CN103344548A - System for testing stray current corrosion of buried steel pipeline under function of tensile stress - Google Patents
System for testing stray current corrosion of buried steel pipeline under function of tensile stress Download PDFInfo
- Publication number
- CN103344548A CN103344548A CN2013102956142A CN201310295614A CN103344548A CN 103344548 A CN103344548 A CN 103344548A CN 2013102956142 A CN2013102956142 A CN 2013102956142A CN 201310295614 A CN201310295614 A CN 201310295614A CN 103344548 A CN103344548 A CN 103344548A
- Authority
- CN
- China
- Prior art keywords
- sample
- stray current
- corrosion
- pull bar
- test system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000007797 corrosion Effects 0.000 title claims abstract description 45
- 238000005260 corrosion Methods 0.000 title claims abstract description 45
- 238000012360 testing method Methods 0.000 title claims abstract description 37
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 17
- 239000010959 steel Substances 0.000 title claims abstract description 17
- 239000002689 soil Substances 0.000 claims abstract description 33
- 238000004088 simulation Methods 0.000 claims abstract description 18
- 238000004210 cathodic protection Methods 0.000 claims abstract description 17
- 238000000840 electrochemical analysis Methods 0.000 claims abstract description 8
- 239000000523 sample Substances 0.000 claims description 53
- 230000005284 excitation Effects 0.000 claims description 7
- 239000011810 insulating material Substances 0.000 claims 1
- 239000007788 liquid Substances 0.000 claims 1
- 238000005086 pumping Methods 0.000 claims 1
- 238000002474 experimental method Methods 0.000 abstract description 13
- 239000002184 metal Substances 0.000 abstract description 5
- 229910052751 metal Inorganic materials 0.000 abstract description 5
- 239000000463 material Substances 0.000 abstract description 4
- 238000000034 method Methods 0.000 description 6
- 238000011160 research Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
Images
Landscapes
- Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
Abstract
一种拉伸应力作用下埋地钢制管道杂散电流腐蚀试验系统,属于材料腐蚀与防护领域。该试验系统包括应力加载试验系统、土壤环境模拟系统、杂散电流模拟系统、阴极保护系统、电化学测试系统。应力加载试验系统产生试样试验所需压力,土壤环境模拟系统模拟埋地金属所处的土壤环境,配置不同酸碱度和电导率的土壤溶液,杂散电流模拟系统产生直流、交流、交直混流杂散电流,阴极保护系统为试样提供阴极保护电位,电化学测试系统测试不同影响因素下试样的腐蚀电位。该系统能测量失重;能获取腐蚀形貌;能够产生直流、交流、交直流混流杂散电流;能够根据实际运行工况提供实验所需的应力;能模拟阴极保护;能够进行不同影响因素下的腐蚀规律实验。
The utility model relates to a stray current corrosion test system for buried steel pipelines under the action of tensile stress, which belongs to the field of material corrosion and protection. The test system includes a stress loading test system, a soil environment simulation system, a stray current simulation system, a cathodic protection system, and an electrochemical test system. The stress loading test system generates the pressure required for the sample test, the soil environment simulation system simulates the soil environment where the buried metal is located, and configures soil solutions with different pH and conductivity, and the stray current simulation system generates DC, AC, AC and DC mixed current stray Current, the cathodic protection system provides cathodic protection potential for the sample, and the electrochemical test system tests the corrosion potential of the sample under different influencing factors. The system can measure weightlessness; can obtain corrosion morphology; can generate DC, AC, AC and DC mixed flow stray current; can provide stress required for experiments according to actual operating conditions; can simulate cathodic protection; Corrosion law experiment.
Description
技术领域technical field
本发明属于材料腐蚀与防护领域,具体涉及一种拉伸应力作用下埋地钢制管道杂散电流腐蚀试验系统。The invention belongs to the field of material corrosion and protection, and in particular relates to a stray current corrosion test system for buried steel pipelines under the action of tensile stress.
背景技术Background technique
随着我国埋地管网愈发复杂,管网中的钢制管道在杂散电流和应力等因素作用下引发的腐蚀问题越来越多,危害愈发严重,因此,研究埋地钢制管道在应力条件下杂散电流腐蚀规律十分迫切。由于杂散电流受土壤电导率、埋地深度等诸多因素的影响以及所处的特殊环境难于进行现场实验,因此,建立应力条件下埋地钢制管道杂散电流腐蚀试验系统变得十分必要。目前,国内已有单一的拉伸应力测试装置,能够对光纤、塑料、金属等材料进行拉伸测试,已有的拉伸应力腐蚀实验装置可以对棒材或板材金属进行大气环境的腐蚀试验,也可做其它有害物质的应力腐蚀试验。但是已有的实验装置也存在一些缺点,例如产生的拉应力较小,适用范围窄,测试精度较低,无法进行杂散电流腐蚀实验,不易测量失重、不易获得腐蚀形貌。国内尚未有应力条件下埋地钢质管道杂散电流腐蚀试验系统,因此研究和开发拉伸应力作用下埋地钢制管道杂散电流腐蚀试验系统成为探究埋地钢制管道杂散电流腐蚀影响因素和影响规律的基础。As my country's buried pipeline network becomes more and more complex, steel pipelines in the pipeline network will cause more and more corrosion problems under the action of factors such as stray current and stress, and the damage will become more and more serious. Therefore, research on buried steel pipelines The law of stray current corrosion is very urgent under stress conditions. Since the stray current is affected by many factors such as soil conductivity and buried depth, and it is difficult to conduct field experiments in the special environment, it is very necessary to establish a stray current corrosion test system for buried steel pipelines under stress conditions. At present, there is a single tensile stress test device in China, which can perform tensile tests on optical fibers, plastics, metals and other materials. The existing tensile stress corrosion test devices can perform corrosion tests on rods or plate metals in atmospheric environments. It can also be used for stress corrosion test of other harmful substances. However, the existing experimental devices also have some disadvantages, such as small tensile stress, narrow application range, low test accuracy, inability to conduct stray current corrosion experiments, difficulty in measuring weight loss, and difficulty in obtaining corrosion morphology. There is no stray current corrosion test system for buried steel pipelines under stress conditions in China, so the research and development of stray current corrosion test systems for buried steel pipelines under tensile stress has become an important task for exploring the impact of stray current corrosion on buried steel pipelines. The basis of factors and influencing laws.
发明内容Contents of the invention
为了克服现有的拉伸应力测试装置和拉伸应力腐蚀实验装置拉伸应力较小,测试精度较低,无法进行杂散电流腐蚀实验等缺陷,本发明利用螺旋传动产生拉应力,数字万用表19实时显示高精度拉力传感器9获得的数值,利用直流电源22、脉冲信号发生器21、智能中断器20产生直流、交流、交直混流杂散电流;利用恒压源12产生阴极保护电位;利用电化学工作站15对受力试样进行电化学测试;利用pH计14和电导率仪13配置不同酸碱度和电导率的土壤溶液并在实验过程中监测土壤溶液参数的变化。该系统具有能测量失重;能获取腐蚀形貌;能够产生直流、交流、交直流混流杂散电流;能够根据实际运行工况提供实验所需的应力;能模拟阴极保护;能够进行不同影响因素(不同应力水平、杂散电流种类/强度、土壤电阻率/电导率、土壤酸碱度等)下的腐蚀规律实验等功能。In order to overcome the defects of the existing tensile stress test device and tensile stress corrosion test device, such as small tensile stress, low test accuracy, and inability to carry out stray current corrosion experiments, the present invention utilizes screw transmission to generate tensile stress,
一种拉伸应力作用下埋地钢制管道杂散电流腐蚀试验系统,该系统包括应力加载试验系统、土壤环境模拟系统、杂散电流模拟系统、阴极保护系统、电化学测试系统。应力加载试验系统产生试样试验所需压力,土壤环境模拟系统模拟埋地金属所处的土壤环境,配置不同酸碱度和电导率的土壤溶液,杂散电流模拟系统产生直流、交流、交直混流杂散电流,阴极保护系统为试样提供阴极保护电位,电化学测试系统测试不同影响因素下试样的腐蚀电位。A stray current corrosion test system for buried steel pipelines under tensile stress, the system includes a stress loading test system, a soil environment simulation system, a stray current simulation system, a cathodic protection system, and an electrochemical test system. The stress loading test system generates the pressure required for the sample test, the soil environment simulation system simulates the soil environment where the buried metal is located, and configures soil solutions with different pH and conductivity, and the stray current simulation system generates DC, AC, AC and DC mixed current stray Current, the cathodic protection system provides cathodic protection potential for the sample, and the electrochemical test system tests the corrosion potential of the sample under different influencing factors.
所述的应力加载试验系统由左拉杆1、左底板2、长六角头螺栓3、电解池4、试样5、销钉6、销钉套7、中拉杆8、S型拉力传感器9、右拉杆10、右底板11、激励电源17、电压放大器18、数字万用表19组成;The stress loading test system consists of a left tie rod 1, a left bottom plate 2, a long hexagonal head bolt 3, an
其特征在于:两个长六角头螺栓3穿过右底板11嵌入左底板2盲孔中,两个长六角头螺栓3和左底板2、右底板11形成支架,左右底板间依次为左拉杆1、试样5、中拉杆8、S型拉力传感器9、右拉杆10;长六角头螺栓3一端与右底板11间为螺纹连接,另一端与左底板2盲孔为间隙配合;左拉杆1与左底板2为螺纹连接,试样5与左拉杆1和中拉杆8分别通过两个销钉6连接,销钉6外套有销钉套7且两者之间为过盈配合,销钉套7位于左拉杆1和中拉杆8通孔中,销钉套7与左拉杆1通孔和中拉杆8通孔间均为过盈配合;S型拉力传感器9与中拉杆8之间为螺纹连接,右拉杆10穿过右底板11通孔与S型拉力传感器9为螺纹连接;试样5穿过电解池4中部;试样5与左拉杆1、中拉杆8接触的表面涂覆绝缘材料,确保杂散电流仅通过试样5;激励电源17正负极分别S型拉力传感器9激励信号线正负极相连,S型拉力传感器9输出信号线正负极与电压放大器18输入端正负极相连,S型拉力传感器9屏蔽线接地,电压放大器18输出端与数字万用表19相连。It is characterized in that: two long hexagonal head bolts 3 pass through the
进一步,土壤环境模拟系统包括电导率仪13、探针P1、pH计14、探针P2;电导率仪13连接探针P1,pH计14连接探针P2,探针P1、P2均浸没于电解池的土壤溶液中。Further, the soil environment simulation system includes a conductivity meter 13, a probe P1, a pH meter 14, and a probe P2; the conductivity meter 13 is connected to the probe P1, and the pH meter 14 is connected to the probe P2, and both the probes P1 and P2 are immersed in the electrolytic in the soil solution of the pond.
进一步,杂散电流模拟系统包括脉冲信号发生器21、功率放大器23、恒流源22、智能中断器20、第三辅助电极CE3、电流表A2、电流表A3、开关K2、开关K3;脉冲信号发生器21与功率放大器23相连,功率放大器23正极串接开关K2和电流表A2后连接智能中断器20输入端正极,功率放大器23负极连接智能中断器20输入端负极,恒流源22负极串接开关K3和电流表A3后连接智能中断器20输入端负极,恒流源22正极连接智能中断器20输入端正极,智能中断器20输出端正极连接试样5,负极连接第三辅助电极CE3。Further, the stray current simulation system includes a pulse signal generator 21, a
进一步,所述的阴极保护系统包括恒压源12、电流表A1、开关K1、第一辅助电极CE1;恒压源12正极连接第一辅助电极CE1,负极串接开关K1和电流表A1后连接试样5。Further, the cathodic protection system includes a constant voltage source 12, an ammeter A1, a switch K1, and a first auxiliary electrode CE1; the positive pole of the constant voltage source 12 is connected to the first auxiliary electrode CE1, and the negative pole is connected in series with the switch K1 and the ammeter A1 to connect the sample 5.
进一步,所述的电化学测试系统由PC机16、电化学工作站15、参比电极RE、第二辅助电极CE2组成;电化学工作站15与PC机16相连,电化学工作站15三电极分别与试样5、参比电极RE、第二辅助电极CE2相连组成三电极体系,参比电极RE靠近试样5,参比电极RE与试样间距离在0.5cm至2cm范围内。Further, the electrochemical testing system is composed of a PC 16, an electrochemical workstation 15, a reference electrode RE, and a second auxiliary electrode CE2; the electrochemical workstation 15 is connected to the PC 16, and the three electrodes of the electrochemical workstation 15 are connected to the test electrode respectively. Sample 5, the reference electrode RE and the second auxiliary electrode CE2 are connected to form a three-electrode system, the reference electrode RE is close to the sample 5, and the distance between the reference electrode RE and the sample is within the range of 0.5cm to 2cm.
根据实验需要配置多组土壤模拟溶液,配置的土壤溶液性质与实际土壤理化性质相似,实验前用电导率仪13和pH计14测定土壤溶液的电导率和pH值,在实验过程中仍不断用电导率仪13和pH计14测试溶液酸碱度和电导率值,当参数发生时需及时调整。Configure multiple groups of soil simulation solutions according to the needs of the experiment. The properties of the configured soil solution are similar to the physical and chemical properties of the actual soil. Before the experiment, use the conductivity meter 13 and the pH meter 14 to measure the conductivity and pH value of the soil solution. The conductivity meter 13 and the pH meter 14 test the pH value and conductivity value of the solution, and need to be adjusted in time when the parameters occur.
脉冲信号发生器21可以产生不同频率和幅值的交流信号,功率放大器23放大交流信号以模拟交流杂散电流,恒流源22产生强度不同的直流电以模拟直流杂散电流,智能中断器20可以实现杂散电流的持续(持续时间)、间歇(作用频次)和瞬间三种干扰形式的控制。开关K2、K3的开闭可以实现对交流、直流、交直流混流三种杂散电流的控制。The pulse signal generator 21 can generate AC signals with different frequencies and amplitudes, the
恒压源12为试样5提供所需的阴极保护电位,开关K1的开闭可以实现对试样5有无阴极保护的控制。The constant voltage source 12 provides the required cathodic protection potential for the sample 5, and the opening and closing of the switch K1 can control whether the sample 5 has cathodic protection or not.
电化学工作站15测试不同影响因素(土壤电阻率/电导率、土壤酸碱度、不同应力水平、杂散电流种类/强度、破损面积/剥离面积等)下试样5腐蚀电位。The electrochemical workstation 15 tests the corrosion potential of sample 5 under different influencing factors (soil resistivity/conductivity, soil pH, different stress levels, stray current type/strength, damaged area/peeled area, etc.).
本发明在某些方面能够取代目前广泛使用的拉伸应力测试装置和拉伸应力腐蚀实验装置,是一种新型的应力条件下埋地钢制管道杂散电流腐蚀试验系统。该系统具有能测量失重;能获取腐蚀形貌;能够产生直流、交流、交直流混流杂散电流;能够根据实际运行工况提供实验所需的应力;模拟阴极保护;能够进行不同影响因素(不同应力水平、杂散电流种类/强度、土壤电阻率/电导率、土壤酸碱度等)下的腐蚀规律实验等功能,广泛适用于高校、科研院所的实验室研究及冶金、材料、建筑、机械类企业的前期研究中。In some respects, the present invention can replace the currently widely used tensile stress test device and tensile stress corrosion test device, and is a novel stray current corrosion test system for buried steel pipelines under stress conditions. The system can measure weightlessness; can obtain corrosion morphology; can generate DC, AC, AC and DC mixed flow stray current; can provide stress required for experiments according to actual operating conditions; simulate cathodic protection; Stress level, stray current type/strength, soil resistivity/conductivity, soil pH, etc.), are widely used in laboratory research in universities and scientific research institutes, as well as in metallurgy, materials, construction, and machinery. In the preliminary research of the enterprise.
附图说明Description of drawings
图1为本发明整体结构图。Fig. 1 is the overall structure diagram of the present invention.
图2为左拉杆主视图。Figure 2 is a front view of the left tie rod.
图3.1为右底板主视图剖面图。图3.2为右底板俯视图。Figure 3.1 is a cross-sectional view of the right bottom plate front view. Figure 3.2 is a top view of the right bottom plate.
图4为右拉杆主视图。Figure 4 is a front view of the right pull rod.
图5.1为左底板主视图剖面图,图5.2为左底板俯视图。Figure 5.1 is a front view sectional view of the left bottom plate, and Figure 5.2 is a top view of the left bottom plate.
图6为试样俯视图。Figure 6 is a top view of the sample.
图中,左拉杆1、左底板2、长六角头螺栓3、电解池4、试样5、销钉6、销钉套7、中拉杆8、S型拉力传感器9、右拉杆10、右底板11、恒压源12、电导率仪13、pH计14、电化学工作站15、PC机16、激励电源17、电压放大器18、数字万用表19、智能中断器20、脉冲信号发生器21、恒流源22、功率放大器23。In the figure, left tie rod 1, left bottom plate 2, long hex head bolt 3,
具体实施方式Detailed ways
在图1所示的本发明一种拉伸应力作用下埋地钢制管道杂散电流腐蚀试验系统具体结构中,当应力加载试验系统搭建完毕后,用扳手同时旋转两个长六角头螺栓3通过螺旋传动产生轴向拉应力,调节旋转量可以改变拉力,观察数字万用表19示数直至指定拉力时停止旋转长六角头螺栓3。在实验中若需调节试样5所受拉伸应力只需旋转长六角头螺栓3即可。In the specific structure of the stray current corrosion test system for buried steel pipelines under the action of tensile stress of the present invention shown in Figure 1, after the stress loading test system is built, use a wrench to simultaneously rotate two long hexagon head bolts 3 Axial tensile stress is generated by screw transmission, and the tension can be changed by adjusting the amount of rotation. Observe the
搭建土壤环境模拟系统、杂散电流模拟系统、阴极保护系统、电化学测试系统。利用土壤环境模拟系统配置所需的土壤溶液,将土壤溶液倒入电解池20内。打开PC机16、电化学工作站15、脉冲信号发生器21、功率放大器23、智能中断器20、恒流源22、恒压源12、电导率仪13、pH计14、激励电源17、电压放大器18、数字万用表19电源。按以下步骤进行不同影响因素(土壤电阻率/电导率、土壤酸碱度、不同应力水平、杂散电流种类/强度、破损面积/剥离面积等)下的腐蚀规律实验。Build a soil environment simulation system, a stray current simulation system, a cathodic protection system, and an electrochemical test system. Use the soil environment simulation system to configure the required soil solution, and pour the soil solution into the electrolytic cell 20 . Turn on PC 16, electrochemical workstation 15, pulse signal generator 21,
1、闭合开关K1对试样5进行阴极保护。1. Close switch K1 to perform cathodic protection on sample 5.
2、打开开关K2闭合开关K3向试样5通入直流杂散电流。2. Open the switch K2 and close the switch K3 to pass the DC stray current to the sample 5.
3、设定PC机16中电化学工作站15软件的参数测量试样5中电位并进行处理得到曲线,电导率仪13和pH计14实时监测溶液的电导率和酸碱度。3. Set the parameters of the electrochemical workstation 15 software in the PC 16 to measure the potential in the sample 5 and process it to obtain a curve. The conductivity meter 13 and the pH meter 14 monitor the conductivity and pH of the solution in real time.
4、改变恒流源22电流强度,改变智能中断器20实现电流的持续(持续时间)、间歇(作用频次)和瞬间三种形式的干扰,用电化学工作站15测量试样5电位并进行处理得到曲线。4. Change the current intensity of the constant
5、闭合开关K2打开开关K3向试样5通入交流杂散电流,用电化学工作站15测量试样5电位并进行处理得到曲线。5. Close the switch K2 and open the switch K3 to pass AC stray current to the sample 5, measure the potential of the sample 5 with the electrochemical workstation 15 and process it to obtain a curve.
6、改变脉冲信号发生器21信号的频率和幅值,改变智能中断器20实现电流的持续、间歇和瞬间三种形式的干扰,用电化学工作站15测量试样5电位并进行处理得到曲线。6. Change the frequency and amplitude of the signal from the pulse signal generator 21, change the intelligent interrupter 20 to realize continuous, intermittent and instantaneous current interference, measure the potential of the sample 5 with the electrochemical workstation 15 and process it to obtain a curve.
7、闭合开关K2、开关K3向试样5通入交直混流杂散电流,用电化学工作站15测量试样5电位并进行处理得到曲线。7. Close the switch K2 and the switch K3 to pass the AC/DC mixed current to the sample 5, measure the potential of the sample 5 with the electrochemical workstation 15 and process it to obtain a curve.
8、改变试样5所受应力,重复步骤2—7,每改变一次应力重复一遍步骤2—7,至少改变两次应力后进行步骤9。8. Change the stress on sample 5, repeat steps 2-7, repeat steps 2-7 each time the stress is changed, and proceed to step 9 after changing the stress at least twice.
9、断开所有设备电源,取出所有电极和探针,将电解池4溶液倒出,将电导率和pH值不同的土壤溶液倒入,接通所有电源,重复一遍步骤2—8后进行步骤10。9. Disconnect the power supply of all equipment, take out all electrodes and probes, pour out the solution of
10、断开所有设备电源,取出所有电极和探针,将电解池4溶液倒出。10. Disconnect the power supply of all equipment, take out all electrodes and probes, and pour out the solution of
11、取出试样5,用滤纸擦干后置于光学天平上测量腐蚀后重量,根据腐蚀前重量、试验时间及腐蚀面积求出腐蚀速率,将试样5置于光学显微镜下观察并用相机拍摄腐蚀形貌。根据腐蚀电位变化、腐蚀速率、腐蚀形貌可以得出拉伸应力条件下埋地金属杂散电流腐蚀影响因素和影响规律。11. Take out sample 5, dry it with filter paper and place it on an optical balance to measure the weight after corrosion, calculate the corrosion rate according to the weight before corrosion, test time and corrosion area, put sample 5 under an optical microscope for observation and take pictures with a camera corrosion morphology. According to the change of corrosion potential, corrosion rate and corrosion morphology, the influencing factors and rules of stray current corrosion of buried metal under tensile stress can be obtained.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310295614.2A CN103344548B (en) | 2013-07-13 | 2013-07-13 | System for testing stray current corrosion of buried steel pipeline under function of tensile stress |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310295614.2A CN103344548B (en) | 2013-07-13 | 2013-07-13 | System for testing stray current corrosion of buried steel pipeline under function of tensile stress |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103344548A true CN103344548A (en) | 2013-10-09 |
CN103344548B CN103344548B (en) | 2015-03-18 |
Family
ID=49279362
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310295614.2A Expired - Fee Related CN103344548B (en) | 2013-07-13 | 2013-07-13 | System for testing stray current corrosion of buried steel pipeline under function of tensile stress |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103344548B (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104122196A (en) * | 2014-07-15 | 2014-10-29 | 北京工业大学 | Method for evaluating corrosion of DC stray current on high strength steel for oil gas pipeline under stress condition |
CN104515731A (en) * | 2014-12-18 | 2015-04-15 | 中国石油天然气股份有限公司 | Experimental device for simulation research buried pipeline cathodic protection efficiency |
CN108303367A (en) * | 2018-04-02 | 2018-07-20 | 国网江西省电力有限公司电力科学研究院 | The test device and method of the accelerated corrosion of metallic ground material and cathodic protection |
CN108562616A (en) * | 2018-01-16 | 2018-09-21 | 东莞新奥燃气有限公司 | External detection method for natural gas pipeline |
CN109030337A (en) * | 2018-07-03 | 2018-12-18 | 北京工业大学 | A kind of buried metal pipeline corrosion and corrosion protection layer peel test system based on SECM |
CN110763449A (en) * | 2019-11-06 | 2020-02-07 | 河海大学 | Wharf model loading test device and test method |
CN110865022A (en) * | 2019-12-05 | 2020-03-06 | 西南石油大学 | An experimental device and method for metal pipeline corrosion under mixed AC and DC interference |
CN111398023A (en) * | 2020-03-25 | 2020-07-10 | 中国船舶重工集团公司第七二五研究所 | Device and method for simultaneously realizing compact tensile loading sample corrosive solution environment and cathodic protection test environment and application |
CN111398152A (en) * | 2019-01-02 | 2020-07-10 | 中国石油化工股份有限公司 | Interference corrosion test device of direct current stray current to pipeline |
CN112048724A (en) * | 2020-09-11 | 2020-12-08 | 张兴莉 | Cathode protection system with external power supply |
CN113933234A (en) * | 2021-12-15 | 2022-01-14 | 西南石油大学 | Evaluation method for gathering and transportation pipeline material selection |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2755602Y (en) * | 2004-12-09 | 2006-02-01 | 钢铁研究总院 | Multifunctional electrochemical corrosion measuring device |
CN102312240A (en) * | 2010-06-29 | 2012-01-11 | 中国石油天然气股份有限公司 | A stray current interference corrosion simulation optimization device |
CN102818762A (en) * | 2011-06-10 | 2012-12-12 | 中国石油天然气股份有限公司 | Oil gas pipeline polarization potential monitoring devices |
-
2013
- 2013-07-13 CN CN201310295614.2A patent/CN103344548B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2755602Y (en) * | 2004-12-09 | 2006-02-01 | 钢铁研究总院 | Multifunctional electrochemical corrosion measuring device |
CN102312240A (en) * | 2010-06-29 | 2012-01-11 | 中国石油天然气股份有限公司 | A stray current interference corrosion simulation optimization device |
CN102818762A (en) * | 2011-06-10 | 2012-12-12 | 中国石油天然气股份有限公司 | Oil gas pipeline polarization potential monitoring devices |
Non-Patent Citations (5)
Title |
---|
ELIZABETH NICHOLSON ET AL: "STRAY CURRENT DETECTION AND CORRECTION", 《POLAND CORROSION CONFERENCE》, 30 June 2010 (2010-06-30) * |
YU-QIAO WANG ET AL: "Prediction for Corrosion Status of the Metro Metal Materials the Stray Current Interference", 《INT.J.ELECTROCHEM.SCI》, no. 8, 1 April 2013 (2013-04-01) * |
宋吟蔚等: "埋地钢质管道杂散电流腐蚀研究现状", 《腐蚀与防护》, vol. 30, no. 8, 30 August 2009 (2009-08-30) * |
李源等: "埋地钢质管道交流干扰腐蚀影响因素实验分析", 《腐蚀研究》, no. 11, 28 November 2011 (2011-11-28) * |
王新华等: "城镇燃气埋地钢质管道杂散电流测试方法", 《管道技术与设备》, no. 2, 30 December 2010 (2010-12-30) * |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104122196A (en) * | 2014-07-15 | 2014-10-29 | 北京工业大学 | Method for evaluating corrosion of DC stray current on high strength steel for oil gas pipeline under stress condition |
CN104515731A (en) * | 2014-12-18 | 2015-04-15 | 中国石油天然气股份有限公司 | Experimental device for simulation research buried pipeline cathodic protection efficiency |
CN108562616A (en) * | 2018-01-16 | 2018-09-21 | 东莞新奥燃气有限公司 | External detection method for natural gas pipeline |
CN108303367A (en) * | 2018-04-02 | 2018-07-20 | 国网江西省电力有限公司电力科学研究院 | The test device and method of the accelerated corrosion of metallic ground material and cathodic protection |
CN109030337A (en) * | 2018-07-03 | 2018-12-18 | 北京工业大学 | A kind of buried metal pipeline corrosion and corrosion protection layer peel test system based on SECM |
CN109030337B (en) * | 2018-07-03 | 2021-05-07 | 北京工业大学 | A test system for corrosion and anti-corrosion layer peeling of buried metal pipelines based on SECM |
CN111398152A (en) * | 2019-01-02 | 2020-07-10 | 中国石油化工股份有限公司 | Interference corrosion test device of direct current stray current to pipeline |
CN111398152B (en) * | 2019-01-02 | 2024-01-02 | 中国石油化工股份有限公司 | Interference corrosion test device for pipeline by direct current stray current |
CN110763449A (en) * | 2019-11-06 | 2020-02-07 | 河海大学 | Wharf model loading test device and test method |
CN110865022A (en) * | 2019-12-05 | 2020-03-06 | 西南石油大学 | An experimental device and method for metal pipeline corrosion under mixed AC and DC interference |
CN110865022B (en) * | 2019-12-05 | 2024-08-27 | 西南石油大学 | Metal pipeline corrosion experimental device under alternating current-direct current mixed interference |
CN111398023A (en) * | 2020-03-25 | 2020-07-10 | 中国船舶重工集团公司第七二五研究所 | Device and method for simultaneously realizing compact tensile loading sample corrosive solution environment and cathodic protection test environment and application |
CN111398023B (en) * | 2020-03-25 | 2023-06-23 | 中国船舶重工集团公司第七二五研究所 | Device, method and application for simultaneously realizing compact tensile loading sample corrosion solution environment and cathode protection test environment |
CN112048724A (en) * | 2020-09-11 | 2020-12-08 | 张兴莉 | Cathode protection system with external power supply |
CN112048724B (en) * | 2020-09-11 | 2023-02-28 | 李涛 | Cathode protection system with external power supply |
CN113933234A (en) * | 2021-12-15 | 2022-01-14 | 西南石油大学 | Evaluation method for gathering and transportation pipeline material selection |
CN113933234B (en) * | 2021-12-15 | 2022-07-01 | 西南石油大学 | A judging method for material selection of gathering and transportation pipelines |
Also Published As
Publication number | Publication date |
---|---|
CN103344548B (en) | 2015-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103344548B (en) | System for testing stray current corrosion of buried steel pipeline under function of tensile stress | |
CN103411878B (en) | Method for stray current corrosion test of buried steel pipeline under tensile stress action | |
CN103411877B (en) | Buried steel pipeline coating stripping and corrosion test system under stress and stray current coupling effect | |
Downey et al. | Automated crack detection in conductive smart-concrete structures using a resistor mesh model | |
CN101498649B (en) | Portable metallic material tensile stress etching apparatus and method | |
CN103411830B (en) | Buried steel pipeline coating stripping and corrosion test method under stress and stray current coupling effect | |
CN103776758A (en) | Device and method for simulating electrochemical corrosion of concrete reinforcement caused by stray currents | |
CN104634721B (en) | Utilize a kind of test method for grounded screen accelerated corrosion experimental rig | |
CN104880654B (en) | Gas insulated combined electrical equipment spark discharge fault simulation experimental provision and its method | |
CN204177718U (en) | Evaluate the electrochemical test system of the lower oil-gas pipeline corrosion of alternative stray current interference | |
CN206573677U (en) | Signal generator and the straight-flow system insulation fault location instrument based on it | |
CN104048914B (en) | A kind of monitor metal device of corrosion in different cement accidents | |
CN103217353B (en) | Employing Reinforcing Steel Bar In Reinforced Concrete Structure accelerating corrosion controls the method that monitoring device carries out controlling monitoring in real time | |
CN105043971A (en) | Experiment device for research on corrosion behavior of metal substrate beneath peeling coating | |
CN104713820A (en) | Method for detecting corrosion state of metal in concrete | |
CN106872347A (en) | A kind of metal erosion acceleration test apparatus and method | |
CN105717360A (en) | Low-voltage single-phase harmonic impedance measuring method and device | |
CN102312240A (en) | A stray current interference corrosion simulation optimization device | |
CN206573458U (en) | A kind of metal erosion acceleration test apparatus | |
CN206863128U (en) | A kind of measurement apparatus of analogue ground material grounding resistance | |
CN203275352U (en) | Heavy metal ion detector | |
CN102411017B (en) | TDR (time domain reflection) testing device for testing soil column and using method thereof | |
CN103776759A (en) | Simulation device and method of electrochemical corrosion of steel buried pipeline caused by stray current | |
CN113791028B (en) | A detection device and method for directly detecting soil corrosion rate of metal materials | |
CN105301058A (en) | Imaging testing system for monitoring pollution dynamic condition of underground water and monitoring method of pollution dynamic condition of underground water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150318 Termination date: 20150713 |
|
EXPY | Termination of patent right or utility model |