CN103359917A - Preparation method of infrared chalcogenide glass lenses - Google Patents
Preparation method of infrared chalcogenide glass lenses Download PDFInfo
- Publication number
- CN103359917A CN103359917A CN2013102276454A CN201310227645A CN103359917A CN 103359917 A CN103359917 A CN 103359917A CN 2013102276454 A CN2013102276454 A CN 2013102276454A CN 201310227645 A CN201310227645 A CN 201310227645A CN 103359917 A CN103359917 A CN 103359917A
- Authority
- CN
- China
- Prior art keywords
- chalcogenide glass
- infrared
- chalcogenide
- preparation
- under
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000005387 chalcogenide glass Substances 0.000 title claims abstract description 111
- 238000002360 preparation method Methods 0.000 title claims description 15
- 239000000843 powder Substances 0.000 claims abstract description 24
- 238000000137 annealing Methods 0.000 claims abstract description 19
- 239000011521 glass Substances 0.000 claims abstract description 14
- 230000001681 protective effect Effects 0.000 claims abstract description 13
- 239000002245 particle Substances 0.000 claims abstract description 8
- 238000000498 ball milling Methods 0.000 claims abstract 2
- 238000004506 ultrasonic cleaning Methods 0.000 claims description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- 238000000227 grinding Methods 0.000 claims description 6
- 238000000748 compression moulding Methods 0.000 claims description 3
- 238000003825 pressing Methods 0.000 claims 2
- 229960000935 dehydrated alcohol Drugs 0.000 claims 1
- 238000010583 slow cooling Methods 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 21
- 238000000465 moulding Methods 0.000 abstract description 10
- 238000012546 transfer Methods 0.000 abstract description 6
- 230000004297 night vision Effects 0.000 abstract description 4
- 238000007873 sieving Methods 0.000 abstract 1
- 239000011669 selenium Substances 0.000 description 14
- 239000013078 crystal Substances 0.000 description 12
- 239000000463 material Substances 0.000 description 11
- PFNQVRZLDWYSCW-UHFFFAOYSA-N (fluoren-9-ylideneamino) n-naphthalen-1-ylcarbamate Chemical compound C12=CC=CC=C2C2=CC=CC=C2C1=NOC(=O)NC1=CC=CC2=CC=CC=C12 PFNQVRZLDWYSCW-UHFFFAOYSA-N 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 229910052711 selenium Inorganic materials 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 5
- 239000010453 quartz Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 229910052717 sulfur Inorganic materials 0.000 description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 239000003708 ampul Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 229910052732 germanium Inorganic materials 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 229910052714 tellurium Inorganic materials 0.000 description 2
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 2
- 238000001931 thermography Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- -1 arsenic selenide Chemical class 0.000 description 1
- CUGMJFZCCDSABL-UHFFFAOYSA-N arsenic(3+);trisulfide Chemical compound [S-2].[S-2].[S-2].[As+3].[As+3] CUGMJFZCCDSABL-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007516 diamond turning Methods 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229910052699 polonium Inorganic materials 0.000 description 1
- HZEBHPIOVYHPMT-UHFFFAOYSA-N polonium atom Chemical compound [Po] HZEBHPIOVYHPMT-UHFFFAOYSA-N 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Glass Compositions (AREA)
Abstract
本发明公开了一种红外硫系玻璃镜片的制备方法,包括以下步骤:1)将干净的块状硫系玻璃放入行星式球磨机中,球磨后过筛,得到粒径≤6.5μm的硫系玻璃粉;2)将硫系玻璃粉转移至模具内,模压后自然冷却至室温,退模,得到硫系玻璃镜片;3)将硫系玻璃镜片放入有保护气氛的精密退火炉中,保温后缓慢降温至80~100℃,最后关闭退火炉的电源,随炉冷却至室温,即得到均匀的硫系玻璃镜片。采用本方法制备的红外硫系玻璃镜片均匀性高,适用于制备各种红外透镜,尤其适用于制备车载、安防等红外夜视系统所需的各种镜片元件。
The invention discloses a method for preparing an infrared chalcogenide glass lens, which comprises the following steps: 1) putting clean block chalcogenide glass into a planetary ball mill, and sieving after ball milling to obtain chalcogenide glass with a particle size ≤ 6.5 μm Glass powder; 2) Transfer the chalcogenide glass powder into the mold, cool to room temperature naturally after molding, and then remove the mold to obtain the chalcogenide glass lens; 3) Put the chalcogenide glass lens into a precision annealing furnace with a protective atmosphere and keep it warm Then slowly lower the temperature to 80-100°C, and finally turn off the power of the annealing furnace, and cool down to room temperature with the furnace to obtain a uniform chalcogenide glass lens. The infrared chalcogenide glass lens prepared by the method has high uniformity, is suitable for preparing various infrared lenses, and is especially suitable for preparing various lens elements required by infrared night vision systems such as vehicles and security systems.
Description
技术领域technical field
本发明涉及一种玻璃镜片的制备方法,尤其是涉及一种红外硫系玻璃镜片的制备方法。The invention relates to a method for preparing a glass lens, in particular to a method for preparing an infrared chalcogenide glass lens.
背景技术Background technique
硫系玻璃是以元素周期表第VIA族元素中除氧和钋以外的硫、硒或碲元素化合而成或者硫、硒或碲元素与其他元素化合而成的玻璃。早在1870年,S.Sellack等人就已发现硫元素可以单独形成玻璃,并且发现硫化砷和硒化砷也能形成稳定的玻璃。但直到上世纪50年代,硫系玻璃才开始因其优异的透红外光学性能受到人们广泛的关注。1950年,美国的R.Frerichs等人对As2S3玻璃重新研究后推断这种光学材料可以用于红外系统中,从此,掀开了硫系玻璃研究热潮。Chalcogenide glass is a glass formed by combining sulfur, selenium or tellurium elements in Group VIA elements of the periodic table except oxygen and polonium, or a combination of sulfur, selenium or tellurium elements and other elements. As early as 1870, S. Sellack and others had discovered that sulfur could form glass alone, and found that arsenic sulfide and arsenic selenide could also form stable glass. However, it was not until the 1950s that chalcogenide glasses began to receive widespread attention due to their excellent infrared-transmitting optical properties. In 1950, R. Frerichs and others in the United States re-studied As 2 S 3 glass and concluded that this optical material could be used in infrared systems.
目前国内外商用硫系玻璃组成主要有Ge-As-Se、As-Se、Ge-Sb-Se、As-S等几类玻璃系统。国外硫系玻璃的生产厂商主要有美国的Amorphous Materials公司、德国的Vitron Gmbh公司和法国的Umicore公司,国内有宁波舜宇红外、北京国晶辉和湖北新华光等公司,另外宁波大学红外材料及器件实验室也具备批量提供中试产品的能力。At present, there are several types of glass systems such as Ge-As-Se, As-Se, Ge-Sb-Se, and As-S in commercial chalcogenide glasses at home and abroad. Foreign chalcogenide glass manufacturers mainly include Amorphous Materials in the United States, Vitron Gmbh in Germany, and Umicore in France. In China, there are companies such as Ningbo Sunny Infrared, Beijing Guojinghui, and Hubei Xinhuaguang. In addition, Ningbo University’s infrared materials and The device laboratory also has the ability to provide pilot products in batches.
作为一种新型的红外光学材料,硫系玻璃相比锗单晶和硒化锌(ZnSe)晶体具有以下优缺点:①就透过范围大小而言,Ge单晶最宽,其次是ZnSe晶体。②就折射率温度系数dn/dT而言,ZnSe最低,其次是硫系玻璃,最高为Ge单晶,硫系玻璃的dn/dT是Ge单晶材料的1/9~1/5,消热差性能明显占优势。③就资源利用和制造加工成本而言,硫系玻璃最占优势,主要是对Ge稀散资源消耗较低,且作为非晶态材料可以采用精密模压技术批量制造镜片,而ZnSe和Ge单晶往往需要单点金刚石车削工艺加工,其生产效率低,成本高。总体而言,硫系玻璃具有dn/dT系数较低、规模化制备和加工成本低、Ge资源消耗少等优势。Ge单晶材料目前依然是红外热像仪前端光学系统最常用的透镜材料。但在民用市场的快速增长导致低成本红外透镜元件需求急剧扩大的情况下,尤其是从车载、安防等民用夜视系统未来的发展看,硫系玻璃已成为在红外热像仪系统中取代或部分取代传统Ge单晶镜片的极佳候选材料。As a new type of infrared optical material, chalcogenide glass has the following advantages and disadvantages compared with germanium single crystal and zinc selenide (ZnSe) crystal: ① In terms of the transmission range, Ge single crystal is the widest, followed by ZnSe crystal. ② As far as the temperature coefficient of refractive index dn/dT is concerned, ZnSe is the lowest, followed by chalcogenide glass, and the highest is Ge single crystal. The dn/dT of chalcogenide glass is 1/9 to 1/5 of that of Ge single crystal material, and heat dissipation Poor performance clearly predominates. ③ In terms of resource utilization and manufacturing and processing costs, chalcogenide glass is the most dominant, mainly because the consumption of Ge sparse resources is low, and as an amorphous material, precision molding technology can be used to manufacture lenses in batches, while ZnSe and Ge single crystals often It requires single-point diamond turning process, which has low production efficiency and high cost. In general, chalcogenide glasses have the advantages of low dn/dT coefficient, low cost of large-scale preparation and processing, and less consumption of Ge resources. Ge single crystal material is still the most commonly used lens material for the front-end optical system of infrared thermal imaging cameras. However, under the circumstances that the rapid growth of the civilian market has led to a sharp increase in the demand for low-cost infrared lens components, especially from the perspective of the future development of civilian night vision systems such as vehicles and security, chalcogenide glass has become a substitute for or used in infrared thermal imaging camera systems. An excellent candidate material to partially replace traditional Ge single crystal lenses.
硫系玻璃镜片的制造主要包括硫系玻璃制备及加工。硫系玻璃制备由于其原料的特殊性,需要在无氧无水的气氛下进行。一般是将有硫系玻璃原料(如Ge、Sb或As和Se或S等)装入石英安瓿中,用真空泵抽真空至<10-3帕,然后用乙炔或氢氧焰将石英管熔封,接着将熔封好的石英安瓿放入摇摆炉中进行摇摆熔制,最后出炉进行水淬或空气淬冷,在退火后敲碎石英安瓿即可获得硫系玻璃样品。The manufacture of chalcogenide glass lenses mainly includes the preparation and processing of chalcogenide glass. The preparation of chalcogenide glass needs to be carried out in an oxygen-free and water-free atmosphere due to the particularity of its raw materials. Generally, chalcogenide glass raw materials (such as Ge, Sb or As and Se or S, etc.) are put into a quartz ampoule, vacuumed to <10 -3 Pa with a vacuum pump, and then the quartz tube is fused and sealed with acetylene or oxyhydrogen flame , and then put the sealed quartz ampoule into a swing furnace for swing melting, and finally take it out of the furnace for water quenching or air quenching. After annealing, smash the quartz ampoule to obtain a chalcogenide glass sample.
硫系玻璃镜片的加工有冷加工和精密模压成型两种。硫系玻璃冷加工方式与锗单晶和ZnSe晶体的加工基本一致。相比这些传统红外晶体材料,硫系玻璃的最大优势是可以进行精密模压成型。硫系玻璃的精密模压主要涉及精密模具的加工制作、模压分离膜的设计与制作、模压工艺参数以及模压后精密退火工艺等。The processing of chalcogenide glass lenses has two types: cold processing and precision molding. The cold processing method of chalcogenide glass is basically the same as that of germanium single crystal and ZnSe crystal. Compared with these traditional infrared crystal materials, the biggest advantage of chalcogenide glass is that it can be precision molded. The precision molding of chalcogenide glass mainly involves the processing and production of precision molds, the design and production of molded separation membranes, the parameters of molding processes, and the precision annealing process after molding, etc.
在上述技术中,制得硫系玻璃后对其进行切片、抛光成预制品,经过光学检测挑选出质量好(无内部条纹、结石、析晶等)的预制品,进行模压处理后,最终获得精密的红外光学镜片。在切割、抛光和挑选过程中,不仅需要耗费大量的人力和物力,而且还会造成大量玻璃料的资源浪费。另外,为了制备出高均匀性的红外硫系玻璃,针对上述的硫系玻璃制备过程还进行了诸多设备和工艺的改进。但是设备的改造和工艺技术的改进,过程复杂,都需要投入大量的人力和财力等资源,成本较高。有必要研究出工艺简单的低成本的高均匀性的硫系玻璃及镜片的制备方法。In the above technology, after the chalcogenide glass is prepared, it is sliced and polished into preforms, and the preforms with good quality (no internal stripes, stones, crystallization, etc.) are selected through optical inspection, and after molding treatment, the final product is obtained Sophisticated infrared optics. In the process of cutting, polishing and selecting, not only need to consume a lot of manpower and material resources, but also cause a lot of resource waste of glass frit. In addition, in order to prepare infrared chalcogenide glass with high uniformity, many equipment and process improvements have been made for the above-mentioned chalcogenide glass preparation process. However, the transformation of equipment and the improvement of process technology are complex processes, which require a large amount of human and financial resources, and the cost is relatively high. It is necessary to study the preparation method of chalcogenide glass and lens with simple process, low cost and high uniformity.
发明内容Contents of the invention
本发明所要解决的技术问题是,针对现有技术的不足,提供一种成本低、工艺简单的红外硫系玻璃镜片的制备方法,采用该方法制备得到的红外硫系玻璃镜片均匀性高,适用于制备各种红外透镜,尤其适用于制备车载、安防等红外夜视系统所需的各种镜片元件。The technical problem to be solved by the present invention is to provide a method for preparing infrared chalcogenide glass lenses with low cost and simple process in view of the deficiencies in the prior art. The infrared chalcogenide glass lenses prepared by this method have high uniformity and are suitable for It is suitable for the preparation of various infrared lenses, especially for the preparation of various lens elements required by infrared night vision systems such as vehicles and security systems.
本发明为解决上述技术问题所采用的技术方案为:一种红外硫系玻璃镜片的制备方法,包括以下步骤:The technical scheme adopted by the present invention to solve the above-mentioned technical problems is: a preparation method of infrared chalcogenide glass lens, comprising the following steps:
1)制备硫系玻璃粉:将干净的块状硫系玻璃放入行星式球磨机中,研磨体与块状硫系玻璃的重量比为5~8:1,在200~1000r/min的转速条件下球磨12~36h,然后过2000目筛,得到粒径≤6.5μm的硫系玻璃粉;1) Preparation of chalcogenide glass powder: put the clean block chalcogenide glass into a planetary ball mill, the weight ratio of the grinding body to the block chalcogenide glass is 5-8:1, at the speed of 200-1000r/min Ball mill for 12-36 hours, and then pass through a 2000-mesh sieve to obtain chalcogenide glass powder with a particle size of ≤6.5 μm;
2)模压成型:将上述得到的硫系玻璃粉转移至模具内,然后在350~450℃温度下,于保护气氛条件下以8~30MPa的机械压力对玻璃粉模压1~5h,然后自然冷却至室温,退模,得到硫系玻璃镜片;2) Compression molding: Transfer the above-obtained chalcogenide glass powder into a mold, then mold the glass powder at a temperature of 350-450 ° C and a mechanical pressure of 8-30 MPa for 1-5 hours under a protective atmosphere, and then cool naturally to room temperature, demoulding, to obtain the chalcogenide glass lens;
3)退火:将经过模压得到的硫系玻璃镜片,放入有保护气氛的精密退火炉中,在270~330℃温度下保温5~10h,然后以0.2~1.0℃/min的速率缓慢降温至80~100℃,最后关闭退火炉的电源,使硫系玻璃镜片随炉冷却至室温,即得到均匀的硫系玻璃镜片。3) Annealing: put the chalcogenide glass lens obtained by molding into a precision annealing furnace with a protective atmosphere, keep it at a temperature of 270-330°C for 5-10h, and then slowly cool it down at a rate of 0.2-1.0°C/min to 80 ~ 100 ℃, and finally turn off the power of the annealing furnace, so that the chalcogenide glass lens is cooled to room temperature with the furnace, and a uniform chalcogenide glass lens is obtained.
优选地,步骤1)中,所述的块状硫系玻璃为硫系玻璃边角料,使用前先将所述的硫系玻璃边角料浸入无水乙醇中,再在频率为20~50kHz条件下超声清洗1~3次,单次超声清洗时间为10~30min,然后在120~150℃温度下干燥30~60min,得到干净的硫系玻璃边角料。Preferably, in step 1), the bulk chalcogenide glass is a chalcogenide glass scrap, and before use, the chalcogenide glass scrap is immersed in absolute ethanol, and then ultrasonically cleaned at a frequency of 20-50kHz 1 to 3 times, the single ultrasonic cleaning time is 10 to 30 minutes, and then dried at a temperature of 120 to 150 ° C for 30 to 60 minutes to obtain clean chalcogenide glass scraps.
