行修改。本发明的范围由所附权利要求来限定。Although some specific embodiments of the present invention have been described in detail through examples, those skilled in the art should understand that the above examples are for illustration only, rather than limiting the scope of the present invention. Those skilled in the art will appreciate that modifications can be made to the above embodiments without departing from the scope and spirit of the invention. The scope of the invention is defined by the appended claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210084637.4A CN103365207B (en) | 2012-03-28 | 2012-03-28 | A kind of control method of industrial process and equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210084637.4A CN103365207B (en) | 2012-03-28 | 2012-03-28 | A kind of control method of industrial process and equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103365207A CN103365207A (en) | 2013-10-23 |
CN103365207B true CN103365207B (en) | 2016-05-11 |
Family
ID=49366790
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210084637.4A Active CN103365207B (en) | 2012-03-28 | 2012-03-28 | A kind of control method of industrial process and equipment |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103365207B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113283059A (en) * | 2021-04-29 | 2021-08-20 | 汪洋 | Chain architecture, model unit and configuration method of distributed serial computing |
CN115453862B (en) * | 2022-11-09 | 2023-02-28 | 质子汽车科技有限公司 | Self-adaptive control system and parameter adjusting method thereof |
CN115963795B (en) * | 2023-01-04 | 2023-07-07 | 浙江中智达科技有限公司 | Process industry control method, device, equipment and storage medium |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2921038A1 (en) * | 1978-05-24 | 1979-11-29 | Hitachi Ltd | PROCESS FOR ADAPTIVE PROCESS CONTROL |
CN1270333A (en) * | 1995-06-14 | 2000-10-18 | 霍尼韦尔公司 | Optimization of procedure controller in multi-variable pre-detecting controller |
CN1490690A (en) * | 2002-09-11 | 2004-04-21 | ����-��˹â��ϵͳ�ɷ�����˾ | Integrated model predicting control and optimization in process control system |
CN1900857A (en) * | 2005-07-20 | 2007-01-24 | 王建 | Real time operation optimizing method for multiple input and multiple output continuous producing process |
CN101620414A (en) * | 2009-08-12 | 2010-01-06 | 华东理工大学 | Method for optimizing cracking depth of industrial ethane cracking furnace on line |
-
2012
- 2012-03-28 CN CN201210084637.4A patent/CN103365207B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2921038A1 (en) * | 1978-05-24 | 1979-11-29 | Hitachi Ltd | PROCESS FOR ADAPTIVE PROCESS CONTROL |
CN1270333A (en) * | 1995-06-14 | 2000-10-18 | 霍尼韦尔公司 | Optimization of procedure controller in multi-variable pre-detecting controller |
CN1490690A (en) * | 2002-09-11 | 2004-04-21 | ����-��˹â��ϵͳ�ɷ�����˾ | Integrated model predicting control and optimization in process control system |
CN1900857A (en) * | 2005-07-20 | 2007-01-24 | 王建 | Real time operation optimizing method for multiple input and multiple output continuous producing process |
CN101620414A (en) * | 2009-08-12 | 2010-01-06 | 华东理工大学 | Method for optimizing cracking depth of industrial ethane cracking furnace on line |
Also Published As
Publication number | Publication date |
---|---|
CN103365207A (en) | 2013-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
He et al. | Multiple fuzzy model-based temperature predictive control for HVAC systems | |
Zhou et al. | Neuro-optimal tracking control for continuous stirred tank reactor with input constraints | |
US11521119B2 (en) | Machine learning device, control device, and machine learning method | |
CN102998973B (en) | Multi-model adaptive controller and control method of nonlinear system | |
CN104950678A (en) | Neural network inversion control method for flexible manipulator system | |
CN103365207B (en) | A kind of control method of industrial process and equipment | |
CN106933107A (en) | A kind of output tracking Robust Predictive Control method based on the design of multifreedom controlling amount | |
CN104536294B (en) | Objective layered forecast Control Algorithm based on continuous stirred tank reactor | |
Agarwal et al. | A regret minimization approach to iterative learning control | |
CN107168069A (en) | It is a kind of by disturbance and unknown direction nonlinear system zero error tracking and controlling method | |
CN107561929A (en) | A kind of model-free robust adaptive optimization method of servo-drive system | |
CN105334751B (en) | A kind of stability controller design method of batch injection moulding process | |
CN108614435A (en) | Non-linear model-free forecast Control Algorithm | |
CN106094843A (en) | A kind of adaptive fuzzy submarine navigation device control method using genetic algorithm optimizing | |
CN105045092A (en) | Parameter optimization method of PIλDμ controller for driverless smart car | |
CN109976150A (en) | A kind of drive lacking multi-input multi-output system centralization Auto-disturbance-rejection Control | |
CN109507870B (en) | Structure-adaptive fractional order proportional integral or proportional differential controller design method | |
US11243501B2 (en) | Machine learning device, control system, and machine learning | |
CN1664726A (en) | Two degrees of freedom decoupling control system for chemical multivariable production process | |
Lin et al. | Data‐driven set‐point tuning of model‐free adaptive control | |
CN110262222A (en) | A kind of Interval System optimum interval PID controller parameter optimization method | |
CN104216403B (en) | Multi-model self-adaptive control method in visual servo robot | |
CN102043380A (en) | Quadratic polynomial-based nonlinear compound PID (proportional-integral-differential) neural network control method | |
CN103365206B (en) | A kind of control method of industrial process and equipment | |
EP2778947B1 (en) | Sequential deterministic optimization based control system and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |