CN103363992B - Based on four rotor wing unmanned aerial vehicle attitude heading reference system calculation methods of Gradient Descent - Google Patents

Based on four rotor wing unmanned aerial vehicle attitude heading reference system calculation methods of Gradient Descent Download PDF

Info

Publication number
CN103363992B
CN103363992B CN201310272266.7A CN201310272266A CN103363992B CN 103363992 B CN103363992 B CN 103363992B CN 201310272266 A CN201310272266 A CN 201310272266A CN 103363992 B CN103363992 B CN 103363992B
Authority
CN
China
Prior art keywords
msub
mrow
mtd
mtr
unmanned aerial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310272266.7A
Other languages
Chinese (zh)
Other versions
CN103363992A (en
Inventor
鲜斌
宋英麟
茹滨超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201310272266.7A priority Critical patent/CN103363992B/en
Publication of CN103363992A publication Critical patent/CN103363992A/en
Application granted granted Critical
Publication of CN103363992B publication Critical patent/CN103363992B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

A kind of four rotor wing unmanned aerial vehicle attitude heading reference system calculation methods based on Gradient Descent, comprise: gather miniature four rotor wing unmanned aerial vehicle attitude informations by gyroscope, acceleration transducer, geomagnetic sensor, wherein, the angular speed of miniature four rotor wing unmanned aerial vehicles of gyroscope survey, the linear acceleration of miniature four rotor wing unmanned aerial vehicles measured by acceleration transducer, and geomagnetic sensor measures the Magnetic Field of miniature four rotor wing unmanned aerial vehicle present positions; Apply based on hypercomplex number update algorithm degree of the will speed up sensor of Gradient Descent, geomagnetic sensor to data and the data that gather of gyroscope merge, revise gyrostatic drift; Application Quaternion Method resolves miniature four rotor wing unmanned aerial vehicle attitude angle information.The present invention adopts the data fusion method based on gradient descent method, make full use of acceleration transducer and geomagnetic sensor data, the drift of gyro data is revised in real time, export 3 d pose angle information, thus minimizing systematic error, effectively improve attitude measurement accuracy and stability.

Description

Four-rotor unmanned aerial vehicle attitude and heading reference system resolving method based on gradient descent
Technical Field
The invention relates to attitude and heading data measurement of a quad-rotor unmanned aerial vehicle. In particular to a method for calculating a four-rotor unmanned aerial vehicle attitude and heading reference system based on gradient descent.
Background
The attitude and heading reference system is a core device in an airborne electronic system of the quad-rotor unmanned aerial vehicle, and is responsible for providing real-time and reliable flight state measurement data for a flight control system of the unmanned aerial vehicle. At present, the size of a common four-rotor unmanned aerial vehicle body is small, the load is light, and the weight and size limitation on an inertial navigation unit is strict, so that a micro attitude navigation system based on an MEMS (micro electro mechanical system) technology is mostly adopted to provide flight state measurement data.
At present, the composition scheme and the application of various course attitude measurement systems exist at home and abroad. A Cristal100 course attitude reference system of French general mechanical electrical appliances adopts a ring laser gyroscope and a quartz accelerometer, and a Kalman filter is adopted in the system, so that the system can be conveniently calibrated on the ground, on a ship and in flight. The Cristal100 heading and attitude reference system may be used for fixed wing or rotary wing aircraft. The NAV440 attitude reference system of Crossbow, USA, utilizes MEMS inertial device and GPS technology comprehensively, and embodies the latest measurement and control technology based on MEMS. The method is widely applied to the fields of aviation, land and ocean navigation, tracking control, platform stabilization, ROV/AGV control, UAV/RPV control, accurate cultivation and the like. (Cross bowtechnology. NAVS440GPS-AID MID SinertialNavigation System [ EB/OL ]. http:// www.xbow.com.cn /)
In China, the development of related research work of the miniature attitude heading measurement system is late. The core strength of the development of the research work of the miniature attitude and heading measurement system is mainly concentrated in some scientific research institutions and colleges and universities. The miniature iFLY-G2 integrated navigation system developed by Beijing aerospace university is a small six-degree-of-freedom integrated navigation system. The system uses an MEMS gyroscope and an acceleration sensor as core devices, and the system can solve course attitude information by depending on an internal DSP processor and can provide real-time information such as Euler angle, three-dimensional angular rate and the like for an onboard controller. The iFLY-G2 provides accurate and comprehensive measurement information for the stability and control of various aircraft. The iFLY-G2 provides two combined navigation modes of AHRS/DR and GPS/INS, when the GPS information is effective, the combined navigation mode is automatically switched to the GPS/INS, and information of 50HZ position, speed, attitude and the like is provided; when the GPS information is invalid, the mode is automatically switched to an AHRS/DR mode (the AHRS mode containing dead reckoning), and the safety of flight is ensured.
In recent years, with the development of MEMS technology, micro attitude heading measurement systems have appeared. The system generally comprises a sensing device based on MEMS technology, an application specific integrated circuit and an embedded microcontroller, and can provide real-time navigation information such as gestures and the like for a motion carrier. The micro attitude navigation system has the characteristics of small volume, low cost, autonomy, real time, strong anti-jamming capability and the like (in Junjie. micro inertial combination system design and research [ D ] Harbin engineering university, 2007.) (Liu. MEMS-based low-cost MIMU application research [ D ] national defense science and technology university, 2004.), but the precision mainly depends on the precision of an inertial device, the measurement precision of the inertial device is hardly greatly improved from the aspects of hardware structure design and process alone, the sensor drift is large, and system errors are accumulated along with time, so that the micro attitude navigation system is not suitable for application of long-time carrier attitude determination.
The attitude and heading reference system consists of a plurality of axial sensors and can provide heading, rolling and pitching information for the aircraft, and the system can provide accurate and reliable attitude and navigation information for the aircraft. In order to improve the stability of the unmanned aerial vehicle in the flight process, the attitude heading reference system needs to provide the current attitude angle of the unmanned aerial vehicle in real time for an onboard controller to use. However, low cost sensor drift is typically large and system errors accumulate over time, which is not suitable for use with long duration carrier attitude determinations, which limits the application of course attitude measurement systems to some extent.
The technical reports of the existing documents are analyzed, and the problems that the sensor has larger drift and low precision are the main problems of the existing miniature four-rotor unmanned aerial vehicle attitude and heading reference system.
The miniature attitude navigation system has the characteristics of small volume, low cost, autonomy, real time, strong interference resistance and the like, but the precision of the miniature attitude navigation system mainly depends on the precision of an inertial sensor device, the measurement precision of the inertial sensor device is difficult to be greatly improved from the aspects of hardware structure design and process, the data drift of the sensor is large, and system errors are accumulated along with time, so that the miniature attitude navigation system is not suitable for the application of long-time carrier attitude determination.
With the development of the strapdown inertial navigation technology, in order to describe the attitude information of the carrier more simply and conveniently, a quaternion is adopted as a mathematical tool, and the quaternion is used for making up the defects of 3 Euler angle parameters which generally describe the angular motion of a rigid body in designing a control system. Quaternions may describe the rotation of a coordinate system or a vector with respect to a coordinate system, with the scalar portion of the quaternion representing the cosine of the 1/2 corner and the vector portion representing the direction of the instantaneous axis of rotation and the direction cosine between the instantaneous axis of rotation and the axis of the reference coordinate system. Therefore, a quaternion indicates both the direction of the rotation axis and the magnitude of the rotation angle, and is often referred to as a rotation quaternion. Research on data acquisition and processing technology of a strapdown inertial navigation system based on MIMU [ D ]. Harbin: Harbin engineering university, 2010) acquires angular rate data of a carrier through a gyroscope, and the data is resolved by using a quaternion updating method to obtain attitude information of the carrier.
Disclosure of Invention
The invention aims to solve the technical problem of providing a gradient descent-based attitude and heading reference system calculation method for a quadrotor unmanned aerial vehicle, which can obtain an attitude angle measurement value with higher precision, realize the attitude information estimation of the quadrotor unmanned aerial vehicle and improve the attitude and position control precision of the quadrotor unmanned aerial vehicle.
The technical scheme adopted by the invention is as follows: a method for calculating a four-rotor unmanned aerial vehicle attitude and heading reference system based on gradient descent comprises the following steps:
1) acquiring attitude information of the miniature quad-rotor unmanned aerial vehicle through a gyroscope, an acceleration sensor and a geomagnetic sensor, wherein the gyroscope measures the angular rate of the miniature quad-rotor unmanned aerial vehicle, the acceleration sensor measures the linear acceleration of the miniature quad-rotor unmanned aerial vehicle, and the geomagnetic sensor measures the magnetic field information of the position of the miniature quad-rotor unmanned aerial vehicle;
2) fusing data acquired by the acceleration sensor and the geomagnetic sensor with data acquired by the gyroscope by using a gradient descent-based quaternion updating algorithm, and correcting the drift of the gyroscope;
3) and resolving the attitude angle information of the miniature quad-rotor unmanned aerial vehicle by using a quaternion method.
The drift of the correction gyroscope in the step 2) is as follows:
the measured value of the sensor under the rigid body coordinate system is set as d = 0 d x d y d z The actual value set in the geodetic coordinate system is s = 0 s x s y s z To minimize the error, the minimum of the solution function f (Q, d, s) is required: minf (Q, d, s),
<math> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>Q</mi> <mo>,</mo> <mi>d</mi> <mo>,</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>Q</mi> <mo>*</mo> </msup> <mo>&CircleTimes;</mo> <mi>d</mi> <mo>&CircleTimes;</mo> <mi>Q</mi> <mo>-</mo> <mi>s</mi> </mrow> </math>
wherein, Q = q 1 q 2 q 3 q 4 is a rotation quaternion, Q, of a rigid body coordinate system to a geodetic coordinate system*Is a conjugate quaternion, and is,
will be provided with d = 0 d x d y d z , s = 0 s x s y s z , Q = q 1 q 2 q 3 q 4 Substituted type <math> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>Q</mi> <mo>,</mo> <mi>d</mi> <mo>,</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>Q</mi> <mo>*</mo> </msup> <mo>&CircleTimes;</mo> <mi>d</mi> <mo>&CircleTimes;</mo> <mi>Q</mi> <mo>-</mo> <mi>s</mi> </mrow> </math> Obtaining:
f ( Q , d , s ) = 2 d x ( 1 2 - q 3 2 - q 4 2 ) + 2 d y ( q 1 q 4 + q 2 q 3 ) + 2 d z ( q 2 q 4 - q 1 q 3 ) - s x 2 d x ( q 2 q 3 - q 1 q 4 ) + 2 d y ( 1 2 - q 2 2 - q 4 2 ) + 2 d z ( q 1 q 2 + q 3 q 4 ) - s y 2 d x ( q 1 q 3 + q 2 q 4 ) + 2 d z ( 1 2 - q 2 2 - q 3 2 ) + 2 d y ( q 3 q 4 - q 1 q 2 ) - s z
according to the gradient descent algorithm, the unit vector of the negative gradient search of the f (Q, d, s) function is:
<math> <mrow> <msub> <mi>s</mi> <mi>k</mi> </msub> <mo>=</mo> <mo>-</mo> <mfrac> <mrow> <mo>&dtri;</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>Q</mi> <mo>,</mo> <mi>d</mi> <mo>,</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>|</mo> <mo>|</mo> <mo>&dtri;</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>Q</mi> <mo>,</mo> <mi>d</mi> <mo>,</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>|</mo> <mo>|</mo> </mrow> </mfrac> </mrow> </math>
<math> <mrow> <mo>&dtri;</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>Q</mi> <mo>,</mo> <mi>d</mi> <mo>,</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>J</mi> <mi>T</mi> </msup> <mrow> <mo>(</mo> <mi>Q</mi> <mo>,</mo> <mi>d</mi> <mo>)</mo> </mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>Q</mi> <mo>,</mo> <mi>d</mi> <mo>,</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </math>
wherein J (Q, d) is the Jacobian matrix of f (Q, d, s), JT(Q, d) is the transpose of the Jacobian matrix of f (Q, d, s);
J ( Q , d ) = 2 d y q 4 - 2 d z q 3 2 d y q 3 + 2 d z q 4 - 2 d x q 4 + 2 d z q 2 2 d x q 3 - 4 d y q 2 + 2 d z q 1 2 d x q 3 - 2 d y q 2 2 d x q 4 - 2 d y q 1 - 4 d z q 2
- 4 d x q 3 + 2 d y q 2 - 2 d z q 1 - 4 d x q 4 + 2 d y q 1 + 2 d z q 2 2 d x q 2 + 2 d z q 4 - d x q 1 - 4 d y q 4 + 2 d z q 3 2 d x q 1 + 2 d y q 4 - 4 d z q 3 2 d x q 2 + 2 d y q 3
through the derivation, the quaternion update equation with the gradient descent compensation algorithm is obtained as follows:
<math> <mrow> <msub> <mi>Q</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>Q</mi> <mi>k</mi> </msub> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msub> <mi>Q</mi> <mi>k</mi> </msub> <mo>&CircleTimes;</mo> <mi>&omega;</mi> <mo>-</mo> <mi>&mu;</mi> <mfrac> <mrow> <mo>&dtri;</mo> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>Q</mi> <mi>k</mi> </msub> <mo>,</mo> <mi>d</mi> <mo>,</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>|</mo> <mo>|</mo> <mo>&dtri;</mo> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>Q</mi> <mi>k</mi> </msub> <mo>,</mo> <mi>d</mi> <mo>,</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>|</mo> <mo>|</mo> </mrow> </mfrac> </mrow> </math>
wherein Qk+1Is a quaternion after the drift correction of the gyroscope at the current moment, mu is a step length, k is an integer which is more than or equal to zero, omega is the angular velocity measured by the gyroscope,for multiplication of quaternions, QkAnd the quaternion is obtained after the drift of the gyroscope is corrected at the previous moment.
Step 3) the resolving of the attitude angle information of the miniature quad-rotor unmanned aerial vehicle is as follows:
setting the yaw angle of the micro quad-rotor unmanned aerial vehicle as psi, the pitch angle as theta, the roll angle as gamma, taking a geodetic coordinate system as a navigation coordinate system, and defining xg、yg、zgThe rigid body coordinate system can be converted into a navigation coordinate system through three times of basic rotation coordinate transformation when the rigid body coordinate system points to east, north and sky respectively, and the attitude angle information of the carrier can be calculated through the following formula
<math> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mi>&theta;</mi> <mo>=</mo> <mi>arcsin</mi> <mo>[</mo> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mn>3</mn> </msub> <msub> <mi>q</mi> <mn>4</mn> </msub> <mo>+</mo> <msub> <mi>q</mi> <mn>1</mn> </msub> <msub> <mi>q</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>]</mo> </mtd> </mtr> <mtr> <mtd> <mi>&gamma;</mi> <mo>=</mo> <mi>arctan</mi> <mo>[</mo> <mo>-</mo> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mn>2</mn> </msub> <msub> <mi>q</mi> <mn>4</mn> </msub> <mo>-</mo> <msub> <mi>q</mi> <mn>1</mn> </msub> <msub> <mi>q</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> <mo>/</mo> <msubsup> <mi>q</mi> <mn>4</mn> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>q</mi> <mn>3</mn> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>q</mi> <mn>2</mn> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>q</mi> <mn>1</mn> <mn>2</mn> </msubsup> <mo>]</mo> </mtd> </mtr> <mtr> <mtd> <mi>&psi;</mi> <mo>=</mo> <mi>arctan</mi> <mo>[</mo> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mn>2</mn> </msub> <msub> <mi>q</mi> <mn>3</mn> </msub> <mo>-</mo> <msub> <mi>q</mi> <mn>1</mn> </msub> <msub> <mi>q</mi> <mn>4</mn> </msub> <mo>)</mo> </mrow> <mo>/</mo> <msubsup> <mi>q</mi> <mn>3</mn> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>q</mi> <mn>4</mn> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>q</mi> <mn>1</mn> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>q</mi> <mn>2</mn> <mn>2</mn> </msubsup> <mo>]</mo> </mtd> </mtr> </mtable> </mfenced> <mo>.</mo> </mrow> </math>
According to the method for resolving the data of the attitude and heading reference system of the micro quad-rotor unmanned aerial vehicle based on gradient descent, a data fusion method based on a gradient descent method is adopted, the data of the acceleration sensor and the geomagnetic sensor are fully utilized, the drift of gyroscope data is corrected in real time, and three-dimensional attitude angle information is output, so that the system error is reduced, and the attitude measurement precision and stability are effectively improved. The invention has the following characteristics:
1. the calculation amount of the calculation process is small. The traditional attitude heading reference system data resolving method based on the Kalman filter generally needs a large amount of matrix operation, has high requirement on the operation speed of a processor in practical application, and improves the cost of the attitude heading reference system. The resolving method provided by the invention is small in calculation amount, low in requirement on the operation speed of the processor and suitable for a low-cost attitude heading reference system of the micro unmanned aerial vehicle.
2. The precision and the stability are high. The data resolving method provided by the invention integrates data information of the acceleration sensor and the geomagnetic sensor, overcomes the problem of larger data drift of the gyroscope, compensates the drift of the gyroscope by using data of the accelerometer and the magnetometer, corrects a system error generated by the drift of the gyroscope, and improves the measurement precision of the attitude and heading reference system.
3. The invention adopts a hardware architecture which takes a low-cost MEMS sensor as a basis and takes a low-cost ARM data processor as a core. Therefore, compared with the existing attitude heading reference system, the invention has the advantages of small volume, light weight, low power consumption and the like, and greatly reduces the cost of the miniature attitude navigation system.
Drawings
FIG. 1 is a flow chart of a gradient descent based quaternion compensation algorithm;
FIG. 2a is the result of a roll angle experiment prior to data processing;
FIG. 2b shows experimental results of roll angle after data processing;
FIG. 3a is the results of a pitch angle experiment prior to data processing;
FIG. 3b is the results of a pitch angle experiment after data processing;
FIG. 4a is the results of a yaw angle experiment prior to data processing;
FIG. 4b shows the experimental results of the yaw angle after data processing.
Detailed Description
The method for solving the attitude and heading reference system of the quad-rotor unmanned aerial vehicle based on gradient descent is described in detail below by combining the embodiment and the attached drawings.
As shown in fig. 1, the method for calculating the attitude and heading reference system of the quad-rotor unmanned aerial vehicle based on gradient descent comprises the following steps:
1) acquiring attitude information of the miniature quad-rotor unmanned aerial vehicle through a gyroscope, an acceleration sensor and a geomagnetic sensor, wherein the gyroscope measures the angular rate of the miniature quad-rotor unmanned aerial vehicle, the acceleration sensor measures the linear acceleration of the miniature quad-rotor unmanned aerial vehicle, and the geomagnetic sensor measures the magnetic field information of the position of the miniature quad-rotor unmanned aerial vehicle;
2) fusing data acquired by the acceleration sensor and the geomagnetic sensor with data acquired by the gyroscope by using a gradient descent-based quaternion updating algorithm, and correcting the drift of the gyroscope;
the drift of the correction gyroscope is as follows:
the measured value of the sensor under the rigid body coordinate system is set as d = 0 d x d y d z The actual value set in the geodetic coordinate system is s = 0 s x s y s z To minimize the error, the minimum of the solution function f (Q, d, s) is required: minf (Q, d, s),
<math> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>Q</mi> <mo>,</mo> <mi>d</mi> <mo>,</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>Q</mi> <mo>*</mo> </msup> <mo>&CircleTimes;</mo> <mi>d</mi> <mo>&CircleTimes;</mo> <mi>Q</mi> <mo>-</mo> <mi>s</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein, Q = q 1 q 2 q 3 q 4 is a rotation quaternion, Q, of a rigid body coordinate system to a geodetic coordinate system*Is a conjugate quaternion, and is,
will be provided with d = 0 d x d y d z , s = 0 s x s y s z , Q = q 1 q 2 q 3 q 4 Substituting the formula (1) to obtain:
f ( Q , d , s ) = 2 d x ( 1 2 - q 3 2 - q 4 2 ) + 2 d y ( q 1 q 4 + q 2 q 3 ) + 2 d z ( q 2 q 4 - q 1 q 3 ) - s x 2 d x ( q 2 q 3 - q 1 q 4 ) + 2 d y ( 1 2 - q 2 2 - q 4 2 ) + 2 d z ( q 1 q 2 + q 3 q 4 ) - s y 2 d x ( q 1 q 3 + q 2 q 4 ) + 2 d z ( 1 2 - q 2 2 - q 3 2 ) + 2 d y ( q 3 q 4 - q 1 q 2 ) - s z - - - ( 2 )
according to the gradient descent algorithm, the unit vector of the negative gradient search of the f (Q, d, s) function is:
<math> <mrow> <msub> <mi>s</mi> <mi>k</mi> </msub> <mo>=</mo> <mo>-</mo> <mfrac> <mrow> <mo>&dtri;</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>Q</mi> <mo>,</mo> <mi>d</mi> <mo>,</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>|</mo> <mo>|</mo> <mo>&dtri;</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>Q</mi> <mo>,</mo> <mi>d</mi> <mo>,</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>|</mo> <mo>|</mo> </mrow> </mfrac> <mo>,</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mo>&dtri;</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>Q</mi> <mo>,</mo> <mi>d</mi> <mo>,</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>J</mi> <mi>T</mi> </msup> <mrow> <mo>(</mo> <mi>Q</mi> <mo>,</mo> <mi>d</mi> <mo>)</mo> </mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>Q</mi> <mo>,</mo> <mi>d</mi> <mo>,</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein J (Q, d) is the Jacobian matrix of f (Q, d, s), JT(Q, d) is the transpose of the Jacobian matrix of f (Q, d, s);
J ( Q , d ) = 2 d y q 4 - 2 d z q 3 2 d y q 3 + 2 d z q 4 - 2 d x q 4 + 2 d z q 2 2 d x q 3 - 4 d y q 2 + 2 d z q 1 2 d x q 3 - 2 d y q 2 2 d x q 4 - 2 d y q 1 - 4 d z q 2
(5)
- 4 d x q 3 + 2 d y q 2 - 2 d z q 1 - 4 d x q 4 + 2 d y q 1 + 2 d z q 2 2 d x q 2 + 2 d z q 4 - d x q 1 - 4 d y q 4 + 2 d z q 3 2 d x q 1 + 2 d y q 4 - 4 d z q 3 2 d x q 2 + 2 d y q 3
through the derivation, the quaternion update equation with the gradient descent compensation algorithm is obtained as follows:
<math> <mrow> <msub> <mi>Q</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>Q</mi> <mi>k</mi> </msub> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msub> <mi>Q</mi> <mi>k</mi> </msub> <mo>&CircleTimes;</mo> <mi>&omega;</mi> <mo>-</mo> <mi>&mu;</mi> <mfrac> <mrow> <mo>&dtri;</mo> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>Q</mi> <mi>k</mi> </msub> <mo>,</mo> <mi>d</mi> <mo>,</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>|</mo> <mo>|</mo> <mo>&dtri;</mo> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>Q</mi> <mi>k</mi> </msub> <mo>,</mo> <mi>d</mi> <mo>,</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>|</mo> <mo>|</mo> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein Qk+1Is a quaternion after the drift correction of the gyroscope at the current moment, mu is a step length, k is an integer which is more than or equal to zero, omega is the angular velocity measured by the gyroscope,for multiplication of quaternions, QkAnd the quaternion is obtained after the drift of the gyroscope is corrected at the previous moment.
3) And resolving the attitude angle information of the miniature quad-rotor unmanned aerial vehicle by using a quaternion method.
Resolving the attitude angle information of the miniature quad-rotor unmanned aerial vehicle is as follows:
setting the yaw angle of the micro quad-rotor unmanned aerial vehicle as psi, the pitch angle as theta, the roll angle as gamma, taking a geodetic coordinate system as a navigation coordinate system, and defining xg、yg、zgThe rigid body coordinate system can be converted into a navigation coordinate system through three times of basic rotation coordinate transformation when the rigid body coordinate system points to east, north and sky respectively, and the attitude angle information of the carrier can be calculated through the following formula
<math> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mi>&theta;</mi> <mo>=</mo> <mi>arcsin</mi> <mo>[</mo> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mn>3</mn> </msub> <msub> <mi>q</mi> <mn>4</mn> </msub> <mo>+</mo> <msub> <mi>q</mi> <mn>1</mn> </msub> <msub> <mi>q</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>]</mo> </mtd> </mtr> <mtr> <mtd> <mi>&gamma;</mi> <mo>=</mo> <mi>arctan</mi> <mo>[</mo> <mo>-</mo> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mn>2</mn> </msub> <msub> <mi>q</mi> <mn>4</mn> </msub> <mo>-</mo> <msub> <mi>q</mi> <mn>1</mn> </msub> <msub> <mi>q</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> <mo>/</mo> <msubsup> <mi>q</mi> <mn>4</mn> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>q</mi> <mn>3</mn> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>q</mi> <mn>2</mn> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>q</mi> <mn>1</mn> <mn>2</mn> </msubsup> <mo>]</mo> </mtd> </mtr> <mtr> <mtd> <mi>&psi;</mi> <mo>=</mo> <mi>arctan</mi> <mo>[</mo> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mn>2</mn> </msub> <msub> <mi>q</mi> <mn>3</mn> </msub> <mo>-</mo> <msub> <mi>q</mi> <mn>1</mn> </msub> <msub> <mi>q</mi> <mn>4</mn> </msub> <mo>)</mo> </mrow> <mo>/</mo> <msubsup> <mi>q</mi> <mn>3</mn> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>q</mi> <mn>4</mn> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>q</mi> <mn>1</mn> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>q</mi> <mn>2</mn> <mn>2</mn> </msubsup> <mo>]</mo> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> <mo>.</mo> </mrow> </math>
In conclusion, the method for solving the attitude and heading reference system of the four-rotor unmanned aerial vehicle based on gradient descent corrects the problem of large drift of a low-cost sensor by utilizing multi-sensor data fusion, and improves the measurement accuracy of the miniature attitude and heading system.
The comprehensive performance of the gradient descent-based four-rotor unmanned aerial vehicle attitude and heading reference system calculation method is verified and explained through experimental results. FIG. 2a is the result of a roll angle experiment prior to data processing; FIG. 2b shows experimental results of roll angle after data processing; FIG. 3a is the results of a pitch angle experiment prior to data processing; FIG. 3b is the results of a post-processing pitch angle experiment with time (in milliseconds) on the abscissa and pitch/roll angle (in degrees) on the ordinate, and a pre-processing angle drift of about 10 degrees/min. The data are resolved by the data resolving method of the gradient descent-based attitude and heading reference system of the miniature four-rotor unmanned aerial vehicle, and after the data are processed, the angle drift is about 0.3 degree/minute. FIG. 4a is the results of a yaw angle experiment prior to data processing; FIG. 4b shows the experimental results of the yaw angle after data processing, the data are calculated by the method for calculating the attitude and heading reference system of the quad-rotor unmanned aerial vehicle based on gradient descent, and after the data are processed, the angle drift is about 2 degrees/min. The result analysis shows that the four-rotor unmanned aerial vehicle attitude and heading reference system calculation method based on gradient descent can effectively reduce the angle drift, improve the stability and accuracy of the miniature attitude and heading system, and can be effectively applied to attitude and position control of the miniature four-rotor unmanned aerial vehicle system.

