CN103349868A - 纳米金属复合滤料及其生产工艺 - Google Patents

纳米金属复合滤料及其生产工艺 Download PDF

Info

Publication number
CN103349868A
CN103349868A CN2013102955722A CN201310295572A CN103349868A CN 103349868 A CN103349868 A CN 103349868A CN 2013102955722 A CN2013102955722 A CN 2013102955722A CN 201310295572 A CN201310295572 A CN 201310295572A CN 103349868 A CN103349868 A CN 103349868A
Authority
CN
China
Prior art keywords
kdf
zeolite powder
filter material
weight
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2013102955722A
Other languages
English (en)
Inventor
周先富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAIZHOU SEN QUAN WATER TREATMENT TECHNOLOGY Co Ltd
Original Assignee
TAIZHOU SEN QUAN WATER TREATMENT TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAIZHOU SEN QUAN WATER TREATMENT TECHNOLOGY Co Ltd filed Critical TAIZHOU SEN QUAN WATER TREATMENT TECHNOLOGY Co Ltd
Priority to CN2013102955722A priority Critical patent/CN103349868A/zh
Publication of CN103349868A publication Critical patent/CN103349868A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

纳米金属复合滤料,包括海藻泥、活性炭、沸石粉、KDF、E33,各组分的重量百分比为海藻泥15~60%,活性炭15~60%,沸石粉5~20%,KDF5~20%,E3310~40%,各组分总和为100%。所述海藻泥、活性炭、沸石粉、KDF、E33的重量百分比为海藻泥30%,活性炭30%,沸石粉10%,KDF10%,E3320%。纳米金属复合滤料的生产工艺,包括如下步骤:(1)将按比例配置的活性炭、KDF和E33混合磨碾;(2)将海藻泥与沸石粉混合固化;(3)将步骤(1)和(2)中获得的两种滤料搅拌复合;(4)在步骤(3)获得的滤料中加入高纯水,滤料和高纯水的重量比例为:20:1~4;(5)高温烧制。本发明的吸附能力强,过滤效果好,安全可靠,实用性好。

Description

纳米金属复合滤料及其生产工艺
技术领域
本发明属于滤料技术领域,具体涉及一种纳米金属复合滤料及其生产工艺。
背景技术
在纯水制备和精密过滤的后处理工艺中,滤料是最关键的部分,滤料吸附能力的强弱直接关系到水过滤的效果,目前市场上的滤料大多为活性炭或者KDF或E33滤料,这些滤料的吸附能力不能应付日益严重的水污染。
发明内容
为了克服现有技术中存在的上述不足之处,本发明的目的在于提供一种吸附能力强,过滤效果好,安全可靠,实用性好的纳米金属复合滤料及其生产工艺。
为了达到上述之目的,本发明采用如下具体技术方案:
纳米金属复合滤料,包括海藻泥、活性炭、沸石粉、KDF、E33,各组分的重量百分比为海藻泥15~60%,活性炭15~60%,沸石粉5~20%,KDF 5~20%,E33 10~40%,各组分总和为100%。
进一步,所述海藻泥、活性炭、沸石粉、KDF、E33的重量百分比为海藻泥30%,活性炭30%,沸石粉10% ,KDF 10%,E33 20%。
纳米金属复合滤料的生产工艺,包括如下步骤,
(1)将按比例配置的活性炭、KDF和E33混合磨碾;
(2)将海藻泥与沸石粉混合固化;
(3)将步骤(1)和(2)中获得的两种滤料搅拌复合;
(4)在步骤(3)获得的滤料中加入高纯水,滤料和高纯水的重量比例为:20:1~4;
(5)高温烧制。
与现有的技术相比,本发明具有以下突出优点和效果:
本发明的吸附能力强,过滤效果好,安全可靠,实用性好。
具体实施方式
纳米金属复合滤料,包括海藻泥、活性炭、沸石粉、KDF、E33,各组分的重量百分比为海藻泥15~60%,活性炭15~60%,沸石粉5~20%,KDF 5~20%,E33 10~40%,各组分总和为100%,本实施例中,取海藻泥3t、活性炭3t、沸石粉1t、KDF1t、E33 2t。
纳米金属复合滤料的生产工艺,包括如下步骤,
(1)将按比例配置(取活性炭3t、、KDF1t、E33 2t)的活性炭、KDF和E33混合磨碾,;
(2)取海藻泥3t、沸石粉1t,将海藻泥与沸石粉混合固化,;
(3)将步骤(1)和(2)中获得的两种滤料搅拌复合;
(4)在步骤(3)获得的滤料中加入高纯水,滤料和高纯水的重量比例为:20:1~4(本实施例中,该比例为10:1);
(5)高温烧制。
海藻泥是一种滤料成型的载体,没有任何的污染,又具有吸附性强的特征,有一定的去污净化功能。
活性炭是一种黑色粉状,粒状或丸状的无定形具有多孔的碳,主要成分为碳,还含少量氧、氢、硫、氮、氯。具有较大的表面积(500~1000米2/克),有很强的吸附性能,能在它的表面上吸附气体、液体或胶态固体;对于气体、液体,吸附物质的质量可接近于活性炭本身的质量。其吸附作用具有选择性,非极性物质比极性物质更易于吸附。在同一系列物质中,沸点越高的物质越容易被吸附,压强越大温度越低浓度越大,吸附量越大。反之,减压,升温有利于气体的解吸。常用于气体的吸附、分离和提纯,溶剂的回收,糖液、油脂、甘油、药物的脱色剂,饮用水及冰箱的除臭剂,防毒面具中的滤毒剂,还可用作催化剂或金属盐催化剂的载体。
沸石具有吸附性、离子交换性、催化和耐酸耐热等性能,因此被广泛用作吸附剂、离子交换剂和催化剂,也可用于气体的干燥、净化和污水处理等方面。
KDF:学名为高纯度铜锌合金,通过电化学氧化-还原(电子转移)进行水处理工作,对抑制细菌滋生、去除余氯、重金属、抑菌等有卓著效果。
E33学名是®氧化铁。是一个专有的颗粒氧化铁研制而成,主要以铁基氧化加其他元素经化学反应而成,由德国拜耳公司生产研制,专为去除饮用水中的砷及其他重金属研发,大量实验和国外运用证明Bayoxide®E33具有彻底吸附砷、锑、镉、铬酸盐、铅、钼、钒等重金属,却使用寿命超长。其去除重金属过程是纯物理吸附水中重金属,吸附饱和后,不能再生,作为废弃物处理,不污染环境。
最后应说明的是:以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (3)

1.纳米金属复合滤料,其特征在于:包括海藻泥、活性炭、沸石粉、KDF、E33,各组分的重量百分比为海藻泥15~60%,活性炭15~60%,沸石粉5~20%,KDF 5~20%,E33 10~40%,各组分总和为100%。
2.根据权利要求1所述的纳米金属复合滤料,其特征在于:所述海藻泥、活性炭、沸石粉、KDF、E33的重量百分比为海藻泥30%,活性炭30%,沸石粉10% ,KDF 10%,E33 20%。
3.权利要求1所述的纳米金属复合滤料的生产工艺,其特征在于:包括如下步骤,
(1)将按比例配置的活性炭、KDF和E33混合磨碾;
(2)将海藻泥与沸石粉混合固化;
(3)将步骤(1)和(2)中获得的两种滤料搅拌复合;
(4)在步骤(3)获得的滤料中加入高纯水,滤料和高纯水的重量比例为:20:1~4;
(5)高温烧制。
CN2013102955722A 2013-07-13 2013-07-13 纳米金属复合滤料及其生产工艺 Pending CN103349868A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2013102955722A CN103349868A (zh) 2013-07-13 2013-07-13 纳米金属复合滤料及其生产工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2013102955722A CN103349868A (zh) 2013-07-13 2013-07-13 纳米金属复合滤料及其生产工艺

Publications (1)

Publication Number Publication Date
CN103349868A true CN103349868A (zh) 2013-10-16

Family

ID=49306337

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2013102955722A Pending CN103349868A (zh) 2013-07-13 2013-07-13 纳米金属复合滤料及其生产工艺

Country Status (1)

Country Link
CN (1) CN103349868A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104474781A (zh) * 2014-11-14 2015-04-01 苏州富奇诺水治理设备有限公司 一种纳米复合滤料的制备方法
CN105776408A (zh) * 2014-11-14 2016-07-20 蔡留凤 一种可杀菌、除去水中重金属的纳米复合滤料的制备方法
CN107540131A (zh) * 2017-10-23 2018-01-05 江苏华强新能源科技有限公司 一种高效燃气轮机进气用耐腐蚀滤芯的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1981909A (zh) * 2005-12-14 2007-06-20 菅康庄 一种流体净化介质及其制备方法
CN101596447A (zh) * 2008-06-03 2009-12-09 周奇迪 用于去除水中n-亚硝基二甲胺的过滤介质及其制备方法
CN101905103A (zh) * 2010-09-11 2010-12-08 太原海力丰科技发展有限公司 高效饮水除砷氟复合微孔滤芯的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1981909A (zh) * 2005-12-14 2007-06-20 菅康庄 一种流体净化介质及其制备方法
CN101596447A (zh) * 2008-06-03 2009-12-09 周奇迪 用于去除水中n-亚硝基二甲胺的过滤介质及其制备方法
CN101905103A (zh) * 2010-09-11 2010-12-08 太原海力丰科技发展有限公司 高效饮水除砷氟复合微孔滤芯的制备方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105903266A (zh) * 2014-11-14 2016-08-31 蔡留凤 可除去水中重金属并可杀菌的纳米复合滤料
CN104474781A (zh) * 2014-11-14 2015-04-01 苏州富奇诺水治理设备有限公司 一种纳米复合滤料的制备方法
CN105797482A (zh) * 2014-11-14 2016-07-27 蔡留凤 一种可杀菌、除去水中重金属的纳米复合滤料
CN104474781B (zh) * 2014-11-14 2016-08-17 山东星美新材料股份有限公司 一种纳米复合滤料的制备方法
CN105903269A (zh) * 2014-11-14 2016-08-31 蔡留凤 可除去水中重金属并可杀菌的纳米复合滤料的制备方法
CN105903268A (zh) * 2014-11-14 2016-08-31 蔡留凤 可除去水中重金属的纳米复合滤料的制备方法
CN105776408A (zh) * 2014-11-14 2016-07-20 蔡留凤 一种可杀菌、除去水中重金属的纳米复合滤料的制备方法
CN105903267A (zh) * 2014-11-14 2016-08-31 蔡留凤 一种可除去水中重金属的纳米复合滤料
CN105903269B (zh) * 2014-11-14 2017-12-22 上海秉丰生物科技有限公司 可除去水中重金属并可杀菌的纳米复合滤料的制备方法
CN106390592A (zh) * 2014-11-14 2017-02-15 蔡留凤 可杀菌、除去水中重金属的纳米复合滤料
CN105923687A (zh) * 2014-11-14 2016-09-07 蔡留凤 可除去水中重金属的纳米复合滤料
CN105903266B (zh) * 2014-11-14 2018-01-02 济南沃特佳环境技术股份有限公司 可除去水中重金属并可杀菌的纳米复合滤料
CN105903268B (zh) * 2014-11-14 2018-01-09 朱海燕 可除去水中重金属的纳米复合滤料的制备方法
CN107540131A (zh) * 2017-10-23 2018-01-05 江苏华强新能源科技有限公司 一种高效燃气轮机进气用耐腐蚀滤芯的制备方法

Similar Documents

Publication Publication Date Title
Yu et al. Recent progress on metal-organic framework-derived porous carbon and its composite for pollutant adsorption from liquid phase
Peng et al. Removal of chromium from wastewater by membrane filtration, chemical precipitation, ion exchange, adsorption electrocoagulation, electrochemical reduction, electrodialysis, electrodeionization, photocatalysis and nanotechnology: a review
Wang et al. Nanomaterials as sorbents to remove heavy metal ions in wastewater treatment
Zhao et al. Efficient removal of both antimonite (Sb (III)) and antimonate (Sb (V)) from environmental water using titanate nanotubes and nanoparticles
Hussain et al. Removal of heavy metals from wastewater by adsorption
Li et al. Facile modification of activated carbon with highly dispersed nano-sized α-Fe2O3 for enhanced removal of hexavalent chromium from aqueous solutions
Yang et al. Removal of lead from aqueous solutions by ferric activated sludge-based adsorbent derived from biological sludge
Ruthiraan et al. An overview of magnetic material: preparation and adsorption removal of heavy metals from wastewater
Qu et al. Two-step ball milling-assisted synthesis of N-doped biochar loaded with ferrous sulfide for enhanced adsorptive removal of Cr (Ⅵ) and tetracycline from water
Agasti Decontamination of heavy metal ions from water by composites prepared from waste
Wang et al. Red mud derived facile hydrothermal synthesis of hierarchical porous α-Fe2O3 microspheres as efficient adsorbents for removal of Congo red
Liang et al. Effective removal of carbamazepine and diclofenac by CuO/Cu 2 O/Cu-biochar composite with different adsorption mechanisms
CN103007887A (zh) 碳纳米管负载多级纳米四氧化三铁吸附剂及其制备方法与应用
Nguyen et al. Paper waste sludge derived-hydrochar modified by iron (III) chloride for effective removal of Cr (VI) from aqueous solution: Kinetic and isotherm studies
Zhao et al. Removal of organic dye by biomass-based iron carbide composite with an improved stability and efficiency
Chen et al. Concurrent adsorption and reduction of chromium (VI) to chromium (III) using nitrogen-doped porous carbon adsorbent derived from loofah sponge
CN111871361B (zh) 环境修复材料及其制备方法和应用
Chen et al. Highly efficient and selective cesium recovery from natural brine resources using mesoporous Prussian blue analogs synthesized by ionic liquid-assisted strategy
Ren et al. Extraction and preparation of metal organic frameworks from secondary aluminum ash for removal mechanism study of fluoride in wastewater
CN103349868A (zh) 纳米金属复合滤料及其生产工艺
Yang et al. Nitrogen-functionalized bone chars with developed surface area for efficient adsorption of multiple aquatic pollutants
Zhang et al. MoxPy nanoparticles supported on mesh structural carbon from biomass for rapid selective dyes adsorption
Yan et al. Simultaneous oxidation of As (III) and reduction of Cr (VI) by NiS-CdS@ biochar through efficient oxalate activation: The key role of enhanced generation of reactive oxygen species
El Hefnawy et al. Effective removal of Pb (II), Cd (II) and Zn (II) from aqueous solution by a novel hyper cross-linked nanometer-sized chelating resin
Thomas et al. Application of graphene and graphene compounds for environmental remediation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20131016