CN103322110B - Two-stage buffer with temperature detection device - Google Patents

Two-stage buffer with temperature detection device Download PDF

Info

Publication number
CN103322110B
CN103322110B CN201310255948.7A CN201310255948A CN103322110B CN 103322110 B CN103322110 B CN 103322110B CN 201310255948 A CN201310255948 A CN 201310255948A CN 103322110 B CN103322110 B CN 103322110B
Authority
CN
China
Prior art keywords
stage buffer
buffer
piston body
piston
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310255948.7A
Other languages
Chinese (zh)
Other versions
CN103322110A (en
Inventor
唐全林
邓学山
谭晓强
张智明
苏欣
唐豪清
潘金亮
李刚
高云飞
徐仁才
徐金明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Weisidao Intelligent Technology Co ltd
Original Assignee
Suzhou Tangshi Machinery Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN201510157692.5A priority Critical patent/CN104879421A/en
Application filed by Suzhou Tangshi Machinery Manufacturing Co Ltd filed Critical Suzhou Tangshi Machinery Manufacturing Co Ltd
Priority to CN201510158950.1A priority patent/CN104879424A/en
Priority to CN201510157635.7A priority patent/CN104806680A/en
Priority to CN201510157691.0A priority patent/CN104864019A/en
Priority to CN201510157632.3A priority patent/CN104806679A/en
Priority to CN201510157454.4A priority patent/CN104776147A/en
Priority to CN201310255948.7A priority patent/CN103322110B/en
Priority to CN201510158331.2A priority patent/CN104879423A/en
Publication of CN103322110A publication Critical patent/CN103322110A/en
Application granted granted Critical
Publication of CN103322110B publication Critical patent/CN103322110B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/30Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium with solid or semi-solid material, e.g. pasty masses, as damping medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/10Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using liquid only; using a fluid of which the nature is immaterial
    • F16F9/14Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect
    • F16F9/16Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts
    • F16F9/22Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with one or more cylinders each having a single working space closed by a piston or plunger
    • F16F9/26Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with one or more cylinders each having a single working space closed by a piston or plunger with two cylinders in line and with the two pistons or plungers connected together
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/3207Constructional features
    • F16F9/3214Constructional features of pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/3207Constructional features
    • F16F9/3235Constructional features of cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/3264Arrangements for indicating, e.g. fluid level; Arrangements for checking dampers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/3292Sensor arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/34Special valve constructions; Shape or construction of throttling passages
    • F16F9/3405Throttling passages in or on piston body, e.g. slots
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/50Special means providing automatic damping adjustment, i.e. self-adjustment of damping by particular sliding movements of a valve element, other than flexions or displacement of valve discs; Special means providing self-adjustment of spring characteristics
    • F16F9/512Means responsive to load action, i.e. static load on the damper or dynamic fluid pressure changes in the damper, e.g. due to changes in velocity
    • F16F9/5123Means responsive to load action, i.e. static load on the damper or dynamic fluid pressure changes in the damper, e.g. due to changes in velocity responsive to the static or steady-state load on the damper
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/50Special means providing automatic damping adjustment, i.e. self-adjustment of damping by particular sliding movements of a valve element, other than flexions or displacement of valve discs; Special means providing self-adjustment of spring characteristics
    • F16F9/512Means responsive to load action, i.e. static load on the damper or dynamic fluid pressure changes in the damper, e.g. due to changes in velocity
    • F16F9/5126Piston, or piston-like valve elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/50Special means providing automatic damping adjustment, i.e. self-adjustment of damping by particular sliding movements of a valve element, other than flexions or displacement of valve discs; Special means providing self-adjustment of spring characteristics
    • F16F9/52Special means providing automatic damping adjustment, i.e. self-adjustment of damping by particular sliding movements of a valve element, other than flexions or displacement of valve discs; Special means providing self-adjustment of spring characteristics in case of change of temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2222/00Special physical effects, e.g. nature of damping effects
    • F16F2222/12Fluid damping