Claims (2)

1. A method for calculating a four-rotor unmanned aerial vehicle attitude and heading reference system based on gradient descent is characterized by comprising the following steps:
1) acquiring attitude information of the miniature quad-rotor unmanned aerial vehicle through a gyroscope, an acceleration sensor and a geomagnetic sensor, wherein the gyroscope measures the angular rate of the miniature quad-rotor unmanned aerial vehicle, the acceleration sensor measures the linear acceleration of the miniature quad-rotor unmanned aerial vehicle, and the geomagnetic sensor measures the magnetic field information of the position of the miniature quad-rotor unmanned aerial vehicle;
2) fusing data acquired by an acceleration sensor and a geomagnetic sensor with data acquired by a gyroscope by applying a gradient descent-based quaternion updating algorithm, and correcting the drift of the gyroscope, wherein the correction of the drift of the gyroscope is as follows:
let d be [0d ] as the measured value of the gyroscope in the rigid coordinate systemxdydz]The actual value given in the geodetic coordinate system is s ═ 0sxsysz]To minimize the error, the minimum of the solution function f (Q, d, s) is required: minf (Q, d, s),
<math> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>Q</mi> <mo>,</mo> <mi>d</mi> <mo>,</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>Q</mi> <mo>*</mo> </msup> <mo>&CircleTimes;</mo> <mi>d</mi> <mo>&CircleTimes;</mo> <mi>Q</mi> <mo>-</mo> <mi>s</mi> </mrow> </math>
wherein Q ═ Q1q2q3q4]Is a rotation quaternion, Q, of a rigid body coordinate system to a geodetic coordinate system*Is a conjugate quaternion, and is,
d is ═ 0dxdydz]、s=[0sxsysz]、Q=[q1q2q3q4]Substituted type <math> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>Q</mi> <mo>,</mo> <mi>d</mi> <mo>,</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>Q</mi> <mo>*</mo> </msup> <mo>&CircleTimes;</mo> <mi>d</mi> <mo>&CircleTimes;</mo> <mi>Q</mi> <mo>-</mo> <mi>s</mi> </mrow> </math> Obtaining:
f ( Q , d , s ) = 2 d x ( 1 2 - q 3 2 - q 4 2 ) + 2 d y ( q 1 q 4 + q 2 q 3 ) + 2 d z ( q 2 q 4 - q 1 q 3 ) - s x 2 d x ( q 2 q 3 - q 1 q 4 ) + 2 d y ( 1 2 - q 2 2 - q 4 2 ) + 2 d z ( q 1 q 2 + q 3 q 4 ) - s y 2 d x ( q 1 q 3 + q 2 q 4 ) + 2 d z ( 1 2 - q 2 2 - q 3 2 ) + 2 d y ( q 3 q 4 - q 1 q 2 ) - s z
according to the gradient descent algorithm, the unit vector of the nf (Q, d, s) function negative gradient search is:
<math> <mrow> <msub> <mi>s</mi> <mi>k</mi> </msub> <mo>=</mo> <mo>-</mo> <mfrac> <mrow> <mo>&dtri;</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>Q</mi> <mo>,</mo> <mi>d</mi> <mo>,</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>|</mo> <mo>|</mo> <mo>&dtri;</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>Q</mi> <mo>,</mo> <mi>d</mi> <mo>,</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>|</mo> <mo>|</mo> </mrow> </mfrac> </mrow> </math>
<math> <mrow> <mo>&dtri;</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>Q</mi> <mo>,</mo> <mi>d</mi> <mo>,</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>J</mi> <mi>T</mi> </msup> <mrow> <mo>(</mo> <mi>Q</mi> <mo>,</mo> <mi>d</mi> <mo>)</mo> </mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>Q</mi> <mo>,</mo> <mi>d</mi> <mo>,</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </math>
wherein J (Q, d) is the Jacobian matrix of f (Q, d, s), JT(Q, d) is the transpose of the Jacobian matrix of f (Q, d, s);
<math> <mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>J</mi> <mrow> <mo>(</mo> <mi>Q</mi> <mo>,</mo> <mi>d</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>&lsqb;</mo> <mtable> <mtr> <mtd> <mrow> <mn>2</mn> <msub> <mi>d</mi> <mi>y</mi> </msub> <msub> <mi>q</mi> <mn>4</mn> </msub> <mo>-</mo> <mn>2</mn> <msub> <mi>d</mi> <mi>z</mi> </msub> <msub> <mi>q</mi> <mn>3</mn> </msub> </mrow> </mtd> <mtd> <mrow> <mn>2</mn> <msub> <mi>d</mi> <mi>y</mi> </msub> <msub> <mi>q</mi> <mn>3</mn> </msub> <mo>+</mo> <mn>2</mn> <msub> <mi>d</mi> <mi>z</mi> </msub> <msub> <mi>q</mi> <mn>4</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mn>2</mn> <msub> <mi>d</mi> <mi>x</mi> </msub> <msub> <mi>q</mi> <mn>4</mn> </msub> <mo>+</mo> <mn>2</mn> <msub> <mi>d</mi> <mi>z</mi> </msub> <msub> <mi>q</mi> <mn>2</mn> </msub> </mrow> </mtd> <mtd> <mrow> <mn>2</mn> <msub> <mi>d</mi> <mi>x</mi> </msub> <msub> <mi>q</mi> <mn>3</mn> </msub> <mo>-</mo> <mn>4</mn> <msub> <mi>d</mi> <mi>y</mi> </msub> <msub> <mi>q</mi> <mn>2</mn> </msub> <mo>+</mo> <mn>2</mn> <msub> <mi>d</mi> <mi>z</mi> </msub> <msub> <mi>q</mi> <mn>1</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>2</mn> <msub> <mi>d</mi> <mi>x</mi> </msub> <msub> <mi>q</mi> <mn>3</mn> </msub> <mo>-</mo> <mn>2</mn> <msub> <mi>d</mi> <mi>y</mi> </msub> <msub> <mi>q</mi> <mn>2</mn> </msub> </mrow> </mtd> <mtd> <mrow> <mn>2</mn> <msub> <mi>d</mi> <mi>x</mi> </msub> <msub> <mi>q</mi> <mn>4</mn> </msub> <mo>-</mo> <mn>2</mn> <msub> <mi>d</mi> <mi>y</mi> </msub> <msub> <mi>q</mi> <mn>1</mn> </msub> <mo>-</mo> <mn>4</mn> <msub> <mi>d</mi> <mi>z</mi> </msub> <msub> <mi>q</mi> <mn>2</mn> </msub> </mrow> </mtd> </mtr> </mtable> </mrow> </mtd> </mtr> <mtr> <mtd> <mfenced open = "" close = "]"> <mtable> <mtr> <mtd> <mrow> <mo>-</mo> <mn>4</mn> <msub> <mi>d</mi> <mi>x</mi> </msub> <msub> <mi>q</mi> <mn>3</mn> </msub> <mo>+</mo> <mn>2</mn> <msub> <mi>d</mi> <mi>y</mi> </msub> <msub> <mi>q</mi> <mn>2</mn> </msub> <mo>-</mo> <mn>2</mn> <msub> <mi>d</mi> <mi>z</mi> </msub> <msub> <mi>q</mi> <mn>1</mn> </msub> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <mn>4</mn> <msub> <mi>d</mi> <mi>x</mi> </msub> <msub> <mi>q</mi> <mn>4</mn> </msub> <mo>+</mo> <mn>2</mn> <msub> <mi>d</mi> <mi>y</mi> </msub> <msub> <mi>q</mi> <mn>1</mn> </msub> <mo>+</mo> <mn>2</mn> <msub> <mi>d</mi> <mi>z</mi> </msub> <msub> <mi>q</mi> <mn>2</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>2</mn> <msub> <mi>d</mi> <mi>x</mi> </msub> <msub> <mi>q</mi> <mn>2</mn> </msub> <mo>+</mo> <mn>2</mn> <msub> <mi>d</mi> <mi>z</mi> </msub> <msub> <mi>q</mi> <mn>4</mn> </msub> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <mn>2</mn> <msub> <mi>d</mi> <mi>x</mi> </msub> <msub> <mi>q</mi> <mn>1</mn> </msub> <mo>-</mo> <mn>4</mn> <msub> <mi>d</mi> <mi>y</mi> </msub> <msub> <mi>q</mi> <mn>4</mn> </msub> <mo>+</mo> <mn>2</mn> <msub> <mi>d</mi> <mi>z</mi> </msub> <msub> <mi>q</mi> <mn>3</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>2</mn> <msub> <mi>d</mi> <mi>x</mi> </msub> <mo>+</mo> <mn>2</mn> <msub> <mi>d</mi> <mi>y</mi> </msub> <msub> <mi>q</mi> <mn>4</mn> </msub> <mo>-</mo> <mn>4</mn> <msub> <mi>d</mi> <mi>z</mi> </msub> <msub> <mi>q</mi> <mn>3</mn> </msub> </mrow> </mtd> <mtd> <mrow> <mn>2</mn> <msub> <mi>d</mi> <mi>x</mi> </msub> <msub> <mi>q</mi> <mn>2</mn> </msub> <mo>+</mo> <mn>2</mn> <msub> <mi>d</mi> <mi>y</mi> </msub> <msub> <mi>q</mi> <mn>3</mn> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> </mtd> </mtr> </mtable> </mfenced> </math>
through the derivation, the quaternion update equation with the gradient descent compensation algorithm is obtained as follows:
<math> <mrow> <msub> <mi>Q</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>Q</mi> <mi>k</mi> </msub> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msub> <mi>Q</mi> <mi>k</mi> </msub> <mo>&CircleTimes;</mo> <mi>&omega;</mi> <mo>-</mo> <mi>&mu;</mi> <mfrac> <mrow> <mo>&dtri;</mo> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>Q</mi> <mi>k</mi> </msub> <mo>,</mo> <mi>d</mi> <mo>,</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>|</mo> <mo>|</mo> <mo>&dtri;</mo> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>Q</mi> <mi>k</mi> </msub> <mo>,</mo> <mi>d</mi> <mo>,</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>|</mo> <mo>|</mo> </mrow> </mfrac> </mrow> </math>
wherein Qk+1Is a quaternion after the drift correction of the gyroscope at the current moment, mu is a step length, k is an integer which is more than or equal to zero, omega is the angular velocity measured by the gyroscope,for multiplication of quaternions, QkThe quaternion is obtained after the drift of the gyroscope is corrected at the previous moment;
3) and resolving the attitude angle information of the miniature quad-rotor unmanned aerial vehicle by using a quaternion method.
2. The gradient descent-based quad-rotor unmanned aerial vehicle attitude and heading reference system calculation method according to claim 1, wherein the calculation of the attitude angle information of the miniature quad-rotor unmanned aerial vehicle in the step 3) is as follows:
setting the yaw angle of the micro quad-rotor unmanned aerial vehicle as psi, the pitch angle as theta, the roll angle as gamma, taking a geodetic coordinate system as a navigation coordinate system, and defining xg、yg、zgThe rigid body coordinate system can be converted into a navigation coordinate system through three times of basic rotation coordinate transformation when the rigid body coordinate system points to east, north and sky respectively, and the attitude angle information of the carrier can be calculated through the following formula
<math> <mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>&theta;</mi> <mo>=</mo> <mi>arctan</mi> <mo>&lsqb;</mo> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mn>3</mn> </msub> <msub> <mi>q</mi> <mn>4</mn> </msub> <mo>+</mo> <msub> <mi>q</mi> <mn>1</mn> </msub> <msub> <mi>q</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>&rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>&gamma;</mi> <mo>=</mo> <mi>arctan</mi> <mo>&lsqb;</mo> <mo>-</mo> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mn>2</mn> </msub> <msub> <mi>q</mi> <mn>4</mn> </msub> <mo>-</mo> <msub> <mi>q</mi> <mn>1</mn> </msub> <msub> <mi>q</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> <mo>/</mo> <msubsup> <mi>q</mi> <mn>4</mn> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>q</mi> <mn>3</mn> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>q</mi> <mn>2</mn> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>q</mi> <mn>1</mn> <mn>2</mn> </msubsup> <mo>&rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>&psi;</mi> <mo>=</mo> <mi>arctan</mi> <mo>&lsqb;</mo> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mn>2</mn> </msub> <msub> <mi>q</mi> <mn>3</mn> </msub> <mo>-</mo> <msub> <mi>q</mi> <mn>1</mn> </msub> <msub> <mi>q</mi> <mn>4</mn> </msub> <mo>)</mo> </mrow> <mo>/</mo> <msubsup> <mi>q</mi> <mn>3</mn> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>q</mi> <mn>4</mn> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>q</mi> <mn>1</mn> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>q</mi> <mn>2</mn> <mn>2</mn> </msubsup> <mo>&rsqb;</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>.</mo> </mrow> </math>
CN201310272266.7A 2013-06-29 2013-06-29 Based on four rotor wing unmanned aerial vehicle attitude heading reference system calculation methods of Gradient Descent Expired - Fee Related CN103363992B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310272266.7A CN103363992B (en) 2013-06-29 2013-06-29 Based on four rotor wing unmanned aerial vehicle attitude heading reference system calculation methods of Gradient Descent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310272266.7A CN103363992B (en) 2013-06-29 2013-06-29 Based on four rotor wing unmanned aerial vehicle attitude heading reference system calculation methods of Gradient Descent

