CN103364533B - 一种煤矿承压含水层上开采底板扰动破坏程度的分析方法 - Google Patents

一种煤矿承压含水层上开采底板扰动破坏程度的分析方法 Download PDF

Info

Publication number
CN103364533B
CN103364533B CN201310261216.9A CN201310261216A CN103364533B CN 103364533 B CN103364533 B CN 103364533B CN 201310261216 A CN201310261216 A CN 201310261216A CN 103364533 B CN103364533 B CN 103364533B
Authority
CN
China
Prior art keywords
disturbance
base plate
destructiveness
membership
collapse dept
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310261216.9A
Other languages
English (en)
Other versions
CN103364533A (zh
Inventor
张文泉
李伟
张广鹏
张贵彬
张红日
孙培聪
盛园园
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University of Science and Technology
Original Assignee
Shandong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University of Science and Technology filed Critical Shandong University of Science and Technology
Priority to CN201310261216.9A priority Critical patent/CN103364533B/zh
Publication of CN103364533A publication Critical patent/CN103364533A/zh
Application granted granted Critical
Publication of CN103364533B publication Critical patent/CN103364533B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开了一种煤矿承压含水层上开采底板扰动破坏程度的分析方法,分析步骤如下:选取底板扰动破坏深度和底板扰动破坏面积为定量评价底板扰动破坏程度的评价指标;确定底板扰动破坏深度h和扰动破坏深度为h时的扰动破坏面积S;分别构造底板扰动破坏深度隶属函数μ和扰动破坏面积隶属函数η;计算得出底板扰动破坏程度隶属度λ;建立煤矿承压含水层上开采底板扰动破坏程度的分析计算模型。本发明从空间上评价了底板的扰动破坏程度,可更为准确的反映底板的扰动破坏情况。本发明可根据具体评价结果,准确的评价承压含水层上开采的安全性。较以往相比,考虑了更多的影响因素,使评价结果更具有科学性。

Description

一种煤矿承压含水层上开采底板扰动破坏程度的分析方法
技术领域
本发明涉及一种煤矿承压含水层上开采底板扰动破坏程度的分析方法,属于采矿工程技术领域。
背景技术
承压含水层上煤层开采的安全性,关键取决于底板的扰动破坏程度。目前《煤矿防治水工作条例》中承压含水层上开采的安全性的评价标准和原则主要是的突水安全系数(修正后的突水安全系数考虑了矿山压力对底板的破坏等),但突水系数只是将底板扰动破坏的最大深度作为评价指标,缺少对底板扰动破坏范围等因素的分析研究,不能准确的评价底板的扰动破坏情况,从而给承压含水层上煤层的开采带来危险性,有可能引发突水事故,严重时甚至造成淹井事故。
发明内容
为了解决上述问题,本发明提供了一种煤矿承压含水层上开采底板扰动破坏程度的分析方法。
为解决以上技术问题,本发明采用的技术方案是:一种煤矿承压含水层上开采底板扰动破坏程度的分析方法,分析步骤如下:
(1)、选取底板扰动破坏深度和底板扰动破坏面积为定量评价底板扰动破坏程度的评价指标;
(2)、根据煤层开采后的钻探或物探资料,确定底板扰动破坏深度h和扰动破坏深度为h时的扰动破坏面积S;
(3)、分别构造底板扰动破坏深度隶属函数μ和扰动破坏面积隶属函数η;
底板扰动破坏深度隶属函数为:
&mu; = 0 h &le; 0 h H 0 < h < H 1 h &GreaterEqual; H
式中:μ为底板扰动破坏深度隶属度;h为底板扰动破坏深度,m;H为底板保护层厚度,m;
底板扰动破坏面积隶属函数为:
式中:η为底板扰动破坏区面积隶属度;S为底板扰动破坏深度为h时的扰动破坏区平面面积,m2;S采空区为采空区平面面积,m2
为综合评价底板的扰动破坏程度,对μ、η进行叠加计算,建立煤矿承压含水层上开采底板扰动破坏程度分析计算模型:
λ=αμ+βη
式中:λ为底板扰动破坏程度总隶属度;α为μ的权重;β为η的权重。
(4)、α和β的取值是一种常数性质的系数取值,首先根据矿井的实际地质情况对α和β的初值进行直接选取,然后进行多次叠加试算,综合分析后选定权重α和β;最后计算得出底板扰动破坏程度隶属度λ;
(5)、以底板扰动破坏程度总隶属度λ的大小来评价底板的扰动破坏程度,λ值越大,底板扰动破坏越严重,反之越小。
本发明从空间上评价了底板的扰动破坏程度,可更为准确的反映底板的扰动破坏情况。本发明可根据具体评价结果,准确的评价承压含水层上开采的安全性。较以往相比,考虑了更多的影响因素,使评价结果更具有科学性。
具体实施方式
为更加清晰地描述本发明的技术方案、优点及实用性,下面对本发明的具体实施方式进行完整描述:
(1)、选取底板扰动破坏深度和底板扰动破坏面积为定量评价底板扰动破坏程度的评价指标;
(2)、根据煤层开采后的钻探或物探资料,确定底板扰动破坏深度h和扰动破坏深度为h时的扰动破坏面积S;
(3)、分别构造底板扰动破坏深度隶属函数μ和扰动破坏面积隶属函数η;
评价底板扰动破坏程度的因素考虑扰动破坏深度和扰动破坏面积,并分别构造了相应的隶属函数。
底板扰动破坏深度隶属函数为:
&mu; = 0 h &le; 0 h H 0 < h < H 1 h &GreaterEqual; H
式中:μ为底板扰动破坏深度隶属度;h为底板扰动破坏深度,m;H为底板保护层厚度,m。
底板扰动破坏面积隶属函数为:
式中:η为底板扰动破坏区面积隶属度;S为底板扰动破坏深度为h时的扰动破坏区平面面积,m2;S采空区为采空区平面面积,m2
为综合评价底板的扰动破坏程度,对μ、η进行叠加计算,建立煤矿承压含水层上开采底板扰动破坏程度分析计算模型:
λ=αμ+βη
式中:λ为底板扰动破坏程度总隶属度;α为μ的权重;β为η的权重。
(4)、α和β的取值是一种常数性质的系数取值,首先根据矿井的实际地质情况对α和β的初值进行直接选取,然后进行多次叠加试算,综合分析后选定权重α和β;最后计算得出底板扰动破坏程度隶属度λ;
(5)、以底板扰动破坏程度总隶属度λ的大小来评价底板的扰动破坏程度,λ值越大,底板扰动破坏越严重,反之越小。
上述实施方式并非是对本发明的限制,本发明也并不仅限于上述举例,本技术领域的技术人员在本发明的技术方案范围内所做出的变化、改型、添加或替换,也均属于本发明的保护范围。

Claims (1)

1.一种煤矿承压含水层上开采底板扰动破坏程度的分析方法,其特征在于:分析步骤如下:
(1)、选取底板扰动破坏深度和底板扰动破坏面积为定量评价底板扰动破坏程度的评价指标;
(2)、根据煤层开采后的钻探或物探资料,确定底板扰动破坏深度h和扰动破坏深度为h时的扰动破坏面积S;
(3)、分别构造底板扰动破坏深度隶属函数μ和扰动破坏面积隶属函数η;
底板扰动破坏深度隶属函数为:
&mu; = 0 h &le; 0 h H 0 < h < H 1 h &GreaterEqual; H
式中:μ为底板扰动破坏深度隶属度;h为底板扰动破坏深度,m;H为底板保护层厚度,m;
底板扰动破坏面积隶属函数为:
式中:η为底板扰动破坏区面积隶属度;S为底板扰动破坏深度为h时的扰动破坏区平面面积,m2;S采空区为采空区平面面积,m2
为综合评价底板的扰动破坏程度,对μ、η进行叠加计算,建立煤矿承压含水层上开采底板扰动破坏程度分析计算模型:
λ=αμ+βη
式中:λ为底板扰动破坏程度总隶属度;α为μ的权重;β为η的权重;
(4)、α和β的取值是一种常数性质的系数取值,首先根据矿井的实际地质情况对α和β的初值进行直接选取,然后进行多次叠加试算,综合分析后选定权重α和β,最后计算得出底板扰动破坏程度隶属度λ;
(5)、以底板扰动破坏程度总隶属度λ的大小来评价底板的扰动破坏程度,λ值越大,底板扰动破坏越严重,反之越小。
CN201310261216.9A 2013-06-27 2013-06-27 一种煤矿承压含水层上开采底板扰动破坏程度的分析方法 Active CN103364533B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310261216.9A CN103364533B (zh) 2013-06-27 2013-06-27 一种煤矿承压含水层上开采底板扰动破坏程度的分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310261216.9A CN103364533B (zh) 2013-06-27 2013-06-27 一种煤矿承压含水层上开采底板扰动破坏程度的分析方法

Publications (2)