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fluid-Damping Devices (AREA)
  • Actuator (AREA)

Abstract

The invention relates to a two-stage buffer with a temperature detection device. The two-stage buffer comprises a first-stage buffer and a last-stage buffer, each of the first-stage buffer and the last-stage buffer comprises a cylindrical cylinder, a cylinder cover is hermetically arranged at the opening end of the cylinder, a piston rod is hermetically and movably matched in a central through hole of the cylinder cover, a piston component is arranged at the right end of the piston rod, is suitable for being in piston movement in the cylinder and is movably and hermetically matched with the inner wall of the cylinder, the cylinder of the first-stage buffer forms the piston rod of the last-stage buffer, sensor sets are arranged on the right end faces of the piston components of the first-stage buffer and the last-stage buffer, each sensor set comprises a temperature sensor suitable for being used for detecting medium temperature, the temperature sensors are connected with a processor module, a liquid crystal display module is arranged on the outer barrel wall of the two-stage buffer, and the processor module is suitable for being used for displaying the medium temperature through the liquid crystal display module.

Description

A kind of two-stage buffer with temperature-detecting device
Technical field
The present invention relates to a kind of buffer, particularly relating to a kind of take elastic gel as the buffer of buffer medium.
Background technique
In bumper and absorbing shock field, buffer uses very extensive, and its Main Function absorbs various impact energy, proterctive equipment and reduction noise etc.
But buffer in use can produce certain temperature, continuous firing, temperature can be assembled, and needs to carry out cooling and processes, but how in detection buffer the temperature of buffer medium be the technical barrier of related domain.
Summary of the invention
The technical problem to be solved in the present invention is to provide a kind of two-stage buffer with temperature-detecting device, and this buffer solves the technical problem detecting medium temperature.
The invention provides a kind of two-stage buffer with temperature-detecting device, comprising: chopped-off head buffer, final stage buffer; Described chopped-off head buffer, final stage buffer comprise respectively: cylindrical, and for filling the cylinder body of buffer medium, cylinder cap is provided with in the opening end sealing of this cylinder body, in the central through bore of described cylinder cap, air-tight movable is combined with a piston rod, the right-hand member of this piston rod is provided with piston body assembly, this piston body assembly is suitable for making piston movement in described cylinder body, and coordinates with the inwall movable sealing of described cylinder body; Wherein, the cylinder body of described chopped-off head buffer forms the piston rod of described final stage buffer; The right side of the piston body assembly of described chopped-off head buffer, final stage buffer is respectively equipped with sensor group, and this sensor group comprises the temperature transducer being suitable for detecting medium temperature, and this temperature transducer is connected with a processor module; The outer tube wall of described two-stage buffer is provided with LCD MODULE, and described processor module is suitable for by LCD MODULE display medium temperature.
Further, described sensor group comprises the pressure transducer for detecting pressure medium, and this pressure transducer is connected with described processor module; The piston body assembly of buffer at different levels is suitable for when making piston movement, the pressure medium that described processor module detects according to described each pressure transducer, regulates medium in corresponding cylinder body toward regurgitation volume, with the speed of control piston motion.
Further, described piston body assembly comprises: described piston body assembly comprises: the left and right piston body of arranged in co-axial alignment, this left and right piston body is arranged with several through holes for medium axial flow, being sealed and matched between the adjacent face of left and right piston body, during to make to make piston movement, medium realizes coming and going flowing by means of only each through hole on described left and right piston body; The cavity for placing motor is provided with in described left piston body, this motor is controlled by described processor module, its rotor is connected to described right piston body, rotate for driving this right piston body according to pressure medium, to control the relative position relation of each through hole on left and right piston body, and then control media flow, i.e. control piston movement velocity.
Compared with prior art, tool of the present invention has the following advantages: (1) the present invention can reflect the temperature conditions of medium in cylinder in time by temperature transducer, avoids causing buffer to damage because temperature is too high; (2) instant invention overcomes in prior art due to impact energy fluctuation, and cause multi-stage buffer cannot the technical problem of co-ordination, the present invention detects impact energy by pressure transducer, and the medium of suitable adjustment buffer at different levels is toward regurgitation volume, to control the movement velocity of each piston body assembly, make buffer co-ordination at different levels, avoid certain one-level buffer that may occur excessive because of impact energy, all the other buffers have little time compression, and cause this grade of buffer long-term work in a high voltage state, easily cause damage; (3) coordinated by each through hole in left and right piston body, to control medium in corresponding cylinder body toward regurgitation volume, thus change the shuttle speed of respective pistons, to alleviate the cavity pressure of cylinder body at different levels, extend the buffer life-span; (4) this two-stage buffer is without the need to considering that medium is different, and application place is extensive, without the need to regulating buffer operative order in addition.
Accompanying drawing explanation
In order to make content of the present invention be more likely to be clearly understood, below basis specific embodiment and by reference to the accompanying drawings, the present invention is further detailed explanation, wherein
The structural representation one of Fig. 1 two-stage buffer of the present invention;
The structural representation two of Fig. 2 two-stage buffer of the present invention;
The structural representation of the piston body assembly in Fig. 3 two-stage buffer of the present invention;
The operating diagram of Fig. 4 piston body assembly of the present invention;
The control circuit block diagram of Fig. 5 two-stage buffer of the present invention.
Wherein, piston rod, the piston rod of 6-1 final stage buffer, 7 piston body assemblies, 8 urceolus, 9 sensor groups, 7-1 left piston body, the right piston body of 7-2,7-3 through hole, 7-4 motor, the 7-5 rotor of 1 chopped-off head buffer, 2 final stage buffers, 4 cylinder bodies, 5 cylinder caps, 6 chopped-off head buffers.
Embodiment
Below in conjunction with drawings and Examples, the present invention is described in detail:
See Fig. 1, Fig. 2 and Fig. 5, a kind of two-stage buffer with temperature-detecting device, comprising: chopped-off head buffer 1, final stage buffer 2; Described chopped-off head buffer 1, final stage buffer 2 comprise respectively: cylindrical, and for filling the cylinder body 4 of buffer medium, cylinder cap 5 is provided with in the opening end sealing of this cylinder body 4, in the central through bore of described cylinder cap 5, air-tight movable is combined with a piston rod 6, the right-hand member of this piston rod 6 is provided with piston body assembly 7, this piston body assembly 7 is suitable for making piston movement in described cylinder body 4, and coordinates with the inwall movable sealing of described cylinder body 4; Wherein, the cylinder body 4 of described chopped-off head buffer 1 forms the piston rod 6-1 of described final stage buffer 2; The right side of the piston body assembly 7 of described chopped-off head buffer 1, final stage buffer 2 is respectively equipped with sensor group, and this sensor group 9 comprises the temperature transducer being suitable for detecting medium temperature, and this temperature transducer is connected with a processor module; Urceolus 8 wall of described two-stage buffer is provided with LCD MODULE, and described processor module is suitable for by LCD MODULE display medium temperature.
Described sensor group 9 comprises the pressure transducer for detecting pressure medium, and each pressure transducer is connected with described processor module respectively; The piston body assembly 7 of buffer at different levels is suitable for when piston movement, the pressure medium that described processor module detects according to described each pressure transducer, regulates medium in corresponding cylinder body 4 toward regurgitation volume, with the speed of control piston motion.
Urceolus 8 inside bottom (being its right end face of urceolus 8 in figure) is fixed on bottom the piston rod 6 of described chopped-off head buffer 1.
See Fig. 3 and Fig. 4, described piston body assembly 7 comprises: the left and right piston body 7-2 of arranged in co-axial alignment, this left and right piston body is arranged with several through holes for medium axial flow, being sealed and matched between the adjacent face of left and right piston body, during to make to make piston movement, medium realizes coming and going flowing by means of only each through hole 7-3 on described left and right piston body; The cavity for placing motor 7-4 is provided with in described left piston body 7-1, this motor 7-4 is controlled by described processor module, its rotor 7-5 is connected to described right piston body 7-2, rotate for driving this right piston body 7-2 according to pressure medium, also can be understood as and coaxially deflect respective angles, to control the relative position relation of each through hole on left and right piston body, and then control media flow, i.e. control piston movement velocity, closes the buffer that medium temperature exceedes the corresponding stage of warning value.
In Fig. 4, dotted line through hole represents it is through hole 7-3 in left piston body 7-1, solid line through hole represents the through hole in right piston body 7-2, arrow represents motor 7-4 sense of rotation, and this Fig. 4 represents respective through hole docking operation on the fitting surface of left and right piston body, to control the flow in through hole.
Described right piston body 7-2 coaxially deflects relative to right piston body 7-2, its slewing area is no more than the diameter of through hole, namely motor 7-4 drives right piston body 7-2 in this diameter range according to pressure medium, do to come and go and rotate, to reach the object of control media flow, thus play the piston movement speed controlling respective pistons body assembly 7, and then alleviate pressure medium in cylinder body 4, play the object extending the buffer life-span.
The direct current generator 7-4 that described motor 7-4 can adopt precision high, or stepper motor 7-4.Power pack can adopt powered battery.Battery can be installed in left or right piston body 7-2, and pressure transducer such as can adopt the gloomy P499VBS-404C in river.
See Fig. 4, if many of described through hole 7-3, its distribution can be that concentric circle distributes with left and right piston body 7-2.
In order to accurately reach control object, described processor module can adopt single-chip microcomputer, embedded control chip, the pressure signal that described pressure transducer obtains, each motor 7-4 deflection angle in buffer at different levels is accurately controlled by processor module, to control piston body assembly 7 medium flow at different levels, regulate each cylinder body medium pressure.Described processor module can put into described left piston body or right piston body.Connecting line between described pressure transducer, motor 7-4, control chip can be placed in the cylinder wall of buffer at different levels, or is directly placed in medium.
Obviously, above-described embodiment is only for example of the present invention is clearly described, and is not the restriction to embodiments of the present invention.For those of ordinary skill in the field, can also make other changes in different forms on the basis of the above description.Here exhaustive without the need to also giving all mode of executions.And these belong to spirit institute's apparent change of extending out of the present invention or change and are still among protection scope of the present invention.

Claims (3)

1. with a two-stage buffer for temperature-detecting device, comprising: chopped-off head buffer, final stage buffer;
Described chopped-off head buffer, final stage buffer comprise respectively:
Cylindrical, and for filling the cylinder body of buffer medium, cylinder cap is provided with in the opening end sealing of this cylinder body, in the central through bore of described cylinder cap, air-tight movable is combined with a piston rod, the right-hand member of this piston rod is provided with piston body assembly, this piston body assembly is suitable for making piston movement in described cylinder body, and coordinates with the inwall movable sealing of described cylinder body;
Wherein, the cylinder body of described chopped-off head buffer forms the piston rod of described final stage buffer;
It is characterized in that: the right side of the piston body assembly of described chopped-off head buffer, final stage buffer is respectively equipped with sensor group, this sensor group comprises the temperature transducer being suitable for detecting medium temperature, and this temperature transducer is connected with a processor module;
The outer tube wall of described two-stage buffer is provided with LCD MODULE, and described processor module is suitable for by LCD MODULE display medium temperature.
2. two-stage buffer according to claim 1, is characterized in that,
Described sensor group comprises the pressure transducer for detecting pressure medium, and this pressure transducer is connected with described processor module;
The piston body assembly of buffer at different levels is suitable for when making piston movement, the pressure medium that described processor module detects according to described each pressure transducer, regulates medium in corresponding cylinder body toward regurgitation volume, with the speed of control piston motion.
3. two-stage buffer according to claim 2, it is characterized in that, described piston body assembly comprises: the left and right piston body of arranged in co-axial alignment, this left and right piston body is arranged with several through holes for medium axial flow, being sealed and matched between the adjacent face of left and right piston body, during to make to make piston movement, medium realizes coming and going flowing by means of only each through hole on described left and right piston body;
The cavity for placing motor is provided with in described left piston body, this motor is controlled by described processor module, its rotor is connected to described right piston body, rotate for driving this right piston body according to pressure medium, to control the relative position relation of each through hole on left and right piston body, and then control media flow, i.e. control piston movement velocity.
CN201310255948.7A 2013-06-25 2013-06-25 Two-stage buffer with temperature detection device Expired - Fee Related CN103322110B (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN201510158950.1A CN104879424A (en) 2013-06-25 2013-06-25 Running method of two-stage buffer with elastic rubber serving as buffer medium
CN201510157635.7A CN104806680A (en) 2013-06-25 2013-06-25 Buffer using elastic colloid as buffer medium and capable of displaying medium temperature
CN201510157691.0A CN104864019A (en) 2013-06-25 2013-06-25 Working method of two-stage buffer with temperature sensors
CN201510157632.3A CN104806679A (en) 2013-06-25 2013-06-25 Buffer having temperature detection device and using elastic colloid as buffering medium
CN201510157692.5A CN104879421A (en) 2013-06-25 2013-06-25 Method for operating buffers capable of displaying medium temperatures
CN201310255948.7A CN103322110B (en) 2013-06-25 2013-06-25 Two-stage buffer with temperature detection device
CN201510157454.4A CN104776147A (en) 2013-06-25 2013-06-25 Two-stage buffer using elastic colloid as buffer medium
CN201510158331.2A CN104879423A (en) 2013-06-25 2013-06-25 Working method of butter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310255948.7A CN103322110B (en) 2013-06-25 2013-06-25 Two-stage buffer with temperature detection device

Related Child Applications (10)

Application Number Title Priority Date Filing Date
CN201510157632.3A Division CN104806679A (en) 2013-06-25 2013-06-25 Buffer having temperature detection device and using elastic colloid as buffering medium
CN201510158335.0A Division CN104712700A (en) 2013-06-25 2013-06-25 Two-stage buffer with temperature detection device
CN201510158950.1A Division CN104879424A (en) 2013-06-25 2013-06-25 Running method of two-stage buffer with elastic rubber serving as buffer medium
CN201510157635.7A Division CN104806680A (en) 2013-06-25 2013-06-25 Buffer using elastic colloid as buffer medium and capable of displaying medium temperature
CN201510158621.7A Division CN104712698A (en) 2013-06-25 2013-06-25 Buffer capable of displaying medium temperature
CN201510158331.2A Division CN104879423A (en) 2013-06-25 2013-06-25 Working method of butter
CN201510157633.8A Division CN104712699A (en) 2013-06-25 2013-06-25 Buffer
CN201510157692.5A Division CN104879421A (en) 2013-06-25 2013-06-25 Method for operating buffers capable of displaying medium temperatures
CN201510157454.4A Division CN104776147A (en) 2013-06-25 2013-06-25 Two-stage buffer using elastic colloid as buffer medium
CN201510157691.0A Division CN104864019A (en) 2013-06-25 2013-06-25 Working method of two-stage buffer with temperature sensors

Publications (2)

Publication Number Publication Date
CN103322110A CN103322110A (en) 2013-09-25
CN103322110B true CN103322110B (en) 2015-04-29

Family

ID=49191060

Family Applications (8)

Application Number Title Priority Date Filing Date
CN201510157454.4A Pending CN104776147A (en) 2013-06-25 2013-06-25 Two-stage buffer using elastic colloid as buffer medium
CN201510157635.7A Pending CN104806680A (en) 2013-06-25 2013-06-25 Buffer using elastic colloid as buffer medium and capable of displaying medium temperature
CN201510158331.2A Pending CN104879423A (en) 2013-06-25 2013-06-25 Working method of butter
CN201510158950.1A Pending CN104879424A (en) 2013-06-25 2013-06-25 Running method of two-stage buffer with elastic rubber serving as buffer medium
CN201510157632.3A Pending CN104806679A (en) 2013-06-25 2013-06-25 Buffer having temperature detection device and using elastic colloid as buffering medium
CN201510157691.0A Pending CN104864019A (en) 2013-06-25 2013-06-25 Working method of two-stage buffer with temperature sensors
CN201510157692.5A Pending CN104879421A (en) 2013-06-25 2013-06-25 Method for operating buffers capable of displaying medium temperatures
CN201310255948.7A Expired - Fee Related CN103322110B (en) 2013-06-25 2013-06-25 Two-stage buffer with temperature detection device

Family Applications Before (7)

Application Number Title Priority Date Filing Date
CN201510157454.4A Pending CN104776147A (en) 2013-06-25 2013-06-25 Two-stage buffer using elastic colloid as buffer medium
CN201510157635.7A Pending CN104806680A (en) 2013-06-25 2013-06-25 Buffer using elastic colloid as buffer medium and capable of displaying medium temperature
CN201510158331.2A Pending CN104879423A (en) 2013-06-25 2013-06-25 Working method of butter
CN201510158950.1A Pending CN104879424A (en) 2013-06-25 2013-06-25 Running method of two-stage buffer with elastic rubber serving as buffer medium
CN201510157632.3A Pending CN104806679A (en) 2013-06-25 2013-06-25 Buffer having temperature detection device and using elastic colloid as buffering medium
CN201510157691.0A Pending CN104864019A (en) 2013-06-25 2013-06-25 Working method of two-stage buffer with temperature sensors
CN201510157692.5A Pending CN104879421A (en) 2013-06-25 2013-06-25 Method for operating buffers capable of displaying medium temperatures

Country Status (1)

Country Link
CN (8) CN104776147A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105299126B (en) * 2015-11-21 2017-12-05 平顶山学院 A kind of two-stage buffer with temperature-detecting device

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU970004A1 (en) * 1981-04-16 1982-10-30 Омский политехнический институт Method and device for damping mechanical oscillations of object on two-chamber pneumatic suspension
DE3215614A1 (en) * 1982-04-27 1983-02-03 Anna Dorothea 8000 München Sapunarow-Ryffel Hydraulic single-tube shock absorber with damping control
DE3314203A1 (en) * 1983-04-21 1984-10-25 Gerb Gesellschaft für Isolierung mbH & Co KG, 1000 Berlin HEATABLE VISCOSE DAMPER
FR2560323B1 (en) * 1984-02-29 1988-08-05 Delti Sa REGULATING DEVICE FOR OLEOPNEUMATIC SUSPENSION, AND SUSPENSION ELEMENT COMPRISING THE SAME
JPS60263735A (en) * 1984-06-12 1985-12-27 Honda Motor Co Ltd Control device of hydraulic damper
US5743362A (en) * 1996-06-28 1998-04-28 Enidine Incorporated Temperature compensated viscous damper
DE19634680A1 (en) * 1996-08-28 1998-03-12 Kober Ag Device for overcoming the effects of friction and temperature on gas springs
US6457730B1 (en) * 2001-02-16 2002-10-01 Trw Inc. Anti-roll bar with link actuator for controlling torsional rigidity
JP4689267B2 (en) * 2002-05-29 2011-05-25 プログレッシブ サスペンション インコーポレイテッド Hydraulic damper with pressure control valve and remote pressure control device
KR20060021456A (en) * 2004-09-03 2006-03-08 현대모비스 주식회사 Single body suspension with spring and damper for vehicles
CN100478251C (en) * 2007-02-06 2009-04-15 南京航空航天大学 Two-stage series connection two-chamber buffer
DE102008054573A1 (en) * 2008-12-12 2010-06-17 Robert Bosch Gmbh Method for determining compression travel of two pipe-shock absorber for motor vehicle, involves determining compression path from differences of pressures, and calculating compression travel from speed
DE102010052092A1 (en) * 2010-11-20 2012-05-24 Zf Friedrichshafen Ag Vibration damper with a sensor device
JP2012240439A (en) * 2011-05-16 2012-12-10 Suzuki Motor Corp Shock absorber stroke detecting device of motorcycle
CN202149175U (en) * 2011-06-30 2012-02-22 北京金自天和缓冲技术有限公司 Buffer
CN202833822U (en) * 2012-08-20 2013-03-27 成都市翻鑫家科技有限公司 Temperature measure type automobile shock absorber
CN202790297U (en) * 2012-09-17 2013-03-13 成都市翻鑫家科技有限公司 Temperature-controllable magnetorheological fluid bumper
CN105114520A (en) * 2013-06-25 2015-12-02 蒋盘君 Two-level buffer controlled by processor modules

Also Published As

Publication number Publication date
CN104864019A (en) 2015-08-26
CN104879421A (en) 2015-09-02
CN103322110A (en) 2013-09-25
CN104879423A (en) 2015-09-02
CN104806680A (en) 2015-07-29
CN104806679A (en) 2015-07-29
CN104879424A (en) 2015-09-02
CN104776147A (en) 2015-07-15

Similar Documents

Publication Publication Date Title
CN103307181B (en) A kind of method of work of the two-stage buffer with temperature-detecting device
CN103322110B (en) Two-stage buffer with temperature detection device
CN103291819B (en) Two-stage buffer with temperature protection device
CN103307176B (en) A kind ofly be suitable for the two-stage buffer realizing even buffering at different levels
CN103352953B (en) A kind of two-stage buffer being suitable for gradual control buffering order
CN103307172B (en) A kind of method of work of the two-stage buffer with temperature protective device
CN103352951B (en) Two-stage bumper provided with temperature detection device
CN104712698A (en) Buffer capable of displaying medium temperature
CN103307171B (en) According to the method for work of the buffer of surge pressure control piston movement velocity
CN104712700A (en) Two-stage buffer with temperature detection device
CN104712699A (en) Buffer
CN103307180B (en) Working method of two-stage buffer suitable for adjusting buffer sequences of all stages
CN103307178B (en) A kind of two-stage buffer being suitable for gradual control buffering order
CN103291807B (en) According to the buffer of surge pressure control piston movement velocity
CN103307179B (en) A kind of method of work being suitable for the two-stage buffer of gradual control buffering order
CN103291820B (en) A kind of three grades of buffers being suitable for gradual control buffering order

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20210111

Address after: 215104 Building 1, No. 1368, Wuzhong Avenue, Yuexi street, Wuzhong Economic Development Zone, Suzhou City, Jiangsu Province

Patentee after: Suzhou Wei you Intellectual Property Operation Co.,Ltd.

Address before: No. 4469, Wuzhong Avenue, Wuzhong District, Suzhou City, Jiangsu Province

Patentee before: SUZHOU TANG'S MACHINERY MANUFACTURING Co.,Ltd.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220816

Address after: 215128 2 / F, building 1, No. 178, Tayun Road, Yuexi street, Wuzhong Economic Development Zone, Suzhou City, Jiangsu Province

Patentee after: SUZHOU WEISIDAO INTELLIGENT TECHNOLOGY CO.,LTD.

Address before: 215104 Building 1, No. 1368, Wuzhong Avenue, Yuexi street, Wuzhong Economic Development Zone, Suzhou City, Jiangsu Province

Patentee before: Suzhou Wei you Intellectual Property Operation Co.,Ltd.

TR01 Transfer of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150429

CF01 Termination of patent right due to non-payment of annual fee