Publications (2)

Publication Number Publication Date
CN103363992A CN103363992A (en) 2013-10-23
CN103363992B true CN103363992B (en) 2015-12-09

Family

ID=49365866

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310272266.7A Expired - Fee Related CN103363992B (en) 2013-06-29 2013-06-29 Based on four rotor wing unmanned aerial vehicle attitude heading reference system calculation methods of Gradient Descent

Country Status (1)

Country Link
CN (1) CN103363992B (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103630139B (en) * 2013-12-17 2015-12-02 哈尔滨工程大学 A kind of full attitude determination method of underwater carrier measured based on earth magnetism gradient tensor
CN103728880B (en) * 2013-12-31 2016-04-06 北京中宇新泰科技发展有限公司 A kind of parachuting formula small-sized unmanned aircraft stable control method and system
CN104535065B (en) * 2014-12-23 2017-09-01 广州快飞计算机科技有限公司 Course generation method of the unmanned plane during flying device under complicated magnetic field environment
CN106444809B (en) * 2016-10-12 2024-04-16 湖南绿野航空科技有限公司 Unmanned aerial vehicle flight controller
CN106569500B (en) * 2016-10-12 2019-06-14 湖南绿野航空科技有限公司 A kind of UAV Flight Control device attitude algorithm and control method
CN106324285A (en) * 2016-11-11 2017-01-11 苏州工讯科技有限公司 Testing device and method for smooth level in industrial product logistic process
CN108507567B (en) * 2017-02-24 2020-07-10 阿里巴巴(中国)有限公司 Attitude quaternion determining method and device and user orientation determining method and device
CN109323714B (en) * 2017-08-01 2021-05-14 广州极飞科技股份有限公司 Data validity detection method and device
CN109782194B (en) * 2017-11-10 2021-06-04 阿里巴巴(中国)有限公司 Method and device for detecting magnetic field quality
CN108037658A (en) * 2017-11-15 2018-05-15 东莞市松迪智能机器人科技有限公司 A kind of method for correcting error of the robot kinematic error based on navigation system
CN108871319B (en) * 2018-04-26 2022-05-17 李志� Attitude calculation method based on earth gravity field and earth magnetic field sequential correction
CN109916395B (en) * 2019-04-04 2023-06-23 山东智翼航空科技有限公司 Gesture autonomous redundant combined navigation algorithm
CN110531613A (en) * 2019-09-05 2019-12-03 广东工业大学 Two axis unmanned aerial vehicle (UAV) control method, apparatus, equipment and computer readable storage medium
CN112204405A (en) * 2020-01-17 2021-01-08 深圳市大疆创新科技有限公司 Angular velocity measuring mechanism, method, device, movable platform and storage medium
CN111561924B (en) * 2020-05-21 2022-08-30 哈尔滨工业大学 Magnetic beacon correction method and positioning method based on rotating magnetic dipole
CN116300668B (en) * 2023-05-26 2023-08-08 北京航空航天大学杭州创新研究院 Layering anti-interference control method for four-rotor unmanned aerial vehicle aiming at rainfall interference

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101782391A (en) * 2009-06-22 2010-07-21 北京航空航天大学 Attitude estimation method of maneuvering acceleration-assisted extended Kalman filter (EKF) attitude and heading reference system (AHRS)
GB2490141A (en) * 2011-04-19 2012-10-24 Blue Bear Systems Res Ltd Unmanned air vehicle (UAV) having wings and tailerons hinged to a fuselage

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101782391A (en) * 2009-06-22 2010-07-21 北京航空航天大学 Attitude estimation method of maneuvering acceleration-assisted extended Kalman filter (EKF) attitude and heading reference system (AHRS)
GB2490141A (en) * 2011-04-19 2012-10-24 Blue Bear Systems Res Ltd Unmanned air vehicle (UAV) having wings and tailerons hinged to a fuselage

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
四旋翼无人机自主控制系统研究;张垚等;《Proceedings of the 31st Chinese Control Conference》;20120727;第4862-4867页 *
四旋翼无人飞行器设计与实验研究;刘伟;《中国学位论文全文数据库》;20130426;正文第4章第4.2节和4.3节以及图4.2 *

Also Published As

Publication number Publication date
CN103363992A (en) 2013-10-23

Similar Documents

Publication Publication Date Title
CN103363992B (en) Based on four rotor wing unmanned aerial vehicle attitude heading reference system calculation methods of Gradient Descent
CN103196445B (en) Based on the carrier posture measuring method of the earth magnetism supplementary inertial of matching technique
CN104374388B (en) Flight attitude determining method based on polarized light sensor
CN106979780B (en) A kind of unmanned vehicle real-time attitude measurement method
CN108225370B (en) Data fusion and calculation method of motion attitude sensor
CN107478223A (en) A kind of human body attitude calculation method based on quaternary number and Kalman filtering
CN108362288B (en) Polarized light SLAM method based on unscented Kalman filtering
CN102087110B (en) Miniature underwater moving vehicle autonomous attitude detecting device and method
CN102809377A (en) Aircraft inertia/pneumatic model integrated navigation method
CN202939489U (en) Multi-rotor autobalance flight controller
CN103712598B (en) Attitude determination method of small unmanned aerial vehicle
CN107063262A (en) A kind of complementary filter method resolved for UAV Attitude
CN112665574B (en) Underwater robot gesture acquisition method based on momentum gradient descent method
CN111189442A (en) Multi-source navigation information state prediction method of unmanned aerial vehicle based on CEPF
WO2018214226A1 (en) Unmanned vehicle real-time posture measurement method
CN105841698A (en) AUV rudder angle precise real-time measurement system without zero setting
Barczyk Nonlinear state estimation and modeling of a helicopter UAV
CN103557866A (en) Virtual gyroscope and algorithm based on geomagnetism technology
CN111207773A (en) Attitude unconstrained optimization solving method for bionic polarized light navigation
Du et al. A low-cost attitude estimation system for UAV application
Zhang et al. Research on UAV attitude data fusion algorithm based on quaternion gradient descent
Haotian et al. Accurate attitude estimation of HB2 standard model based on QNCF in hypersonic wind tunnel test
CN110286688B (en) Control method for underwater four-rotor unmanned aerial vehicle with mechanical arm
Chen et al. Study on information fusion algorithm for the miniature AHRS
Lin et al. Vehicle integrated navigation IMU mounting angles estimation method based on nonlinear optimization

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20151209

CF01 Termination of patent right due to non-payment of annual fee