CN103325106A - Moving workpiece sorting method based on LabVIEW - Google Patents
Moving workpiece sorting method based on LabVIEW Download PDFInfo
- Publication number
- CN103325106A CN103325106A CN2013101293679A CN201310129367A CN103325106A CN 103325106 A CN103325106 A CN 103325106A CN 2013101293679 A CN2013101293679 A CN 2013101293679A CN 201310129367 A CN201310129367 A CN 201310129367A CN 103325106 A CN103325106 A CN 103325106A
- Authority
- CN
- China
- Prior art keywords
- workpiece
- algorithm
- camera
- workpieces
- image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 39
- 238000012937 correction Methods 0.000 claims abstract description 14
- 238000012545 processing Methods 0.000 claims abstract description 8
- 238000001514 detection method Methods 0.000 claims description 14
- 239000011159 matrix material Substances 0.000 claims description 8
- 238000012417 linear regression Methods 0.000 claims description 4
- 238000011161 development Methods 0.000 claims description 2
- 230000000007 visual effect Effects 0.000 claims description 2
- 238000012549 training Methods 0.000 claims 2
- 238000005352 clarification Methods 0.000 claims 1
- 238000012552 review Methods 0.000 claims 1
- 230000036544 posture Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 11
- 238000005259 measurement Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 238000009776 industrial production Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000011410 subtraction method Methods 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 238000003708 edge detection Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
Images
Landscapes
- Image Analysis (AREA)
- Manipulator (AREA)
Abstract
Description
技术领域technical field
本专利涉及基于机器视觉的分拣方法技术领域,尤其涉及一种视觉检测方法和产品分拣方法。This patent relates to the technical field of sorting methods based on machine vision, in particular to a visual detection method and a product sorting method.
背景技术Background technique
机械臂作为自动控制领域中出现的一项新技术,它的巨大作用也正逐步被人们所认识:第一、机械臂能代替部分人工完成一些重复性体力劳动;第二、机械臂能按照人们预先设定的流程高效快速的完成作业;第三、机械臂大大改善了工人的劳动条件,显著地提高劳动生产率,加快了工业生产自动化的步伐。As a new technology in the field of automatic control, the mechanical arm is gradually being recognized by people for its great role: first, the mechanical arm can replace some manual labor to complete some repetitive physical labor; The pre-set process can complete the work efficiently and quickly; thirdly, the mechanical arm has greatly improved the working conditions of workers, significantly increased labor productivity, and accelerated the pace of industrial production automation.
随着经济的快速发展,企业竞争越来越激烈,为提高效率、降低生产成本,传送带得到了广泛的应用。传送带广泛应用于工业生产系统,传送带的应用不仅节约了劳动力,提高了生产效率,而且降低了生产成本,在工业生产中发挥了巨大的作用。不管是搬运、装配、工件质量检测都需要先对目标进行抓取,因此,对传送带上目标的分类抓取功能有很高的需求。With the rapid development of the economy, the competition of enterprises is becoming more and more fierce. In order to improve efficiency and reduce production costs, conveyor belts have been widely used. Conveyor belts are widely used in industrial production systems. The application of conveyor belts not only saves labor, improves production efficiency, but also reduces production costs, and plays a huge role in industrial production. Whether it is handling, assembly, or workpiece quality inspection, the target needs to be grasped first. Therefore, there is a high demand for the classification and grasping function of the target on the conveyor belt.
传统的工业机器人一般采用示教或离线编程的方式对加工任务进行路径规划和运动编程,加工过程中只是简单地重复预先编程设定的动作,因此传统的工业机器人控制技术无法对运动工件进行分拣。Traditional industrial robots generally use teaching or offline programming to perform path planning and motion programming for processing tasks. During the processing process, they simply repeat the pre-programmed actions. Therefore, traditional industrial robot control technology cannot analyze the moving workpiece. pick.
发明内容Contents of the invention
本专利的一个目的是提供一种检测精度高、可以适应光照条件变化的运动工件检测方法。One purpose of this patent is to provide a moving workpiece detection method with high detection accuracy and adaptable to changes in lighting conditions.
本专利的另一个目的是提供一种自动化程度高、可以实现较多种类工件分类、可靠性较高的工件分拣方法。Another object of this patent is to provide a workpiece sorting method with a high degree of automation, which can realize the sorting of more kinds of workpieces and has high reliability.
本专利的运动工件分拣方法,包括以下步骤:The moving workpiece sorting method of this patent comprises the following steps:
1)视频流的图像处理算法,用该算法从采集的视频当中检测出运动中工件的位置和姿态;1) The image processing algorithm of the video stream, which is used to detect the position and posture of the moving workpiece from the collected video;
2)摄像机的标定算法,用该标定算法将运动工件在摄像机图像中的像素坐标转化为世界坐标系中工件的物理坐标。2) The calibration algorithm of the camera, which is used to convert the pixel coordinates of the moving workpiece in the camera image into the physical coordinates of the workpiece in the world coordinate system.
3)摄像机的径向畸变校正算法,用以消除因广角镜头引入的图像的径向畸变。3) The radial distortion correction algorithm of the camera is used to eliminate the radial distortion of the image introduced by the wide-angle lens.
4)卡尔曼预测算法,用以对运动工件的位置进行预测,获取无时滞的工件位置。4) The Kalman prediction algorithm is used to predict the position of the moving workpiece and obtain the workpiece position without time lag.
5)工件的类型识别算法,当工件从传送带上经过时,摄像机采集工件图像,对工件类型进行识别,便于分类。5) The type recognition algorithm of the workpiece. When the workpiece passes through the conveyor belt, the camera collects the image of the workpiece to identify the type of the workpiece, which is convenient for classification.
6)机械手的运动控制方法,包括轨迹规划方法,轨迹控制方法,使机械手可以选择最优路径,快速地分拣工件。6) The motion control method of the manipulator, including the trajectory planning method and the trajectory control method, so that the manipulator can choose the optimal path and quickly sort the workpieces.
其中,图像处理的算法包括运动目标的提取、运动工件的姿态检测。本专利采用背景差分法获得运动工件的图像坐标。背景差分法是采用图像序列中的当前帧和背景参考模型比较来检测运动物体的一种方法,其性能依赖于所使用的背景建模技术。由于背景模型在不断地更新,所以它可以适应光线的变化,而一般的阈值法,当光线环境变化时必须改变其阈值。定义image(x,y)为当前帧,acc(x,y)为背景模型,frimage(x,y)为前景帧,α为背景更新率,其范围为0-1,acc(x,y)初始化为0。Among them, the algorithm of image processing includes the extraction of moving objects and the posture detection of moving workpieces. This patent adopts the background difference method to obtain the image coordinates of the moving workpiece. The background subtraction method is a method to detect moving objects by comparing the current frame in the image sequence with the background reference model, and its performance depends on the background modeling technology used. Since the background model is constantly updated, it can adapt to changes in light, while the general threshold method must change its threshold when the light environment changes. Define image(x,y) as the current frame, acc(x,y) as the background model, frimage(x,y) as the foreground frame, α as the background update rate, the range is 0-1, acc(x,y) Initialized to 0.
最后根据分离的前景图像,检测出工件位置。运动工件的姿态检测先通过灰度处理,再寻找在所选检测方向上梯度值超过阈值的点,对这些点进行直线拟合,计算出角度。Finally, according to the separated foreground image, the position of the workpiece is detected. The attitude detection of the moving workpiece is first processed through gray scale, and then the points whose gradient value exceeds the threshold in the selected detection direction are found, and the straight line fitting is performed on these points to calculate the angle.
其中,摄像机的标定算法主要针对单目二维视觉系统的标定。将摄像机垂直于工作平面安装。世界坐标系位于工作平面上,Z轴垂直平面向下,摄像机坐标系与世界坐标系无旋转,只存在平移关系,于是有旋转矩阵R=I(单位阵)且平移矩阵P=[0 0 d]T,d是摄像机光轴中心点Oc到工作平面的距离。Among them, the calibration algorithm of the camera is mainly aimed at the calibration of the monocular two-dimensional vision system. Mount the camera perpendicular to the work plane. The world coordinate system is located on the working plane, the vertical plane of the Z axis is downward, the camera coordinate system and the world coordinate system have no rotation, only translation relationship exists, so there is a rotation matrix R=I (identity matrix) and a translation matrix P=[0 0 d ] T , d is the distance from the camera optical axis center point O c to the working plane.
式中:(xc,yc,zc)为景物点在摄像机坐标系下的坐标,(xw,yw,zw)为景物点在世界坐标系下的坐标。由上式可以获得景物点在摄像机坐标系下的坐标,易得,xc=xw,yc=yw,在工作平面上运动工件的坐标zw=0。In the formula: (x c , y c , z c ) are the coordinates of the scene point in the camera coordinate system, and (x w , y w , z w ) are the coordinates of the scene point in the world coordinate system. The coordinates of the scene point in the camera coordinate system can be obtained from the above formula, which is easy to get, x c = x w , y c = y w , and the coordinates of the moving workpiece on the working plane z w =0.
其中(u,v)是参考点的图像坐标;(u1,v1)是点P1的图像坐标,(xw1,yw1)为点P1的二维世界坐标;(u2,v2)是点P2的图像坐标,(xw2,yw2)为点P2的二维世界坐标;(u0,v0)是摄像机光轴中心的图像坐标;kxd=kxd,kyd=kyd是标定出的摄像机参数。Where (u, v) is the image coordinate of the reference point; (u 1 , v 1 ) is the image coordinate of point P 1 , (x w1 , y w1 ) is the two-dimensional world coordinate of point P 1 ; (u 2 , v 2 ) is the image coordinates of point P 2 , (x w2 , y w2 ) is the two-dimensional world coordinates of point P 2 ; (u 0 , v 0 ) is the image coordinates of the center of the optical axis of the camera; k xd =k x d, k yd = ky d is the calibrated camera parameter.
式中:(ui,vi)是任意一点Pi的图像坐标,(xwi,ywi)为点Pi的二维世界坐标。In the formula: (u i , v i ) is the image coordinate of any point P i , (x wi , y wi ) is the two-dimensional world coordinate of point P i .
其中,由于广角摄像头会有畸变,而其中以径向畸变最为明显,因此我们对摄像头进行径向畸变校正。本专利中用线性回归(LR)的方法拟合出了摄像机的径向畸变矩阵。首先给出径向畸变的畸变方程:Among them, since the wide-angle camera will have distortion, and the radial distortion is the most obvious, we correct the radial distortion of the camera. In this patent, the radial distortion matrix of the camera is fitted by a linear regression (LR) method. Firstly, the distortion equation of the radial distortion is given:
式中:(u,v)为参考点的图像坐标,(u',v')为参考点畸变校正后的图像坐标,ast、bst为校正系数,s、t=0,1,2。In the formula: (u, v) is the image coordinate of the reference point, (u', v') is the image coordinate after distortion correction of the reference point, a st and b st are correction coefficients, s, t=0,1,2 .
其中,运动工件的速度未知,位置预测采用卡尔曼预测算法。分别采集两帧图像,间隔1s,工件位置的变化Δx即为所估计的速度值。建立系统模型,然后用以上所述的标定方法计算得到的运动工件二维世界坐标作为位置观测值,同时将估计出的速度作为速度测量值,组成观测向量,计算出卡尔曼滤波器对工件运动状态的最优预测值。Among them, the speed of the moving workpiece is unknown, and the position prediction adopts the Kalman prediction algorithm. Two frames of images are collected respectively, with an interval of 1s, and the change Δx of the workpiece position is the estimated velocity value. Establish a system model, and then use the two-dimensional world coordinates of the moving workpiece calculated by the above-mentioned calibration method as the position observation value, and at the same time use the estimated speed as the speed measurement value to form an observation vector, and calculate the Kalman filter for the workpiece motion The best predicted value of the state.
其中,工件的类型识别要采集各种工件的样本,对各样本进行特征检测,并训练形状模型,建立工件样本数据库。然后对实时图像的感兴趣区域(ROI)中目标的特征进行检测,并与数据库中的模型进行匹配,计算出匹配值,选取匹配值最高的结果作为分类器的输出。Among them, the type recognition of the workpiece needs to collect samples of various workpieces, perform feature detection on each sample, train the shape model, and establish a database of workpiece samples. Then detect the features of the target in the region of interest (ROI) of the real-time image, match it with the model in the database, calculate the matching value, and select the result with the highest matching value as the output of the classifier.
其中,机械手的运动控制方法包括轨迹规划,机械臂的轨迹控制、电动夹爪的抓取控制。机械臂控制器根据上位机预测的工件位置信息对机械臂进行轨迹规划,并控制机械臂按期望轨迹运动,同时调整夹爪姿态,抓取传送带上的运动工件。最后根据要求将不同类型的工件分类摆放,然后进行下一轮工件分拣。Among them, the motion control method of the manipulator includes trajectory planning, trajectory control of the mechanical arm, and grasping control of the electric gripper. The robotic arm controller plans the trajectory of the robotic arm according to the workpiece position information predicted by the host computer, and controls the robotic arm to move according to the expected trajectory, and at the same time adjusts the posture of the gripper to grab the moving workpiece on the conveyor belt. Finally, different types of workpieces are classified and placed according to requirements, and then the next round of workpiece sorting is carried out.
附图说明Description of drawings
图1为差分法背景更新示意图;Figure 1 is a schematic diagram of the background update of the difference method;
图2为工件分类器原理图;Fig. 2 is a schematic diagram of the workpiece classifier;
图3为卡尔曼预测系统的原理框图;Fig. 3 is the functional block diagram of the Kalman prediction system;
图4为预测位置与观测位置之间关系图;Fig. 4 is the relationship diagram between predicted position and observed position;
图5为预测位置与观测位置误差图。Figure 5 is the error diagram of predicted position and observed position.
图6为机械臂伺服控制轨迹规划示意图。Figure 6 is a schematic diagram of trajectory planning for the servo control of the robotic arm.
图7为机械臂伺服控制流程图。Figure 7 is a flow chart of the servo control of the manipulator.
具体实施方式Detailed ways
以下结合附图和实施例对本专利的技术方案作进一步描述。The technical solution of this patent will be further described below in conjunction with the accompanying drawings and embodiments.
实施例:Example:
采用背景差分法提取出运动目标首先要对背景进行建模。使背景模型不断更新,就可以适应周围光线的变化。图1为系统的背景更新示意图,背景帧按照示意图中的循环迭代更新。To extract the moving target by background subtraction method, the background should be modeled first. By continuously updating the background model, it is possible to adapt to changes in ambient light. Figure 1 is a schematic diagram of the background update of the system, and the background frame is iteratively updated according to the cycle in the schematic diagram.
其中image(x,y)为当前帧,acc(x,y)为背景模型,frimage(x,y)为前景帧,α为背景更新率,选取α=0.15,acc(x,y)初始化为0。最后根据分离的前景图像,检测出工件位置。Where image(x,y) is the current frame, acc(x,y) is the background model, frimage(x,y) is the foreground frame, α is the background update rate, select α=0.15, acc(x,y) is initialized as 0. Finally, according to the separated foreground image, the position of the workpiece is detected.