Publication Number Publication Date
CN103364533A CN103364533A (zh) 2013-10-23
CN103364533B true CN103364533B (zh) 2016-08-17

Family

ID=49366349

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310261216.9A Active CN103364533B (zh) 2013-06-27 2013-06-27 一种煤矿承压含水层上开采底板扰动破坏程度的分析方法

Country Status (1)

Country Link
CN (1) CN103364533B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108446450B (zh) * 2018-02-23 2021-07-02 通用技术集团工程设计有限公司 一种受采动影响的建筑物破坏程度的分析计算方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101436264A (zh) * 2008-11-28 2009-05-20 北京交通大学 基于分段模糊bp神经网络的矿山井下泥石流预测方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6931350B2 (en) * 2003-08-28 2005-08-16 Hewlett-Packard Development Company, L.P. Regression-clustering for complex real-world data

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101436264A (zh) * 2008-11-28 2009-05-20 北京交通大学 基于分段模糊bp神经网络的矿山井下泥石流预测方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
基于模糊神经理论的深井煤层底板突水因素研究;孙明 等;《湖南科技大学学报》;20111231;第26卷(第4期);第5-10页 *
基于模糊神经网络的深井底板突水判别研究;张文泉 等;《中国安全科学学报》;20091231;第19卷(第12期);第61-65页 *
矿井(底板)突水灾害的动态机理及综合判测和预报软件开发研究;张文泉;《中国优秀博硕士学位论文全文数据库》;20050315;第148页-156页 *

Also Published As

Publication number Publication date
CN103364533A (zh) 2013-10-23

Similar Documents

Publication Publication Date Title
Birdwell et al. In-place oil shale resources examined by grade in the major basins of the Green River Formation, Colorado, Utah, and Wyoming
Zou et al. Probabilistic assessment of shale gas production and water demand at Xiuwu Basin in China
Hu et al. Modeling brine leakage to shallow aquifer through an open wellbore using T2WELL/ECO2N
Rman Analysis of long-term thermal water abstraction and its impact on low-temperature intergranular geothermal aquifers in the Mura-Zala basin, NE Slovenia
Pasala et al. Simulation of the impact of faults on CO 2 injection into sandstone reservoirs
Vilcáez Reactive transport modeling of produced water disposal into dolomite saline aquifers: Controls of barium transport
CN103364533B (zh) 一种煤矿承压含水层上开采底板扰动破坏程度的分析方法
CN103670511B (zh) 一种顶板岩层破裂程度的分析计算方法
牛强 et al. Application of X-ray element logging to shale brittleness evaluation in Shengli oilfield
Erdoğan Coal and coal bed methane studies in Turkey
Liu et al. Research on method of water-resisting coefficient for distinguishing floor water inrush danger
Quillinan et al. Integrated Geologic Storage Prefeasibility Study proximal to Dry Fork Power Station, Powder River Basin, Wyoming
Zhang et al. Regional-to reservoir-scale evaluation of CO2 storage resource estimates of coal seams
Wu et al. Numerical modelling of fractures induced by coal mining beneath reservoirs and aquifers in China
Murai et al. In-situ formation compaction monitoring in deep reservoirs by use of fiber optics
Meng et al. Assessment of fault-seal integrity for underground storage of natural gas in porous sandstone
Boling SLIDES: Drawing the Blueprint for a Sustainable Natural Gas Future
Anna et al. Assessment of the Mowry Shale and Niobrara Formation as Continuous Hydrocarbon Systems, Powder River Basin, Montana and Wyoming
Rashid Development of a modified material balance equation for complex reservoirs with the inclusion of fluid velocity
Garven Fault-Related CO2 Degassing, Geothermics, and Fluid Flow in Southern California Basins--Physiochemical Evidence and Modeling
Jiang et al. Mapping the hydraulic connection between a coalbed and adjacent aquifer: example of the coal-seam gas resource area, north Galilee Basin, Australia
Boles et al. Fault-related CO2 degassing, geothermics, and fluid flow in southern California basins---Physiochemical evidence and modeling
Malimo Aquifer fluid modeling and assessment of mineral-gas-liquid equilibria in the Námafjall geothermal system, NE-Iceland
Amirlatifi et al. Estimation of Fluid Flow Boundary Conditions: The Role of Pressure Transient Analysis in Safe CO 2 Sequestration and Underground Storage
Erlström et al. Characterization of the Lower Cambrian sandstone aquifer in the Swedish Baltic Sea area-assessment regarding its potential suitability for storage of CO2

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant