CN103323510B - 一种基于芳基重氮盐功能化金纳米粒子的修饰电极的制备方法 - Google Patents

一种基于芳基重氮盐功能化金纳米粒子的修饰电极的制备方法 Download PDF

Info

Publication number
CN103323510B
CN103323510B CN201310273737.6A CN201310273737A CN103323510B CN 103323510 B CN103323510 B CN 103323510B CN 201310273737 A CN201310273737 A CN 201310273737A CN 103323510 B CN103323510 B CN 103323510B
Authority
CN
China
Prior art keywords
nanometer particle
golden nanometer
carbon electrode
glass
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310273737.6A
Other languages
English (en)
Other versions
CN103323510A (zh
Inventor
刘秀辉
南志汉
裘宇
郑李纯
卢小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwest Normal University
Original Assignee
Northwest Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwest Normal University filed Critical Northwest Normal University
Priority to CN201310273737.6A priority Critical patent/CN103323510B/zh
Publication of CN103323510A publication Critical patent/CN103323510A/zh
Application granted granted Critical
Publication of CN103323510B publication Critical patent/CN103323510B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

本发明公开了一种基于芳基重氮盐功能化金纳米粒子的修饰电极的制备方法。其通过电化学还原芳基重氮盐将苯胺基(苯甲酸基)键接到金纳米粒子表面,从而在电极表面形成一层修饰层,具体是首先通过电沉积方法在电极表面制备金纳米粒子,然后将该修饰电极浸没到芳基重氮盐溶液中利用电化学还原方法将苯胺基(苯甲酸基)键接到金纳米粒子表面,从而得到基于芳基重氮盐功能化金纳米粒子的修饰电极。

Description

一种基于芳基重氮盐功能化金纳米粒子的修饰电极的制备方法
技术领域
本发明涉及一种生物传感器,具体地说是一种基于芳基重氮盐功能化金纳米粒子的修饰电极的制备方法。
背景技术
近年来,金属纳米粒子特别是金纳米粒子在生物电化学,催化化学和电分析化学等学科的应用前景上飞速发展。金纳米粒子表面修饰在构建纳米传感器上非常重要。近年来的研究表明,在金纳米粒子表面修饰的方法是可行的,因为金纳米粒子可以像搭积木一样通过巯基,氨基,磷烷等官能团共价连接到分子上。绝大多数的金纳米粒子修饰方法是基于巯基和金表面形成S-Au键,或者Au-N键, 但是,由于S-Au键的存在使得金纳米粒子的表面在空气中很容易氧化。同样的对于Au-N键而言,金纳米粒子与氮原子键合的并不牢固,金纳米粒子很容易被其他竞争性离子取代。因此,需要研究一种新的更牢固的金纳米粒子表面修饰方法。有文献曾报道,C-Au键的键能为317.1 kJ mol-1,远大于S-Au (154.4 kJ mol-1)和 NH-Au (153.6 kJ mol-1)。因此C-Au相比S-Au不易被氧化。同时近期研究表明,功能化的芳基重氮盐可以被修饰到碳材料表面,相比于修饰巯基它更加的稳定。因此,是否将这个过程能够拓展到金纳米粒子表面修饰上。
发明内容
鉴于上述,本发明的目的在于提供一种基于芳基重氮盐功能化金纳米粒子的修饰电极的制备方法
本发明的技术方案是:
a. 将2ml 10 mM NaNO2加入到2ml 2mM对氨基苯甲酸(2mM 对苯二胺) 0.2M HCl水溶液中,然后将混合溶液在冰浴黑暗条件下,通氮气强力搅拌15min,制得芳基重氮盐水溶液;
b.将玻碳电极依次用0.3μm、0.05μm的三氧化二铝悬浊液抛光成镜面,再依次经体积浓度为95 %的乙醇、二次蒸馏水超声清洗后,得到处理后的玻碳电极;裸玻碳电极在1 mmol/L HAuCl4+0.2 mol/L Na2SO4 溶液中通过电沉积使干净的裸电极表面形成金纳米粒子,然后将修饰有金纳米粒子的玻碳电极加入芳基重氮盐水溶液中电化学还原处理:在电压介于0.5 V到-0.5 V 下扫描2 圈,再次将修饰的玻碳电极用二次蒸馏水冲洗干净,并在红外灯下烘烤30分钟;制得基于苯胺(苯甲酸)修饰金纳米粒子的修饰电极 。
本发明具有的优点和产生的有益效果是:
采用一种简单,快速的功能化金纳米粒子的技术将对苯胺基和对苯甲酸基键接到了金纳米粒子的表面。通过电沉积得到的金纳米粒子颗粒均匀,覆盖度高,同时电化学还原芳基重氮功能化过程简单易行,反应时间短。正因为采用了这种功能化方法,构建了稳定性良好的修饰电极。
附图说明
图1中(A)为本发明场发射扫描电镜(FESEM)观察金纳米粒子修饰玻碳电极的表面形貌图;(B)为对苯胺基修饰金纳米粒子玻碳电极的表面形貌图;(C)为对苯甲酸基修饰金纳米粒子玻碳电极的表面形貌图。
图2中:(a)为裸GCE, (b)为金纳米粒子修饰玻碳电极, (c)为对苯胺基修饰金纳米粒子玻碳电极;(d)对苯甲酸基修饰金纳米粒子玻碳电极在5mM K3Fe(CN)6/K4Fe(CN)6 (1:1)和0.1M KCl中的电化学阻抗图
图3(A) 对苯甲酸基修饰金纳米粒子玻碳电极对1mM Fe(CN)6 3-/4-在pH 7.5和pH 2.5的循环伏安图;(B) 对苯胺基修饰金纳米粒子玻碳电极对10 mM Ru(NH3)63+在pH 8.5和 pH 2.5 (red) 循环伏安图。
具体实施方式
本发明实施例中所使用到的仪器或药品:CHI660电化学分析仪(上海辰华仪器公司)用于循环伏安实验;饱和甘汞参比电极(上海日岛科学仪器有限公司);石英管加热式自动双重纯水蒸馏器(1810B,上海亚太技术玻璃公司)用于制备二次蒸馏水;电子天平(北京赛多利斯仪器有限公司)用于称量药品;超声波清洗器(昆山市超声仪器有限公司);三氧化二铝打磨粉(0.30μm,0.05μm,上海辰华仪器试剂公司)用于处理玻碳电极;氯金酸(HAuCl4)(上海国药集团化学试剂有限公司),铁氰化钾和氯化钾(西安化学试剂厂),六氨合钌氯酸盐(北京J&K科技有限公司),亚硝酸钠(烟台双双化学试剂有限公司),对苯二胺(天津凯通化学试剂有限公司),对氨基苯甲酸(天津光复精细化工研究所),硫酸钠(耒阳化学试剂厂)。
为了更清楚地说明本发明的内容,下面结合附图和具体的实施例对本发明再作进一步的说明:
实施例1
1)电极的预处理:将玻碳电极依次用0.3μm、0.5μm的三氧化二铝悬浊液抛光成镜面,再依次经体积浓度为95%乙醇、二次蒸馏水超声波清洗,得到处理干净的玻碳电极;
2)将2ml 10 mM NaNO2加入到2ml 2mM对氨基苯甲酸的HCl水溶液中,然后将混合溶液在冰浴黑暗条件下,通氮气强力搅拌15min,制得芳基重氮盐水溶液;
3)将1)步骤处理的裸玻碳电极在1 mmol/L HAuCl4+0.2 mol/L Na2SO4 溶液中通过电沉积使干净的裸电极表面形成金纳米粒子,然后将修饰有金纳米粒子的玻碳电极加入5ml芳基重氮盐水溶液中电化学还原处理:在电压介于0.5 V到-0.5 V 下扫描2 圈,再次将修饰的玻碳电极用二次蒸馏水冲洗干净,并在红外灯下烘烤30分钟;制得对苯甲酸基修饰金纳米粒子的修饰电极。
实施例2
用实施例1同样的方法,制得对苯胺基修饰金纳米粒子的修饰电极。
下面,对芳基重氮盐功能化金纳米粒子的修饰电极的表征:
图1为场发射扫描电镜(FESEM)观察修饰电极AuNPs/GCE(A), NH2-Ph-AuNPs/GCE(B)和COOH-Ph-AuNPs/GCE(C)的表面形貌。从图1(A)可以看出,通过电化学沉积方法得到的金纳米粒子的尺寸为100±5nm。金纳米粒子在玻碳电极上分布较为均匀,有部分的金纳米粒子发生了小规模的团聚现象。图1(B)中,金纳米粒子颗粒的大小为40±2 nm,相比较图1(A)明显变小,这是由于金纳米粒子被苯胺基团包裹的原因所造成的。同时金纳米粒子的团聚现象变得不明显。如预期所想,金纳米粒子被裹得非常紧密。这些现象表明在金纳米粒子的表面形成了一层有机薄膜。同样在图1(C)中金纳米粒子颗粒的大小为50±10 nm.这是由于金纳米粒子表面嫁接了对苯甲酸基团的原因,使得它的颗粒同图1(A)相比变小。但和图1 (B)相比,它的颗粒较大,而且颗粒大小不均一。通过上述的分析可知,在金纳米粒子表面,由于强的Au-C共价键的影响,使得金纳米粒子表面更倾向于结合一层有机分子,进而使得纳米颗粒变小。
图2为本发明裸GCE(a), 金纳米粒子修饰玻碳电极(b),对苯胺基修饰金纳米粒子玻碳电极(c)和对苯甲酸基修饰金纳米粒子玻碳电极(d)在5mM K3Fe(CN)6/K4Fe(CN)6 (1:1)和0.1M KCl中的电化学阻抗图。曲线a为裸玻碳电极的阻抗谱,它由一个很小的半圆(Rct: 300Ω)和一个直的尾线组成。它揭示了一个受扩散控制的电化学过程。当玻碳电极的表面沉积了金纳米粒子后,b曲线显示修饰电极的Ret降低到了212 Ω.它反应出涉及[Fe(CN)6]3-/4-的氧化还原反应能够更快速的在金纳米粒子修饰的玻碳电极表面进行。这说明由于金纳米粒子的良好导电性能,使得它可以加速电子转移过程。然而当在金纳米粒子的表面各自修饰了对苯胺基和对氨基苯甲酸基时,虽然如图2中c和d曲线所示,修饰电极界面的阻抗图为两条近似的直线,但实际上,从Zsimpin拟合软件中读取的Rct值分别为3344 Ω 和 7029 Ω。
图3为两种电化学探针:[Fe(CN)6]3−/4− 和 Ru(NH3)6 2+/3+两种电荷类型的氧化还原电对被选来研究对苯甲酸基修饰金纳米粒子玻碳电极和对苯胺基修饰金纳米粒子玻碳电极电极界面电荷控制机理。图3为对苯甲酸基修饰金纳米粒子玻碳电极在两种酸度下对1mM [Fe(CN)6]3−/4−响应的CV图。在pH 2.5时,如a线所示,可以看到一对明显的准可逆氧化还原峰,对应为Fe(CN)6 3−在0.2V的还原峰和Fe(CN)6 4− 在 0.37V的氧化峰。但是当溶液酸度调至pH7.5时,如b线所示,未能观察到明显的电化学信号。其中的原因在于对苯甲酸基修饰金纳米粒子玻碳电极表面高密度的带负电荷的苯甲酸根对[Fe(CN)6]3−/4− 的强烈排斥,阻碍了[Fe(CN)6]3−/4−到达电极表面。为了更进一步地说明这种电荷作用机理,本发明用对苯胺基修饰金纳米粒子玻碳电极对10 mM Ru(NH3)6Cl3在pH8.5、pH82.5不同酸度下循环伏安响应做了对比,其结果如图3.9B所示。在pH8.5.时,Ru(NH3)6 3+的氧化还原过程表现为一个准可逆的氧化还原峰。如期所想,当pH 2.5时,Ru(NH3)6 3+氧化还原峰电流明显减小。那是由于吸附在金表面的苯胺的pKa = 4.6,当溶液的pH值小于苯胺的pKa时,大量的氨基会带上正电荷阻碍了Ru(NH3)6 3+到达电极表面,因此NH2Ph-AuNPs/GCE起到一个阻碍的作用。

Claims (1)

1.基于芳基重氮盐功能化金纳米粒子的修饰电极的制备方法,其步骤是:
a. 将等体积的NaNO2水溶液加入到2mM对氨基苯甲酸或2mM 对苯二胺的盐酸溶液中,然后将混合溶液在冰浴黑暗条件下,通氮气强力搅拌15min,制得芳基重氮盐水溶液;
b.将玻碳电极依次用0.3μm、0.05μm的三氧化二铝悬浊液抛光成镜面,再依次经体积浓度为95 %的乙醇、二次蒸馏水超声清洗后,得到处理后的裸玻碳电极;裸玻碳电极在1 mmol/L HAuCl4+0.2 mol/L Na2SO4 溶液中通过电沉积使干净的裸玻碳电极表面形成金纳米粒子,然后将修饰有金纳米粒子的裸玻碳电极加入5ml芳基重氮盐水溶液中电化学还原处理:在电压介于0.5 V到-0.5 V 下扫描2 圈,再次将修饰的玻碳电极用二次蒸馏水冲洗干净,并在红外灯下烘烤30分钟;得芳基重氮盐功能化金纳米粒子的修饰电极。
CN201310273737.6A 2013-07-02 2013-07-02 一种基于芳基重氮盐功能化金纳米粒子的修饰电极的制备方法 Expired - Fee Related CN103323510B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310273737.6A CN103323510B (zh) 2013-07-02 2013-07-02 一种基于芳基重氮盐功能化金纳米粒子的修饰电极的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310273737.6A CN103323510B (zh) 2013-07-02 2013-07-02 一种基于芳基重氮盐功能化金纳米粒子的修饰电极的制备方法

Publications (2)

Publication Number Publication Date
CN103323510A CN103323510A (zh) 2013-09-25
CN103323510B true CN103323510B (zh) 2015-04-08

Family

ID=49192390

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310273737.6A Expired - Fee Related CN103323510B (zh) 2013-07-02 2013-07-02 一种基于芳基重氮盐功能化金纳米粒子的修饰电极的制备方法

Country Status (1)

Country Link
CN (1) CN103323510B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103979731B (zh) * 2014-04-24 2015-10-21 浙江工商大学 一种利用污染物自组装电化学系统降解苯胺废水的方法
CN105259349B (zh) * 2015-11-03 2017-11-14 青岛农业大学 一种免固定生物传感电极的制备及其在免标记均相光致电化学农残检测与癌症诊断中的应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Electrochemical impedance immunosensor based on gold nanoparticles and aryl diazonium salt functionalized gold electrodes for the detection of antibody;Guozhen Liu等;《Biosensors and Bioelectronics》;20110221;第26卷(第8期);第3660-3665页 *
The Fabrication of Stable Gold Nanoparticle-Modified Interfaces for Electrochemistry;Guozhen Liu等;《Langmuir》;20110224;第27卷(第7期);第4177-4178页 *
建立基于芳基重氮盐单分子层修饰的金属镉离子电化学传感器;张莉;《中国优秀硕士学位论文全文数据库 信息科技辑》;20120715(第07期);第14-15页 *

Also Published As

Publication number Publication date
CN103323510A (zh) 2013-09-25

Similar Documents

Publication Publication Date Title
Hasanjani et al. An electrochemical sensor for attomolar determination of mercury (II) using DNA/poly-L-methionine-gold nanoparticles/pencil graphite electrode
Yang et al. Electrochemical detection of trace arsenic (III) by nanocomposite of nanorod-like α-MnO2 decorated with∼ 5 nm Au nanoparticles: considering the change of arsenic speciation
Fang et al. A novel hydrazine electrochemical sensor based on a carbon nanotube-wired ZnO nanoflower-modified electrode
Reddy et al. Carbon nanotube ensembled hybrid nanocomposite electrode for direct electrochemical detection of epinephrine in pharmaceutical tablets and urine
Khudaish et al. Sensitive and selective dopamine sensor based on novel conjugated polymer decorated with gold nanoparticles
Hu et al. Imprinted sol–gel electrochemical sensor for the determination of benzylpenicillin based on Fe3O4@ SiO2/multi-walled carbon nanotubes-chitosans nanocomposite film modified carbon electrode
Fu et al. Electrochemical determination of trace copper (II) with enhanced sensitivity and selectivity by gold nanoparticle/single-wall carbon nanotube hybrids containing three-dimensional l-cysteine molecular adapters
Atta et al. Nano-perovskite carbon paste composite electrode for the simultaneous determination of dopamine, ascorbic acid and uric acid
Galal et al. Probing cysteine self-assembled monolayers over gold nanoparticles–Towards selective electrochemical sensors
Liu et al. A sensitive electrochemical assay for T4 polynucleotide kinase activity based on Fe3O4@ TiO2 and gold nanoparticles hybrid probe modified magnetic electrode
CN106645347A (zh) 一种基于血红蛋白‑纳米钯‑石墨烯复合材料的电化学生物传感器件的制备及其应用研究
Kumary et al. Voltammetric detection of paracetamol at cobalt ferrite nanoparticles modified glassy carbon electrode
Liu et al. Construction of europium hexacyanoferrate film and its electrocatalytic activity to tyrosine determination
Farokhi et al. Design of an electrochemical aptasensor based on porous nickel‑cobalt phosphide nanodiscs for the impedimetric determination of ractopamine
Li et al. Gold nanoparticles modified electrode via simple electrografting of in situ generated mercaptophenyl diazonium cations for development of DNA electrochemical biosensor
Cougnon et al. Carbon surface derivatization by electrochemical reduction of a diazonium salt in situ produced from the nitro precursor
Dueraning et al. An environmental friendly electrode and extended cathodic potential window for anodic stripping voltammetry of zinc detection
Cancino et al. Microelectrode array in mixed alkanethiol self-assembled monolayers: Electrochemical studies
You et al. Novel lanthanum vanadate-based nanocomposite for simultaneously electrochemical detection of dopamine and uric acid in fetal bovine serum
Nguyen et al. Platinum nanoflower-modified electrode as a sensitive sensor for simultaneous detection of lead and cadmium at trace levels
Emran et al. Chipset Nanosensor Based on N‐Doped Carbon Nanobuds for Selective Screening of Epinephrine in Human Samples
Moghadam et al. Electrochemical sensor for the determination of thiourea using a glassy carbon electrode modified with a self-assembled monolayer of an oxadiazole derivative and with silver nanoparticles
Renjini et al. Graphene-palladium composite for the simultaneous electrochemical determination of epinephrine, ascorbic acid and uric acid
Nxele et al. The effects of the composition and structure of quantum dots combined with cobalt phthalocyanine and an aptamer on the electrochemical detection of prostate specific antigen
Liu et al. An electrochemical chiral sensor based on the synergy of chiral ionic liquid and 3D-NGMWCNT for tryptophan enantioselective recognition

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150408

Termination date: 20160702