优选地,所述的块状硫系玻璃为块状Ge-Sb-Se类硫系玻璃。Preferably, the bulk chalcogenide glass is bulk Ge-Sb-Se-like chalcogenide glass.
与现有技术相比,本发明的优点如下:本发明通过控制硫系玻璃粉的粒径大小,结合适宜的模压成型和退火工艺,制得了无条纹、无缺陷的高均匀性的硫系玻璃镜片;在模压前利用行星式球磨机先制备硫系玻璃粉,因此制备硫系玻璃镜片时,不受硫系玻璃原料的形状、大小的限制,制备时对原料选择的灵活度大,同时本发明方法工艺简单,对原料的利用率可达100%,无原料浪费,成本低。本发明方法适用于制备各种红外透镜,尤其适用于制备车载、安防等红外夜视系统所需的各种镜片元件。Compared with the prior art, the advantages of the present invention are as follows: the present invention controls the particle size of the chalcogenide glass powder and combines suitable molding and annealing processes to produce a highly uniform chalcogenide glass without streaks and defects Lenses: chalcogenide glass powder is prepared by using a planetary ball mill before molding, so when preparing chalcogenide glass lenses, it is not limited by the shape and size of chalcogenide glass raw materials, and the flexibility of raw material selection is large during preparation. At the same time, the present invention The method has simple process, the utilization rate of raw materials can reach 100%, no waste of raw materials, and low cost. The method of the invention is suitable for preparing various infrared lenses, and is especially suitable for preparing various lens elements required by infrared night vision systems such as vehicle-mounted and security systems.
附图说明Description of drawings
图1为本发明方法制备红外硫系玻璃镜片的模压成型示意图。Fig. 1 is a schematic diagram of compression molding for preparing infrared chalcogenide glass lenses by the method of the present invention.
具体实施方式Detailed ways
以下结合实施例对本发明作进一步详细描述。Below in conjunction with embodiment the present invention is described in further detail.
实施例1:首先将Ge28Sb12Se60硫系玻璃边角料浸入无水乙醇中,再在频率为30kHz条件下超声清洗3次,单次超声清洗时间为20min,然后在140℃温度下干燥60min,得到干净的Ge28Sb12Se60硫系玻璃边角料;然后将上述干净的边角料放入行星式球磨机中,研磨体与块状硫系玻璃的重量比为6:1,在400r/min的转速条件下球磨16h,然后过2000目筛,得到粒径≤6.5μm的硫系玻璃粉;将硫系玻璃粉转移至圆筒形模具中,然后在380℃温度下,于保护气氛条件下以12MPa的机械压力对玻璃粉模压1.5h,然后自然冷却至室温,退模,得到硫系玻璃镜片;将硫系玻璃镜片放入有保护气氛的精密退火炉中,在300℃温度下保温6h,然后以0.3℃/min的速率缓慢降温至80℃,最后关闭退火炉的电源,使硫系玻璃镜片随炉冷却至室温,即得到均匀的硫系玻璃镜片。Example 1: First, immerse the scraps of Ge 28 Sb 12 Se 60 chalcogenide glass in absolute ethanol, and then ultrasonically clean them three times at a frequency of 30 kHz. The time for a single ultrasonic cleaning is 20 minutes, and then dry at 140°C for 60 minutes. , to obtain clean Ge 28 Sb 12 Se 60 chalcogenide glass scraps; then put the above-mentioned clean scraps into a planetary ball mill, the weight ratio of the grinding body to the block chalcogenide glass is 6:1, at a speed of 400r/min Ball mill for 16 hours under the same conditions, and then pass through a 2000-mesh sieve to obtain chalcogenide glass powder with a particle size ≤ 6.5 μm; transfer the chalcogenide glass powder to a cylindrical mold, and then at 380 ° C, under protective atmosphere conditions, under 12 MPa The mechanical pressure of the glass powder is molded for 1.5h, and then naturally cooled to room temperature, and the chalcogenide glass lens is obtained; the chalcogenide glass lens is put into a precision annealing furnace with a protective atmosphere, and kept at 300°C for 6h, and then Slowly lower the temperature to 80°C at a rate of 0.3°C/min, and finally turn off the power of the annealing furnace, and let the chalcogenide glass lens cool down to room temperature with the furnace, and obtain a uniform chalcogenide glass lens.
实施例2:首先将Ge20Sb15Se65硫系玻璃边角料浸入无水乙醇中,再在频率为30kHz条件下超声清洗3次,单次超声清洗时间为20min,然后在130℃温度下干燥50min,得到干净的Ge20Sb15Se65硫系玻璃边角料;然后将上述干净的边角料放入行星式球磨机中,研磨体与块状硫系玻璃的重量比为7:1,在600r/min的转速条件下球磨20h,然后过2000目筛,得到粒径≤6.5μm的硫系玻璃粉;将硫系玻璃粉转移至圆筒形模具中,然后在390℃温度下,于保护气氛条件下以10MPa的机械压力对玻璃粉模压2h,然后自然冷却至室温,退模,得到硫系玻璃镜片;将硫系玻璃镜片放入有保护气氛的精密退火炉中,在280℃温度下保温8h,然后以0.5℃/min的速率缓慢降温至95℃,最后关闭退火炉的电源,使硫系玻璃镜片随炉冷却至室温,即得到均匀的硫系玻璃镜片。Example 2: First, immerse the scraps of Ge 20 Sb 15 Se 65 chalcogenide glass in absolute ethanol, and then ultrasonically clean them three times at a frequency of 30 kHz. The time for a single ultrasonic cleaning is 20 minutes, and then dry at 130°C for 50 minutes. , to obtain clean Ge 20 Sb 15 Se 65 chalcogenide glass scraps; then put the above-mentioned clean scraps into a planetary ball mill, the weight ratio of the grinding body to the block chalcogenide glass is 7:1, at a speed of 600r/min Ball mill for 20 hours under the same conditions, and then pass through a 2000-mesh sieve to obtain chalcogenide glass powder with a particle size of ≤6.5 μm; transfer the chalcogenide glass powder to a cylindrical mold, and then heat it at 390°C under a protective atmosphere at 10MPa The mechanical pressure of the glass powder is molded for 2 hours, then naturally cooled to room temperature, and the mold is removed to obtain a chalcogenide glass lens; the chalcogenide glass lens is placed in a precision annealing furnace with a protective atmosphere, kept at 280 ° C for 8 hours, and then Slowly lower the temperature to 95°C at a rate of 0.5°C/min, and finally turn off the power of the annealing furnace to allow the chalcogenide glass lens to cool down to room temperature with the furnace, and obtain a uniform chalcogenide glass lens.
实施例3:首先将Ge30Sb10Se60硫系玻璃边角料浸入无水乙醇中,再在频率为30kHz条件下超声清洗3次,单次超声清洗时间为20min,然后在140℃温度下干燥60min,得到干净的Ge30Sb10Se60硫系玻璃边角料;然后将上述干净的边角料放入行星式球磨机中,研磨体与块状硫系玻璃的重量比为7.5:1,在900r/min的转速条件下球磨12h,然后过2000目筛,得到粒径≤6.5μm的硫系玻璃粉;将硫系玻璃粉转移至非球面型模具中,然后在380℃温度下,于保护气氛条件下以14MPa的机械压力对玻璃粉模压5h,然后自然冷却至室温,退模,得到硫系玻璃镜片;将硫系玻璃镜片放入有保护气氛的精密退火炉中,在300℃温度下保温6h,然后以0.7℃/min的速率缓慢降温至100℃,最后关闭退火炉的电源,使硫系玻璃镜片随炉冷却至室温,即得到均匀的硫系玻璃镜片。Example 3: First, immerse the scraps of Ge 30 Sb 10 Se 60 chalcogenide glass in absolute ethanol, and then ultrasonically clean them three times at a frequency of 30 kHz. The time for a single ultrasonic cleaning is 20 minutes, and then dry at 140°C for 60 minutes. , to obtain clean Ge 30 Sb 10 Se 60 chalcogenide glass scraps; then put the above-mentioned clean scraps into a planetary ball mill, the weight ratio of the grinding body to the block chalcogenide glass is 7.5:1, at a speed of 900r/min Ball mill for 12 hours under the same conditions, and then pass through a 2000-mesh sieve to obtain chalcogenide glass powder with a particle size of ≤6.5 μm; transfer the chalcogenide glass powder to an aspherical mold, and then at 380°C, under protective atmosphere conditions, under 14MPa The mechanical pressure of the glass powder is molded for 5 hours, then naturally cooled to room temperature, and the mold is removed to obtain a chalcogenide glass lens; the chalcogenide glass lens is placed in a precision annealing furnace with a protective atmosphere, and kept at 300 ° C for 6 hours, and then Slowly cool down to 100°C at a rate of 0.7°C/min, and finally turn off the power of the annealing furnace, and let the chalcogenide glass lens cool down to room temperature with the furnace, and then obtain a uniform chalcogenide glass lens.
实施例4:首先将Ge15Sb20Se65硫系玻璃边角料浸入无水乙醇中,再在频率为30kHz条件下超声清洗3次,单次超声清洗时间为20min,然后在130℃温度下干燥50min,得到干净的Ge15Sb20Se65硫系玻璃边角料;然后将上述干净的边角料放入行星式球磨机中,研磨体与块状硫系玻璃的重量比为8:1,在1000r/min的转速条件下球磨33h,然后过2000目筛,得到粒径≤6.5μm的硫系玻璃粉;将硫系玻璃粉转移至非球面型模具中,然后在410℃温度下,于保护气氛条件下以30MPa的机械压力对玻璃粉模压1h,然后自然冷却至室温,退模,得到硫系玻璃镜片;将硫系玻璃镜片放入有保护气氛的精密退火炉中,在320℃温度下保温9h,然后以1.0℃/min的速率缓慢降温至80℃,最后关闭退火炉的电源,使硫系玻璃镜片随炉冷却至室温,即得到均匀的硫系玻璃镜片。Example 4: First, immerse the scraps of Ge 15 Sb 20 Se 65 chalcogenide glass in absolute ethanol, and then ultrasonically clean them three times at a frequency of 30 kHz. The time for a single ultrasonic cleaning is 20 minutes, and then dry at 130°C for 50 minutes. , to obtain clean Ge 15 Sb 20 Se 65 chalcogenide glass scraps; then put the above-mentioned clean scraps into a planetary ball mill, the weight ratio of the grinding body to the block chalcogenide glass is 8:1, at a speed of 1000r/min Ball mill for 33 hours under the same conditions, and then pass through a 2000-mesh sieve to obtain chalcogenide glass powder with a particle size of ≤6.5 μm; transfer the chalcogenide glass powder to an aspherical mold, and then at 410°C, under protective atmosphere conditions, under 30MPa The mechanical pressure of the glass powder is molded for 1 hour, then naturally cooled to room temperature, and the mold is removed to obtain a chalcogenide glass lens; the chalcogenide glass lens is placed in a precision annealing furnace with a protective atmosphere, and kept at 320 ° C for 9 hours, and then Slowly lower the temperature to 80°C at a rate of 1.0°C/min, and finally turn off the power of the annealing furnace to allow the chalcogenide glass lens to cool down to room temperature along with the furnace to obtain a uniform chalcogenide glass lens.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013102276454A CN103359917A (en) | 2013-06-07 | 2013-06-07 | Preparation method of infrared chalcogenide glass lenses |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013102276454A CN103359917A (en) | 2013-06-07 | 2013-06-07 | Preparation method of infrared chalcogenide glass lenses |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103359917A true CN103359917A (en) | 2013-10-23 |
Family
ID=49362294
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2013102276454A Pending CN103359917A (en) | 2013-06-07 | 2013-06-07 | Preparation method of infrared chalcogenide glass lenses |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103359917A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109336379A (en) * | 2018-11-30 | 2019-02-15 | 湖北新华光信息材料有限公司 | A kind of chalcogenide glass waste residue reuse method and gained glass |
CN114956554A (en) * | 2022-04-21 | 2022-08-30 | 宁波大学 | Preparation method for improving mechanical strength of chalcogenide glass and chalcogenide glass |
JP7533443B2 (en) | 2019-03-20 | 2024-08-14 | Agc株式会社 | Method for producing chalcogenide glass |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01313339A (en) * | 1988-06-10 | 1989-12-18 | Kubota Ltd | Mold for hot press molding of glass powder |
JPH05279062A (en) * | 1992-04-02 | 1993-10-26 | Matsushita Electric Ind Co Ltd | Method for molding glass lens |
CN101117264A (en) * | 2007-06-29 | 2008-02-06 | 上海晶采建材厂 | Process for making glass mosaic |
CN101293738A (en) * | 2008-05-12 | 2008-10-29 | 中国科学院上海硅酸盐研究所 | A kind of infrared transmission glass material and preparation method thereof |
-
2013
- 2013-06-07 CN CN2013102276454A patent/CN103359917A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01313339A (en) * | 1988-06-10 | 1989-12-18 | Kubota Ltd | Mold for hot press molding of glass powder |
JPH05279062A (en) * | 1992-04-02 | 1993-10-26 | Matsushita Electric Ind Co Ltd | Method for molding glass lens |
CN101117264A (en) * | 2007-06-29 | 2008-02-06 | 上海晶采建材厂 | Process for making glass mosaic |
CN101293738A (en) * | 2008-05-12 | 2008-10-29 | 中国科学院上海硅酸盐研究所 | A kind of infrared transmission glass material and preparation method thereof |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109336379A (en) * | 2018-11-30 | 2019-02-15 | 湖北新华光信息材料有限公司 | A kind of chalcogenide glass waste residue reuse method and gained glass |
CN109336379B (en) * | 2018-11-30 | 2021-10-01 | 湖北新华光信息材料有限公司 | Sulfur glass waste residue recycling method and obtained glass |
JP7533443B2 (en) | 2019-03-20 | 2024-08-14 | Agc株式会社 | Method for producing chalcogenide glass |
CN114956554A (en) * | 2022-04-21 | 2022-08-30 | 宁波大学 | Preparation method for improving mechanical strength of chalcogenide glass and chalcogenide glass |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103359917A (en) | Preparation method of infrared chalcogenide glass lenses | |
CN107162429B (en) | A kind of infrared chalcogenide glass ceramic of graded index and preparation method thereof | |
CN101935208A (en) | Rare earth aluminate single-phase or complex-phase nanocrystalline transparent ceramic material and preparation method thereof | |
CN102617038B (en) | A method for preparing glass-ceramics by directly sintering potassium feldspar ore as raw material | |
CN102603273B (en) | Preparation method of high-purity sintered alumina for monocrystal sapphire growth | |
CN106637105A (en) | Production process of chalcogenide glass or phase change storage material germanium arsenic selenium tellurium target material | |
CN107056016A (en) | Chalcogenide glass and preparation method thereof and device | |
CN110698042A (en) | A kind of hot pressing molding preparation method of chalcogenide glass microlenses | |
CN102699329B (en) | Process for manufacturing large-sized molybdenum rods | |
CN108689590A (en) | The method of chalcogenide glass precision moulded formation | |
CN102051669A (en) | Device for zone-melting directional solidification of laser leviation and directional solidification method | |
CN107651858A (en) | A kind of Nano diamond with NV luminescence of color centers/tellurium germanate compound glass and preparation method | |
CN102989856B (en) | Method for molding large variable-wall-thickness pure molybdenum crucible | |
CN105502936B (en) | The preparation method of large scale chalcogenide infrared glass is prepared based on salt bath quenching method | |
CN103864297A (en) | Intermediate infrared optical glass for fine molding and molding | |
CN105419732A (en) | Method for preparing ternary nitric acid molten salt phase change heat storage material | |
CN100549216C (en) | Crystal qualitative SiO 2-Al 2O 3The preparation method of mixed oxide deposition material | |
CN101148319A (en) | A preparation method for thermocompression molding of sulfur-halogen glass-ceramics infrared optical elements | |
CN103833229B (en) | Green Glass Green glass bottles and jars only manufactures the method for heat insulation-type multicellular glass | |
CN116117138B (en) | Processing and forming method of bismuth telluride thermoelectric material | |
CN109160724A (en) | The preparation method of quartz stone roller | |
CN206335760U (en) | A kind of equipment produced for toilet seat | |
CN101342785A (en) | Method for preparing hollow hot melt nonwoven cloth force fit plate of polypropylene | |
CN103408225A (en) | Borosilicate foam glass applied to artificial floating island | |
CN103695998A (en) | Kyropoulos furnace thermal field system with low heat loss |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20131023 |