工件的姿态检测先将彩色图片进行灰度处理,测量工件竖直方向和水平方向所占的最大距离,判断工件的姿态趋于竖直还是水平。若趋于竖直姿态则从左向右边缘检测;若趋于水平姿态则从上往下边缘检测。边缘检测需要检测在所选方向上梯度值超过阈值的点,再对这些点进行直线拟合,计算出角度。The posture detection of the workpiece first processes the color image in grayscale, measures the maximum distance occupied by the vertical and horizontal directions of the workpiece, and judges whether the posture of the workpiece tends to be vertical or horizontal. If it tends to a vertical posture, it detects the edge from left to right; if it tends to a horizontal posture, it detects the edge from top to bottom. Edge detection needs to detect points where the gradient value exceeds the threshold in the selected direction, and then perform straight line fitting on these points to calculate the angle.
流水线上的工件识别要求在短时间内给出分类结果,工件的形状,纹理等特征相对简单,因此,直接在顶视图中进行模型匹配,分类器的原理图如图2。Workpiece recognition on the assembly line requires classification results to be given in a short time. The shape, texture and other features of the workpiece are relatively simple. Therefore, model matching is performed directly in the top view. The schematic diagram of the classifier is shown in Figure 2.
首先,在LabVIEW的pattern classify程序中输入各种工件的样本,对各样本进行特征检测,并训练形状模型,建立工件样本数据库。然后对实时图像的感兴趣区域(ROI)中目标的特征进行检测,并与数据库中的模型进行匹配,计算出匹配值,选取匹配值最高的结果作为分类器的输出。First, input samples of various workpieces in the pattern classify program of LabVIEW, perform feature detection on each sample, and train the shape model to establish a database of workpiece samples. Then detect the features of the target in the region of interest (ROI) of the real-time image, match it with the model in the database, calculate the matching value, and select the result with the highest matching value as the output of the classifier.
畸变校正实施过程:为了计算摄像机径向畸变矩阵中的12个参数,至少需要6个点校正前后的图像坐标。采集一张标定板图片,设置阈值,使参考点可被检测到,我们选择所需校正区域的12个点,分别记录其图像坐标(ui,vi)和(ui',vi'),i=1~12,见表,组成如下式所示的方程,求解出参数a、b。Distortion correction implementation process: In order to calculate the 12 parameters in the camera radial distortion matrix, at least 6 image coordinates before and after correction are required. Collect a picture of the calibration board, set the threshold so that the reference point can be detected, we select 12 points in the required correction area, and record their image coordinates (u i , v i ) and (u i ', v i ' ), i=1~12, see the table, form the equation shown in the following formula, and solve the parameters a and b.
求得的畸变校正矩阵为:The obtained distortion correction matrix is:
单目二维视觉系统标定实施过程:选取标定板上2个参考点校正后的图像坐标及其世界坐标,点P1:(u1',v1')=(454.62,194.04),(x1,y1)=(280.70,2.41);点P2:(u2',v2')=(324.29,280.64),(x2,y2)=(69.89,142.48)。根据前面所述单目二维视觉系统原理,编程实现摄像机参数的标定。The implementation process of monocular two-dimensional vision system calibration: select the corrected image coordinates and world coordinates of two reference points on the calibration board, point P 1 : (u 1 ', v 1 ')=(454.62,194.04), (x 1 ,y 1 )=(280.70,2.41); point P 2 : (u 2 ',v 2 ')=(324.29,280.64), (x 2 ,y 2 )=(69.89,142.48). According to the principle of the monocular two-dimensional vision system mentioned above, the calibration of the camera parameters is realized by programming.
卡尔曼预测算法实施过程:首先建立系统模型,然后用以上所述的标定方法计算得到的运动工件二维世界坐标作为位置观测值,同时将估计出的速度作为速度测量值,组成观测向量。于是得到了卡尔曼滤波器的最优预测值,图3是预测系统原理框图。建立以下系统模型:The implementation process of the Kalman prediction algorithm: first establish a system model, and then use the above-mentioned calibration method to calculate the two-dimensional world coordinates of the moving workpiece as the position observation value, and at the same time use the estimated speed as the speed measurement value to form an observation vector. Then the optimal prediction value of the Kalman filter is obtained. Figure 3 is a block diagram of the prediction system. Model the following system:
此模型中,第一个方程为系统状态方程,x(t)为由X方向工件的位置x,速度vx,加速度ax组成的状态向量,u(t)为运动系统的控制量。若u(t)=0时,系统加速度为0,为匀速运动,w(t)为系统噪声,一般设为均值为零的高斯白噪声。第二个方程为输出方程,定义系统的输出值,此系统的输出值y(t)被定义为由位置和速度组成的向量(测量值要和输出值类型保持一致),v(t)为测量噪声,也设为均值为零的高斯白噪声。In this model, the first equation is the state equation of the system, x(t) is the state vector composed of the position x of the workpiece in the X direction, the velocity v x , and the acceleration a x , and u(t) is the control quantity of the motion system. If u(t)=0, the acceleration of the system is 0, which is a uniform motion, and w(t) is the system noise, which is generally set as Gaussian white noise with a mean value of zero. The second equation is the output equation, which defines the output value of the system. The output value y(t) of this system is defined as a vector composed of position and velocity (the measurement value must be consistent with the output value type), and v(t) is The measurement noise is also set to Gaussian white noise with zero mean.
卡尔曼预测算法的编程实现:分别采集两帧图像,间隔1s,工件位置的变化Δx即为所估计的速度值,作为初始速度v0输入Kalman滤波器。根据系统模型,位置、速度组成的观测向量,卡尔曼滤波器计算出运动状态的最优估计值。图4为位置预测值X(实线)和位置观测值X’(虚线)之间的关系图。如图,由于速度估计值有一定的偏差,导致X与X’之间有一定的偏差,但是由于卡尔曼预测模型的不断更新,使预测值X逐渐逼近X’,两者的误差逐渐收敛到零。图5为预测值X与观测值X’之间的误差,图中点杂乱,是由于存在观测噪声,但易看出误差值趋与零。The programming implementation of Kalman prediction algorithm: collect two frames of images respectively, with an interval of 1s, and the change Δx of the workpiece position is the estimated velocity value, which is input into the Kalman filter as the initial velocity v 0 . According to the system model, the observation vector composed of position and velocity, the Kalman filter calculates the optimal estimated value of the motion state. FIG. 4 is a graph showing the relationship between the predicted position value X (solid line) and the observed position value X′ (dashed line). As shown in the figure, due to a certain deviation in the speed estimate, there is a certain deviation between X and X', but due to the continuous update of the Kalman prediction model, the predicted value X gradually approaches X', and the error between the two gradually converges to zero. Figure 5 shows the error between the predicted value X and the observed value X'. The dots in the figure are messy because of the observation noise, but it is easy to see that the error value tends to zero.
SMC LEFH32K2-32-R16N3电动夹爪的抓取控制:通过夹爪的编程软件编写抓取控制程序,设定动作0和动作1。动作0为抓取,动作1为释放。然后通过EPSON机械臂控制器的I/O口发送编码信号给SMC控制器,实现夹爪的控制。机械臂编程软件“Out1,208”指令即从端口1发送二进制码11010000,重置夹爪。“Out1,144”指令即发送二进制码10010000,写入动作0。“Out1,176”指令即发送二进制码10110000,将drive位置1,执行抓取动作。类似地,“Out1,145”,写动作1,“Out1,177”,执行释放动作。Grabbing control of SMC LEFH32K2-32-R16N3 electric gripper: Write the gripping control program through the programming software of the gripper, and set
EPSON SCARA-G6机械臂的伺服控制:PC机通过TCP/IP协议与机械臂的控制器建立连接,设定好控制器#201网口的IP地址与PC机在同一子网下,再用“OpenNet#201”指令打开相应的网口,“Read#201,data1$,12”读取接收到的运动信息包括X、Y、V、deg(角度),“MOVE”指令控制机械臂的运动。系统没有采用实时跟踪的方式,因为机械臂会遮挡住运动工件。系统设定一个指定位置x0=211(参考机械臂坐标系),当工件的x坐标到达x0后,对机械手进行轨迹规划,并控制机械臂按期望轨迹运动,再命令夹爪抓取工件,按要求将工件抓至所需位置,再发送信号释放工件,进行下一轮的抓取,整个伺服控制示意图见图6,伺服控制流程图见图7。Servo control of the EPSON SCARA-G6 robotic arm: the PC establishes a connection with the controller of the robotic arm through the TCP/IP protocol, and the IP address of the network port #201 of the controller is set in the same subnet as the PC, and then use ""OpenNet#201" command opens the corresponding network port, "Read#201,data1$,12" reads the received motion information including X, Y, V, deg (angle), and "MOVE" command controls the movement of the robotic arm. The system does not use real-time tracking because the robotic arm will block the moving workpiece. The system sets a specified position x 0 =211 (refer to the coordinate system of the manipulator). When the x coordinate of the workpiece reaches x 0 , it plans the trajectory of the manipulator, controls the movement of the manipulator according to the desired trajectory, and then commands the gripper to grab the workpiece , grab the workpiece to the desired position according to the requirements, and then send a signal to release the workpiece, and carry out the next round of grabbing. The whole servo control schematic diagram is shown in Figure 6, and the servo control flow chart is shown in Figure 7.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310129367.9A CN103325106B (en) | 2013-04-15 | 2013-04-15 | Based on the Moving Workpieces method for sorting of LabVIEW |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310129367.9A CN103325106B (en) | 2013-04-15 | 2013-04-15 | Based on the Moving Workpieces method for sorting of LabVIEW |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103325106A true CN103325106A (en) | 2013-09-25 |
CN103325106B CN103325106B (en) | 2015-11-25 |
Family
ID=49193829
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310129367.9A Active CN103325106B (en) | 2013-04-15 | 2013-04-15 | Based on the Moving Workpieces method for sorting of LabVIEW |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103325106B (en) |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104148300A (en) * | 2014-01-24 | 2014-11-19 | 北京聚鑫跃锋科技发展有限公司 | Garbage sorting method and system based on machine vision |
CN104268602A (en) * | 2014-10-14 | 2015-01-07 | 大连理工大学 | Shielded workpiece identifying method and device based on binary system feature matching |
CN105159248A (en) * | 2015-08-05 | 2015-12-16 | 东莞理工学院 | Machine vision based method for classifying industrial products |
CN105225225A (en) * | 2015-08-31 | 2016-01-06 | 臻雅科技温州有限公司 | A kind of leather system for automatic marker making method and apparatus based on machine vision |
CN105405139A (en) * | 2015-11-12 | 2016-03-16 | 深圳市傲视检测技术有限公司 | Monocular CCD (Charge Coupled Device) based method and system for rapidly positioning feeding of small-sized glass panel |
CN105728328A (en) * | 2016-05-13 | 2016-07-06 | 杭州亚美利嘉科技有限公司 | Goods sorting system and method |
CN107111739A (en) * | 2014-08-08 | 2017-08-29 | 机器人视觉科技股份有限公司 | The detection and tracking of article characteristics |
CN107671008A (en) * | 2017-11-13 | 2018-02-09 | 中国科学院合肥物质科学研究院 | A kind of part stream waterline automatic sorting boxing apparatus of view-based access control model |
CN108160530A (en) * | 2017-12-29 | 2018-06-15 | 苏州德创测控科技有限公司 | A kind of material loading platform and workpiece feeding method |
CN108188039A (en) * | 2018-01-15 | 2018-06-22 | 苏州工业园区服务外包职业学院 | A kind of fruit Automated Sorting System and method |
CN108406780A (en) * | 2018-05-18 | 2018-08-17 | 苏州吉成智能科技有限公司 | pharmacy fault scanning method |
CN108458655A (en) * | 2017-02-22 | 2018-08-28 | 上海理工大学 | Support the data configurableization monitoring system and method for vision measurement |
CN108782797A (en) * | 2018-06-15 | 2018-11-13 | 广东工业大学 | The control method and arm-type tea frying machine of arm-type tea frying machine stir-frying tealeaves |
CN109279325A (en) * | 2018-10-16 | 2019-01-29 | 深圳市正和忠信股份有限公司 | A kind of automatic feeding system |
CN109863002A (en) * | 2016-10-21 | 2019-06-07 | 通快机床两合公司 | Workpiece collects dot element and the method for auxiliary work-piece processing |
CN109927033A (en) * | 2019-04-01 | 2019-06-25 | 杭州电子科技大学 | A kind of target object dynamic adaptation method applied to conveyer belt sorting |
CN110180799A (en) * | 2019-06-28 | 2019-08-30 | 中船黄埔文冲船舶有限公司 | A kind of part method for sorting and system based on machine vision |
CN110711701A (en) * | 2019-09-16 | 2020-01-21 | 华中科技大学 | A grab-type flexible sorting method based on RFID spatial positioning technology |
CN110861076A (en) * | 2019-12-11 | 2020-03-06 | 深圳市盛世鸿恩科技有限公司 | Hand eye calibration device of mechanical arm |
CN110936372A (en) * | 2018-09-21 | 2020-03-31 | 许昌学院 | Control system of cigarette carton stacking robot |
CN111346829A (en) * | 2020-02-28 | 2020-06-30 | 西安电子科技大学 | PYNQ-based binocular camera three-dimensional sorting system and method |
CN112525157A (en) * | 2020-10-13 | 2021-03-19 | 江苏三立液压机械有限公司 | Hydraulic oil cylinder size measurement and pose estimation method and system based on video image |
CN113814986A (en) * | 2021-11-23 | 2021-12-21 | 广东隆崎机器人有限公司 | Method and system for controlling SCARA robot based on machine vision |
CN114749981A (en) * | 2022-05-27 | 2022-07-15 | 中迪机器人(盐城)有限公司 | Feeding and discharging control system and method based on multi-axis robot |
CN114798505A (en) * | 2022-04-21 | 2022-07-29 | 无锡比益特科技有限公司 | Cargo sorting device capable of achieving self-adaptive adjustment of cargo pose |
CN114888851A (en) * | 2022-05-30 | 2022-08-12 | 北京航空航天大学杭州创新研究院 | Moving object robot grabbing device based on visual perception |
CN116423528A (en) * | 2023-06-13 | 2023-07-14 | 国网浙江省电力有限公司宁波供电公司 | Transformer oil sample sorting method and system |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1253309A (en) * | 1998-11-10 | 2000-05-17 | 富士摄影胶片株式会社 | Posture regulating device and classifying device for use on photographic film set with lens |
CN1806940A (en) * | 2006-01-23 | 2006-07-26 | 湖南大学 | Defective goods automatic sorting method and equipment for high-speed automated production line |
CN101402199A (en) * | 2008-10-20 | 2009-04-08 | 北京理工大学 | Hand-eye type robot movable target extracting method with low servo accuracy based on visual sensation |
CN102151661A (en) * | 2010-11-24 | 2011-08-17 | 季广厚 | Method and equipment for sorting test tube samples |
CN102171531A (en) * | 2008-10-08 | 2011-08-31 | 本田技研工业株式会社 | Device for estimating shape of work and method for estimating shape of work |
CN102207988A (en) * | 2011-06-07 | 2011-10-05 | 北京邮电大学 | Efficient dynamic modeling method for multi-degree of freedom (multi-DOF) mechanical arm |
CN102430530A (en) * | 2010-08-31 | 2012-05-02 | 株式会社安川电机 | Robot system |
CN102692618A (en) * | 2012-05-23 | 2012-09-26 | 浙江工业大学 | RFID (radio frequency identification) positioning method based on RSSI (received signal strength indicator) weight fusion |
CN102914967A (en) * | 2012-09-21 | 2013-02-06 | 浙江工业大学 | Autonomous navigation and man-machine coordination picking operating system of picking robot |
-
2013
- 2013-04-15 CN CN201310129367.9A patent/CN103325106B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1253309A (en) * | 1998-11-10 | 2000-05-17 | 富士摄影胶片株式会社 | Posture regulating device and classifying device for use on photographic film set with lens |
CN1806940A (en) * | 2006-01-23 | 2006-07-26 | 湖南大学 | Defective goods automatic sorting method and equipment for high-speed automated production line |
CN102171531A (en) * | 2008-10-08 | 2011-08-31 | 本田技研工业株式会社 | Device for estimating shape of work and method for estimating shape of work |
CN101402199A (en) * | 2008-10-20 | 2009-04-08 | 北京理工大学 | Hand-eye type robot movable target extracting method with low servo accuracy based on visual sensation |
CN102430530A (en) * | 2010-08-31 | 2012-05-02 | 株式会社安川电机 | Robot system |
CN102151661A (en) * | 2010-11-24 | 2011-08-17 | 季广厚 | Method and equipment for sorting test tube samples |
CN102207988A (en) * | 2011-06-07 | 2011-10-05 | 北京邮电大学 | Efficient dynamic modeling method for multi-degree of freedom (multi-DOF) mechanical arm |
CN102692618A (en) * | 2012-05-23 | 2012-09-26 | 浙江工业大学 | RFID (radio frequency identification) positioning method based on RSSI (received signal strength indicator) weight fusion |
CN102914967A (en) * | 2012-09-21 | 2013-02-06 | 浙江工业大学 | Autonomous navigation and man-machine coordination picking operating system of picking robot |
Non-Patent Citations (3)
Title |
---|
彭艳芳: "《视频运动目标检测与跟踪算法研究》", 《中国优秀硕士学位论文全文数据库》, 15 December 2010 (2010-12-15) * |
戴剑锋: "《摄像头径向畸变自动校正系统》", 《中国优秀硕士学位论文全文数据库》, 15 March 2011 (2011-03-15) * |
钞萌: "《基于机器人视觉的定位》", 《中国优秀硕士学位论文全文数据库》, 15 November 2010 (2010-11-15) * |
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104148300B (en) * | 2014-01-24 | 2017-02-15 | 北京聚鑫跃锋科技发展有限公司 | Garbage sorting method and system based on machine vision |
CN104148300A (en) * | 2014-01-24 | 2014-11-19 | 北京聚鑫跃锋科技发展有限公司 | Garbage sorting method and system based on machine vision |
CN107111739A (en) * | 2014-08-08 | 2017-08-29 | 机器人视觉科技股份有限公司 | The detection and tracking of article characteristics |
CN104268602A (en) * | 2014-10-14 | 2015-01-07 | 大连理工大学 | Shielded workpiece identifying method and device based on binary system feature matching |
CN105159248A (en) * | 2015-08-05 | 2015-12-16 | 东莞理工学院 | Machine vision based method for classifying industrial products |
CN105159248B (en) * | 2015-08-05 | 2019-01-29 | 东莞理工学院 | A method of classifying to industrial products based on machine vision |
CN105225225B (en) * | 2015-08-31 | 2017-12-22 | 温州城电智能科技有限公司 | A kind of leather system for automatic marker making method and apparatus based on machine vision |
CN105225225A (en) * | 2015-08-31 | 2016-01-06 | 臻雅科技温州有限公司 | A kind of leather system for automatic marker making method and apparatus based on machine vision |
CN105405139A (en) * | 2015-11-12 | 2016-03-16 | 深圳市傲视检测技术有限公司 | Monocular CCD (Charge Coupled Device) based method and system for rapidly positioning feeding of small-sized glass panel |
CN105728328A (en) * | 2016-05-13 | 2016-07-06 | 杭州亚美利嘉科技有限公司 | Goods sorting system and method |
CN109863002A (en) * | 2016-10-21 | 2019-06-07 | 通快机床两合公司 | Workpiece collects dot element and the method for auxiliary work-piece processing |
CN108458655A (en) * | 2017-02-22 | 2018-08-28 | 上海理工大学 | Support the data configurableization monitoring system and method for vision measurement |
CN107671008A (en) * | 2017-11-13 | 2018-02-09 | 中国科学院合肥物质科学研究院 | A kind of part stream waterline automatic sorting boxing apparatus of view-based access control model |
CN108160530A (en) * | 2017-12-29 | 2018-06-15 | 苏州德创测控科技有限公司 | A kind of material loading platform and workpiece feeding method |
CN108188039A (en) * | 2018-01-15 | 2018-06-22 | 苏州工业园区服务外包职业学院 | A kind of fruit Automated Sorting System and method |
CN108406780A (en) * | 2018-05-18 | 2018-08-17 | 苏州吉成智能科技有限公司 | pharmacy fault scanning method |
CN108782797A (en) * | 2018-06-15 | 2018-11-13 | 广东工业大学 | The control method and arm-type tea frying machine of arm-type tea frying machine stir-frying tealeaves |
CN110936372A (en) * | 2018-09-21 | 2020-03-31 | 许昌学院 | Control system of cigarette carton stacking robot |
CN109279325A (en) * | 2018-10-16 | 2019-01-29 | 深圳市正和忠信股份有限公司 | A kind of automatic feeding system |
CN109279325B (en) * | 2018-10-16 | 2024-04-26 | 深圳市正和忠信股份有限公司 | Automatic feeding system |
CN109927033A (en) * | 2019-04-01 | 2019-06-25 | 杭州电子科技大学 | A kind of target object dynamic adaptation method applied to conveyer belt sorting |
CN110180799A (en) * | 2019-06-28 | 2019-08-30 | 中船黄埔文冲船舶有限公司 | A kind of part method for sorting and system based on machine vision |
CN110711701A (en) * | 2019-09-16 | 2020-01-21 | 华中科技大学 | A grab-type flexible sorting method based on RFID spatial positioning technology |
CN110861076A (en) * | 2019-12-11 | 2020-03-06 | 深圳市盛世鸿恩科技有限公司 | Hand eye calibration device of mechanical arm |
CN111346829A (en) * | 2020-02-28 | 2020-06-30 | 西安电子科技大学 | PYNQ-based binocular camera three-dimensional sorting system and method |
CN112525157A (en) * | 2020-10-13 | 2021-03-19 | 江苏三立液压机械有限公司 | Hydraulic oil cylinder size measurement and pose estimation method and system based on video image |
CN113814986A (en) * | 2021-11-23 | 2021-12-21 | 广东隆崎机器人有限公司 | Method and system for controlling SCARA robot based on machine vision |
CN114798505A (en) * | 2022-04-21 | 2022-07-29 | 无锡比益特科技有限公司 | Cargo sorting device capable of achieving self-adaptive adjustment of cargo pose |
CN114798505B (en) * | 2022-04-21 | 2024-02-20 | 无锡比益特科技有限公司 | Cargo sorting device capable of realizing cargo pose self-adaptive adjustment |
CN114749981A (en) * | 2022-05-27 | 2022-07-15 | 中迪机器人(盐城)有限公司 | Feeding and discharging control system and method based on multi-axis robot |
CN114888851A (en) * | 2022-05-30 | 2022-08-12 | 北京航空航天大学杭州创新研究院 | Moving object robot grabbing device based on visual perception |
CN114888851B (en) * | 2022-05-30 | 2024-12-27 | 北京航空航天大学杭州创新研究院 | A robot grasping device for moving objects based on visual perception |
CN116423528A (en) * | 2023-06-13 | 2023-07-14 | 国网浙江省电力有限公司宁波供电公司 | Transformer oil sample sorting method and system |
CN116423528B (en) * | 2023-06-13 | 2023-10-17 | 国网浙江省电力有限公司宁波供电公司 | Transformer oil sample sorting method and system |
Also Published As
Publication number | Publication date |
---|---|
CN103325106B (en) | 2015-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103325106B (en) | Based on the Moving Workpieces method for sorting of LabVIEW | |
CN110202583B (en) | A humanoid manipulator control system based on deep learning and its control method | |
CN108399639B (en) | Rapid automatic grabbing and placing method based on deep learning | |
CN107992881B (en) | Robot dynamic grabbing method and system | |
CN111462154B (en) | Target positioning method and device based on depth vision sensor and automatic grabbing robot | |
CN111496770A (en) | Intelligent handling robotic arm system and using method based on 3D vision and deep learning | |
CN104058260B (en) | The robot automatic stacking method that view-based access control model processes | |
CN112518748B (en) | Automatic grabbing method and system for visual mechanical arm for moving object | |
CN109926817B (en) | Transformer automatic assembly method based on machine vision | |
CN113814986B (en) | Method and system for controlling SCARA robot based on machine vision | |
CN111923053A (en) | Industrial robot object grabbing teaching system and method based on depth vision | |
CN112102368B (en) | Deep learning-based robot garbage classification and sorting method | |
CN111251295A (en) | Visual mechanical arm grabbing method and device applied to parameterized parts | |
CN113146172A (en) | Multi-vision-based detection and assembly system and method | |
Husain et al. | Realtime tracking and grasping of a moving object from range video | |
CN115070781B (en) | Object grabbing method and two-mechanical-arm cooperation system | |
CN109732610A (en) | Human-machine collaborative robot grasping system and its working method | |
CN117162094A (en) | Multi-target self-adaptive angle grabbing method of visual servo mechanical arm | |
CN109079777B (en) | Manipulator hand-eye coordination operation system | |
Uçar et al. | Determination of angular status and dimensional properties of objects for grasping with robot arm | |
Gao et al. | An automatic assembling system for sealing rings based on machine vision | |
CN118122642A (en) | Leaf spring pressure sorting method and sorting system | |
WO2025000778A1 (en) | Gripping control method and apparatus for test tube | |
Zhou et al. | Visual servo control system of 2-DOF parallel robot | |
Zhao et al. | POSITIONING AND GRABBING TECHNOLOGY OF INDUSTRIAL ROBOT BASED ON VISION. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |