CN103313421A - Back off algorithm in medium access control protocol for multi-hop network and wireless sensor network - Google Patents
Back off algorithm in medium access control protocol for multi-hop network and wireless sensor network Download PDFInfo
- Publication number
- CN103313421A CN103313421A CN2013101942392A CN201310194239A CN103313421A CN 103313421 A CN103313421 A CN 103313421A CN 2013101942392 A CN2013101942392 A CN 2013101942392A CN 201310194239 A CN201310194239 A CN 201310194239A CN 103313421 A CN103313421 A CN 103313421A
- Authority
- CN
- China
- Prior art keywords
- delay
- node
- packet
- sensitive
- packets
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005540 biological transmission Effects 0.000 claims abstract description 25
- 230000035945 sensitivity Effects 0.000 claims abstract description 4
- 238000004891 communication Methods 0.000 claims description 38
- 238000012790 confirmation Methods 0.000 claims description 4
- 230000008859 change Effects 0.000 claims description 3
- 238000000034 method Methods 0.000 description 7
- 108700026140 MAC combination Proteins 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 101100172132 Mus musculus Eif3a gene Proteins 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
Images
Landscapes
- Mobile Radio Communication Systems (AREA)
Abstract
本发明涉及一种多跳网络和无线传感网的介质访问控制协议中的退避算法,本发明针对不同的分组分别采用不同的退避窗口进行退避,有效降低了非时延敏感分组对时延敏感分组的竞争影响,保证了时延敏感分组的有效传输,同时针对同种分组,节点在基础退避时隙上进行队列长度和传输次数加权值的计算,使得队列越长、重传次数越多的分组有更大的概率获得小的退避时隙,保证了网络的公平性。
The invention relates to a back-off algorithm in a medium access control protocol of a multi-hop network and a wireless sensor network. The invention uses different back-off windows for different groups to back off, effectively reducing the time-delay sensitivity of non-time-delay-sensitive groups. The impact of packet competition ensures the effective transmission of delay-sensitive packets. At the same time, for the same type of packets, the node calculates the weighted value of the queue length and transmission times on the basic backoff time slot, so that the longer the queue, the more retransmission times The group has a greater probability to obtain a small backoff time slot, which ensures the fairness of the network.
Description
技术领域technical field
本发明涉及无线通信技术领域,特别是涉及一种多跳网络和无线传感网的介质访问控制协议中的退避算法。The invention relates to the technical field of wireless communication, in particular to a backoff algorithm in a medium access control protocol of a multi-hop network and a wireless sensor network.
背景技术Background technique
随着无线网络、传感器及MEMS技术的发展,无线传感器网络和ad hoc网络的应用范围越来越广。这些网络中的节点大多以电池供电,网络吞吐量和能量效率决定了网络的性能和生存周期。在这些网络中,介质访问控制协议(MAC协议)决定了无线信道的使用方式,用来构建网络系统的底层基础结构。目前的MAC协议一般分为两种,一种是基于无线信道时分复用方式(Time Division Multiple Access,简称TDMA)的协议,给每个节点分配固定的无线信道使用时段,从而避免节点之间的相互干扰,但这种协议的传输时延较为固定,在很多应用中,需要对外界的变化及时反应,需要节点在监测到异常情况时马上汇报而不是等待传输时隙到达后再传输,而且这种协议对于时间同步的要求很高;另外一种是采用无线信道的随机竞争方式,节点再需要发送数据时随机使用无线信道,这种随机接入的MAC协议能够对外界变化作出即时反应,但重点要考虑尽量减少节点间的干扰,在随机接入的MAC协议中,节点共用无线信道引发了数据包的碰撞问题,这是因为随机接入的MAC协议大多使用CSMA/CA和二进制指数回退算法(Binary ExponentialBackoff,BEB)来减小碰撞,典型的如IEEE802.11DCF协议等。而这种碰撞完全是由分布式的算法产生随机的退避时隙来进行退避,数据包相互发生碰撞的可能性较大,导致数据包发生重传现象,间接的增大了传输时延。With the development of wireless network, sensor and MEMS technology, the application range of wireless sensor network and ad hoc network is getting wider and wider. Most of the nodes in these networks are powered by batteries, and network throughput and energy efficiency determine the performance and life cycle of the network. In these networks, the medium access control protocol (MAC protocol) determines the use of wireless channels and is used to build the underlying infrastructure of the network system. The current MAC protocol is generally divided into two types, one is based on the wireless channel Time Division Multiple Access (TDMA) protocol, which allocates a fixed wireless channel usage period to each node, thereby avoiding communication between nodes. Mutual interference, but the transmission delay of this protocol is relatively fixed. In many applications, it is necessary to respond to changes in the outside world in a timely manner. Nodes need to report immediately when abnormal conditions are detected instead of waiting for the transmission time slot to arrive before transmitting, and this One protocol has high requirements for time synchronization; the other is a random competition method using wireless channels, and nodes randomly use wireless channels when they need to send data. This random access MAC protocol can respond immediately to external changes, but The key point is to minimize the interference between nodes. In the random access MAC protocol, the nodes share the wireless channel, which causes the collision of data packets. This is because most random access MAC protocols use CSMA/CA and binary exponential back-off. Algorithm (Binary Exponential Backoff, BEB) to reduce the collision, such as the typical IEEE802.11DCF protocol. And this kind of collision is completely backed off by the random backoff time slot generated by the distributed algorithm. The possibility of data packets colliding with each other is relatively high, resulting in retransmission of data packets, which indirectly increases the transmission delay.
对于传输异质数据的无线传感网和ad hoc网络,考虑具备以下特点的应用场景:节点随机分布自组网,监测并将采集到的数据通过随机接入的mac协议传输到sink节点,遇到突发事件或特殊情况,监测到的数据是时延敏感的,需要及时传输;而平常状态下监测到的数据是非时延敏感的,可以容忍一定的传输延迟。For wireless sensor networks and ad hoc networks that transmit heterogeneous data, consider the application scenarios with the following characteristics: the nodes are randomly distributed in an ad hoc network, and the collected data is monitored and transmitted to the sink node through the MAC protocol of random access. In emergencies or special situations, the monitored data is delay-sensitive and needs to be transmitted in time; while the monitored data under normal conditions is not delay-sensitive and can tolerate a certain transmission delay.
针对这种场景下的节点布设,传统的退避算法的弊端更加明显,时延敏感分组与非时延敏感分组由于采用相同的退避算法导致时延敏感分组在转发方面无任何优先性可言,完全凭借随机产生的退避时间来进行退避,时延敏感分组完全有可能在信道竞争中败于非时延敏感分组,造成传输时延过大,另外,网络公平性以及能耗方面也由于随机退避而无法控制。For the deployment of nodes in this scenario, the disadvantages of the traditional back-off algorithm are more obvious. Since the delay-sensitive group and the non-delay-sensitive group use the same back-off algorithm, the delay-sensitive group has no priority in forwarding. Relying on the randomly generated backoff time for backoff, it is entirely possible for delay-sensitive packets to lose to non-delay-sensitive packets in channel competition, resulting in excessive transmission delay. In addition, network fairness and energy consumption are also affected by random backoff. Unable to control.
发明内容Contents of the invention
本发明所要解决的技术问题是提供一种多跳网络和无线传感网的介质访问控制协议中的退避算法,使得时延敏感分组尽可能的优先于非时延敏感分组传输。The technical problem to be solved by the present invention is to provide a back-off algorithm in the medium access control protocol of the multi-hop network and the wireless sensor network, so that the time-delay-sensitive packets can be transmitted as preferentially as possible over the non-time-delay-sensitive packets.
本发明解决其技术问题所采用的技术方案是:提供一种多跳网络和无线传感网的介质访问控制协议中的退避算法,包括以下步骤:The technical solution adopted by the present invention to solve the technical problem is: provide a backoff algorithm in the medium access control protocol of a multi-hop network and a wireless sensor network, comprising the following steps:
(1)将要传输的分组分为两种类型:时延敏感分组和非时延敏感分组,并在帧头用标志位进行区分;(1) Divide the packets to be transmitted into two types: delay-sensitive packets and non-delay-sensitive packets, and distinguish them with flag bits in the frame header;
(2)若节点发送时延敏感分组时,设每个节点正常的退避窗口为(0,CW),针对非时延敏感分组,退避窗口变为(0,CW/2),节点退避时隙数B=random(0,CW/2)*(1-qr/Qr)*φ*1/kk;其中,φ为时延敏感系数,qr为节点当前时延敏感分组的队列长度,Qr为时延敏感分组的缓冲区长度,k为当前分组的传输次数,其中,节点优先发送时延敏感分组;(2) If a node sends a delay-sensitive packet, set the normal back-off window of each node to be (0, CW), and for a non-delay-sensitive packet, the back-off window becomes (0, CW/2), and the node back-off time slot Number B=random(0,CW/2)*(1-qr/Qr)*φ*1/k k ; Among them, φ is the delay sensitivity coefficient, qr is the queue length of the current delay sensitive packet of the node, and Qr is The buffer length of the delay-sensitive packet, k is the number of transmissions of the current packet, wherein, the node sends the delay-sensitive packet first;
(3)若节点要发送非时延敏感分组时,设每个节点正常的退避窗口为(0,CW),若之前记录网络中通信的分组类型为时延敏感分组,则将退避窗口变为(CW/2,CW),节点退避时隙数B=random(CW/2,CW)*(1-qn/(Qr+Qn))*1/k;若之前记录的网络中通信的分组类型为非时延敏感分组,节点退避时隙数B=random(0,CW)*(1-qn/(Qr+Qn))*1/k;其中,qn为节点当前非时延敏感分组的队列长度,Qr为时延敏感分组的缓冲区长度,Qn为非时延敏感分组的缓冲区长度,k为当前分组的传输次数。(3) If a node wants to send a non-delay-sensitive packet, set the normal backoff window of each node to be (0, CW). If the packet type recorded in the network communication is a delay-sensitive packet, then change the backoff window to (CW/2, CW), the number of node back-off time slots B=random(CW/2,CW)*(1-qn/(Qr+Qn))*1/k; if the previously recorded packet type in the network For non-delay-sensitive packets, the number of node back-off slots B=random(0, CW)*(1-qn/(Qr+Qn))*1/k; where, qn is the queue of the node's current non-delay-sensitive packets length, Qr is the buffer length of delay-sensitive packets, Qn is the buffer length of non-delay-sensitive packets, and k is the transmission times of the current packet.
所述步骤(2)中若节点竞争信道成功,则发送RTS分组,父节点收到RTS分组后,回应CTS分组,RTS分组与CTS分组中都包含此次通信持续的时间以及此次通信要发送的分组类型;其他邻居节点在接收到RTS分组和CTS分组时,会根据其中的通信时间设定自身睡眠计时器进入睡眠,并且记录当前网络进行通信的分组类型。In the step (2), if the node successfully competes for the channel, it will send an RTS packet. After receiving the RTS packet, the parent node will respond to the CTS packet. Both the RTS packet and the CTS packet include the duration of the communication and the communication to be sent. When other neighbor nodes receive the RTS packet and CTS packet, they will set their own sleep timers to go to sleep according to the communication time in them, and record the packet type of the current network communication.
所述步骤(3)中若节点竞争信道成功,发送RTS分组中包含NAV用于表示此次通信的剩余通信时间,NAV=t*n+T,其中n为剩余要发送的分组数目,t为发送每个分组所需要的时间,T为总的帧间间隔时间;节点每次发送一个分组后等待接收目标节点的确认帧,若没有收到确认帧则重发分组。In the step (3), if the node competes for the channel successfully, the sent RTS packet contains NAV to indicate the remaining communication time of this communication, NAV=t*n+T, where n is the number of remaining packets to be sent, and t is The time required to send each packet, T is the total inter-frame interval time; each time a node sends a packet, it waits to receive the confirmation frame from the target node, and resends the packet if it does not receive the confirmation frame.
所述节点的能量低于阈值Eo时,节点发送一条自身即将失效的广播信息,并抑制自身接收或发送非时延敏感分组,只接收和发送时延敏感分组。When the energy of the node is lower than the threshold Eo, the node sends a broadcast message that it is about to fail, and restrains itself from receiving or sending non-delay-sensitive packets, and only receives and sends delay-sensitive packets.
所述步骤(2)中若节点竞争信道失败,则保存本次剩余退避时隙数Bl,下次竞争信道时,产生的新的基础退避时隙数Bm,取min(Bl,Bm)作为新一轮的退避时隙数。In the step (2), if the node fails to compete for the channel, save the remaining number of back-off time slots Bl for this time, and the new basic number of back-off time slots Bm for the next channel competition, take min(Bl, Bm) as the new Number of backoff slots for a round.
所述步骤(3)中若节点竞争信道失败,则取重新产生的随机数作为新一轮的基础退避时隙数。In the step (3), if the node fails to compete for the channel, the regenerated random number is used as the basic backoff time slot number for a new round.
在传输过程中若节点本身采集产生了另外分组,则要在本次通信结束后,重新参与下一次的信道竞争。During the transmission process, if the node itself collects and generates another packet, it must re-participate in the next channel competition after the end of this communication.
有益效果Beneficial effect
由于采用了上述的技术方案,本发明与现有技术相比,具有以下的优点和积极效果:Owing to adopting above-mentioned technical scheme, the present invention has following advantage and positive effect compared with prior art:
利用本发明,当节点无时延敏感分组发送且得知网络中可能存在时延敏感分组时,自动将退避窗口滞后为(CW/2,CW),完全避免与时延敏感分组产生冲突,即使节点未探知网络中有时延敏感分组,退避窗口(0,CW)是时延敏感分组退避窗口(0,CW/2)的两倍,后者有更大的概率取得更小的随机数。With the present invention, when the node has no delay-sensitive packets to send and knows that there may be delay-sensitive packets in the network, the backoff window is automatically delayed to (CW/2, CW), completely avoiding collisions with delay-sensitive packets, even if The node has not detected the delay-sensitive packets in the network, and the backoff window (0, CW) is twice the delay-sensitive packet backoff window (0, CW/2), and the latter has a greater probability of obtaining a smaller random number.
利用本发明,同种分组之间,在基础退避时隙差不多的情况下,队列长度越长,重传次数越多的分组越容易得到较小的退避时隙,保证了网络的公平性。With the present invention, when the basic back-off time slots are similar among groups of the same type, the longer the queue length and the more retransmission times, the easier it is to obtain smaller back-off time slots, which ensures the fairness of the network.
利用本发明,不同分组之间,时延敏感分组的各项加权系数均小于非时延敏感分组的加权系数,若非即使非时延敏感分组未探知网络中存在时延敏感分组的发送而采用的全退避窗口,产生了比时延敏感分组更小的基础退避时隙,经过加权计算以后,其最终的退避时隙也可能大于时延敏感分组的退避时隙,利于时延敏感分组优先传输。Utilizing the present invention, among different groups, the weighting coefficients of delay-sensitive packets are smaller than those of non-time-delay-sensitive packets, unless the non-time-delay-sensitive packets do not detect the transmission of time-delay-sensitive packets in the network The full backoff window produces a basic backoff slot smaller than that of the delay sensitive packet. After weighted calculation, the final backoff slot may also be larger than that of the delay sensitive packet, which is beneficial to the priority transmission of the delay sensitive packet.
附图说明Description of drawings
图1是本发明的算法流程图;Fig. 1 is the algorithm flowchart of the present invention;
图2~4是本发明具体实例示意图。2 to 4 are schematic diagrams of specific examples of the present invention.
具体实施方式Detailed ways
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。Below in conjunction with specific embodiment, further illustrate the present invention. It should be understood that these examples are only used to illustrate the present invention and are not intended to limit the scope of the present invention. In addition, it should be understood that after reading the teachings of the present invention, those skilled in the art can make various changes or modifications to the present invention, and these equivalent forms also fall within the scope defined by the appended claims of the present application.
本发明的实施方式涉及一种多跳网络和无线传感网的介质访问控制协议中的退避算法,如图1所示,包括以下步骤:Embodiments of the present invention relate to a backoff algorithm in a medium access control protocol of a multi-hop network and a wireless sensor network, as shown in FIG. 1 , comprising the following steps:
(1)节点采用周期性的睡眠和唤醒机制,在节点醒来时,首先侦听信道,若信道忙,节点本身也无分组要发送,则节点持续侦听一段时间仍无分组要发送或者接收,直接设置计时器进入睡眠状态,等待下次唤醒周期的到来;若节点有分组需要发送,则持续侦听直至接收到包含通信时间的分组(节点可能在某个分组的传输阶段的中间时刻醒来,此时它只能检测到信道中存在能量而无法解析收到的是何分组)或侦听到信道空闲,然后根据其中的NAV值设置睡眠计时器进入睡眠或开始竞争信道。(1) The node adopts a periodic sleep and wake-up mechanism. When the node wakes up, it first listens to the channel. If the channel is busy and the node itself has no packets to send, the node continues to listen for a period of time and still has no packets to send or receive. , directly set the timer to enter the sleep state, and wait for the arrival of the next wake-up period; if the node has a packet to send, it will continue to listen until it receives a packet containing the communication time (the node may wake up in the middle of the transmission stage of a certain packet At this time, it can only detect that there is energy in the channel but cannot resolve what packet it received) or detect that the channel is idle, and then set the sleep timer according to the NAV value to go to sleep or start to compete for the channel.
(2)将要传输的分组分为两种类型:时延敏感分组和非时延敏感分组,并在帧头用标志位进行区分;时延敏感分组总是优先于非时延敏感分组进行转发。当节点侦听到信道空闲时,开始竞争信道,执行退避算法。若节点在退避期间若侦听到其它节点的控制分组,则竞争失败,结束本次退避过程,记录其他节点传输的分组类型和通信时间,进入睡眠。等其他节点通信时间到达时醒来重新竞争信道。(2) Divide the packets to be transmitted into two types: delay-sensitive packets and non-delay-sensitive packets, and distinguish them with flag bits in the frame header; delay-sensitive packets are always forwarded prior to non-delay-sensitive packets. When the node detects that the channel is idle, it starts to compete for the channel and execute the backoff algorithm. If the node detects the control packets of other nodes during the back-off period, the competition fails, the back-off process ends, the packet type and communication time transmitted by other nodes are recorded, and it goes to sleep. When the communication time of other nodes arrives, wake up and re-compete for the channel.
(3)节点发送时延敏感分组的过程如下:(3) The process of nodes sending delay-sensitive packets is as follows:
(a)节点要发送时延敏感分组时,将自身的退避窗口由(0,CW)减小到(0,CW/2),从中随机选择基础退避时隙数B=random(0,CW/2),当节点退避失败时,本次剩余退避时隙为B1(k),节点下次重新竞争信道产生的退避时隙数为Bm(k+1),取新一轮基础退避时隙数B(k+1)=min(B1(k),Bm(k+1))。(a) When a node wants to send delay-sensitive packets, it reduces its own back-off window from (0, CW) to (0, CW/2), and randomly selects the number of basic back-off slots B=random(0, CW/ 2) When the node backoff fails, the remaining backoff time slots this time are B1(k), and the number of backoff time slots generated by the node re-competing for the channel next time is Bm(k+1), and the new round of basic backoff time slots is taken B(k+1)=min(B1(k), Bm(k+1)).
(b)将基础退避时隙数乘以传输次数权值系数得到B(k)=B*1/kk,k表示分组正在进行的传输次数,由公式可见分组传输失败次数增加时,k值增大,B是k的单调减函数,且收敛于0速度很快,下次节点再次竞争时B(k)的值将明显趋向于变小,将有更大机会成功传输分组。(b) Multiply the number of basic backoff slots by the weight coefficient of the number of transmissions to get B(k)=B*1/k k , where k represents the number of ongoing transmissions of a packet. It can be seen from the formula that when the number of packet transmission failures increases, the value of k As B increases, B is a monotonically decreasing function of k, and it converges to 0 very quickly. The value of B(k) will obviously tend to become smaller when nodes compete again next time, and there will be a greater chance of successfully transmitting packets.
(c)将得到的退避时隙数再乘以队列长度权值系数B(k,q)=B(k)*(1-qr/Qr)*φ,qr为节点当前时延敏感分组的队列长度,Qr为时延敏感分组的缓冲区长度。B(k,q)为最终的退避时隙数,由公式可见队列长度越长,B(k,q)的值越小,相对越容易传输,保证了拥有较长队列的节点有较大的概率传输分组的网络公平性。φ是时延敏感系数,是为了保证时延敏感分组的队列权值不大于非时延敏感分组的队列权值。(c) Multiply the number of backoff slots obtained by the queue length weight coefficient B(k,q)=B(k)*(1-qr/Qr)*φ, qr is the queue of the node's current delay-sensitive packet length, Qr is the buffer length of the delay-sensitive packet. B(k,q) is the final number of back-off time slots. It can be seen from the formula that the longer the queue length is, the smaller the value of B(k,q) is, and the easier it is to transmit, which ensures that nodes with longer queues have greater Network fairness for probabilistically transmitted packets. φ is the delay sensitivity coefficient, which is to ensure that the queue weight of delay-sensitive packets is not greater than the queue weight of non-delay-sensitive packets.
(4)节点发送非时延敏感分组的过程如下:(4) The process of nodes sending non-delay-sensitive packets is as follows:
(a)节点要发送非时延敏感分组时,先查看记录的上次网络通信中的分组类型,若是时延敏感分组,则认为此次通信仍可能存在时延敏感分组的竞争,将自身的退避窗口由(0,CW)变为到(CW/2,CW),以尽可能的给时延敏感分组“让行”。即使此次网络中不再存在时延敏感分组的通信,也不会影响与其他非时延敏感分组的竞争,因为所有的竞争节点都因为记录的分组类型而改变了窗口。若记录的上次通信的分组类型是非时延敏感分组,则认为此次通信不需要改变竞争窗口,仍为(0,CW)。基础退避时隙数B=random(0,CW)或(CW/2,CW)。(a) When a node wants to send a non-delay-sensitive packet, it first checks the recorded packet type in the last network communication. If it is a delay-sensitive packet, it thinks that there may still be delay-sensitive packet competition in this communication, and sends its own The backoff window is changed from (0, CW) to (CW/2, CW) to "give way" to delay-sensitive packets as much as possible. Even if there is no delay-sensitive packet communication in the network this time, it will not affect the competition with other non-delay-sensitive packets, because all competing nodes have changed the window because of the recorded packet type. If the recorded packet type of the last communication is a non-delay-sensitive packet, it is considered that this communication does not need to change the contention window, which is still (0, CW). The number of basic backoff slots B=random(0, CW) or (CW/2, CW).
(b)将基础退避时隙数乘以传输次数权值系数得到B(k)=B*1/k,k表示分组正在进行的传输次数,由公式可见分组传输失败次数增加时,k值增大,B是k的单调减函数,与同类分组相比,竞争失败次数越多,下次分组越容易发送成功,但与时延敏感分组相比,其加权系数关于k的收敛速度明显弱于后者的加权系数1/(k+1)k,时延敏感分组的加权后的退避时隙更快的趋向于0。(b) Multiply the number of basic backoff slots by the weight coefficient of the number of transmissions to get B(k)=B*1/k, where k represents the number of ongoing transmissions of a packet. It can be seen from the formula that when the number of packet transmission failures increases, the value of k increases. B is a monotonous decreasing function of k. Compared with similar groups, the more times of competition failures, the easier it is for the next group to be sent successfully. However, compared with delay-sensitive groups, the convergence speed of its weighting coefficient on k is obviously weaker The weighting coefficient of the latter is 1/(k+1) k , and the weighted backoff slot of the delay-sensitive packet tends to 0 faster.
(c)将得到的退避时隙数再乘以队列长度权值系数B(k,q)=B(k)*(1-qn/(Qr+Qn)),qn为节点当前非时延敏感分组的队列长度,Qr为时延敏感分组的缓冲区长度,Qn为非时延敏感分组的缓冲区长度。B(k,q)为最终的退避时隙数,由公式可见同类型分组相比,队列长度越长,B(k,q)的值越小,相对越容易传输,保证了拥有较长队列的节点有较大的概率传输分组的网络公平性。但相对于时延敏感分组,(c) Multiply the number of backoff slots obtained by the queue length weight coefficient B(k, q)=B(k)*(1-qn/(Qr+Qn)), where qn is the current non-delay-sensitive node The queue length of the packet, Qr is the buffer length of the delay sensitive packet, and Qn is the buffer length of the non-delay sensitive packet. B(k,q) is the final number of back-off slots. It can be seen from the formula that compared with the same type of packets, the longer the queue length, the smaller the value of B(k,q), and the easier it is to transmit, ensuring a longer queue The nodes have a greater probability of transmitting packets for network fairness. But compared to delay-sensitive packets,
要保证(1-qr/Qr)*φ<1-qn/(Qr+Qn-qn)/(Qr+Qn);To ensure that (1-qr/Qr)*φ<1-qn/(Qr+Qn-qn)/(Qr+Qn);
设φ=Qr/(Qn+Qr) 0<φ<1→(1-qr/Qr)*φ=(Qr-qr)/(Qr+Qn);Let φ=Qr/(Qn+Qr) 0<φ<1→(1-qr/Qr)*φ=(Qr-qr)/(Qr+Qn);
Qr-qr<Qr+Qn-qn→qn<Qn+qr;Qr-qr<Qr+Qn-qn→qn<Qn+qr;
因为qn≤Qn,qr≥1→qn<Qn+qr恒成立。Because qn≤Qn, qr≥1→qn<Qn+qr is always established.
所以(1-qr/Qr)*φ<1-qn/(Qr+Qn)恒成立。So (1-qr/Qr)*φ<1-qn/(Qr+Qn) is always established.
保证了时延敏感分组的队列权值系数小于非时延敏感分组的队列权值系数。It is ensured that the queue weight coefficient of the delay sensitive packet is smaller than the queue weight coefficient of the non-delay sensitive packet.
时延敏感分组与非时延敏感分组相比,如果前者的基础退避时隙数小于等于非时延敏感分组的基础退避时隙数,则最终的退避时隙肯定也小,即使前者的基础退避时隙数大于后者的退避时隙数,最终的退避时隙也有可能小于非时延敏感分组的退避时隙。Compared with non-delay-sensitive packets, if the number of basic back-off slots of the former is less than or equal to the number of basic back-off slots of non-delay-sensitive packets, the final back-off slots must be smaller, even if the former’s basic back-off slots The number of time slots is greater than the number of back-off time slots of the latter, and the final back-off time slot may also be smaller than the back-off time slot of non-delay-sensitive packets.
设图2(a)中节点1、2、3、5在第一轮通信阶段都想和中心节点0进行通信,竞争开始后,信道空闲,无分组在信道中发送,各节点开始退避过程。各节点分别产生各自的基础退避时隙,由于节点1与节点3中包含有时延敏感分组,所以退避窗口为(0,CW/2),其他节点暂时也并不知道网络此次通信中存在,仍按照正常窗口(0,CW)进行退避。设CW=64,各节点产生的基础退避时隙分别为11、32、21、20(完全随机产生的数值),根据退避算法,设Qr=20,Qn=20,各节点的最终退避时隙为:Assume that
B1=11*1/2*(1-4/20)*20/(20+20)=2B1=11*1/2*(1-4/20)*20/(20+20)=2
B2=32*1*(1–1/40)=31B2=32*1*(1–1/40)=31
B3=21*1/2*(1–2/20)*20/(20+20)=4B3=21*1/2*(1–2/20)*20/(20+20)=4
B5=20*1*(1-5/40)=17B5=20*1*(1-5/40)=17
因此节点1将竞争赢得信道,在第2个时隙发送RTS分组,节点2和节点6在节点1的通信范围内,接收到其RTS分组,结束退避设置定时器进入睡眠;中心节点收到RTS分组后发送CTS分组回应节点1,节点3、4、5接收到CTS分组后进入睡眠,如图2(b)所示。然后节点1发送数据分组直至通信结束,如图2(c)所示。第一轮通信结束。Therefore,
设图3(a)中为第二轮通信开始后各节点在节点1通信结束后醒来开始竞争信道的情况,节点1无分组要发送,节点4新产生了3个非时延敏感分组,其他节点的分组保持不变。此时节点2、4、5、6由于记录了上次网络中存在时延敏感分组的发送,退避窗口变为(CW/2,CW),所以本次通信肯定是节点3竞争成功信道,根据前面的证明,因为它产生的基础随机退避数在(0,CW/2)之间,小于非时延敏感分组的基础退避时隙,时隙在乘以加权值后同样为最小,如图3(b)、(c)所示。Assuming that in Figure 3(a) after the start of the second round of communication, each node wakes up and starts to compete for the channel after the communication of
设图4(a)中为第三轮通信开始后各节点在节点1通信结束后醒来开始竞争信道的情况,节点2新产生了2个非时延敏感分组,节点6新产生了4个非时延敏感分组,其他节点的分组保持不变。由于上一轮网络中通信的还是时延敏感分组,所以各节点的退避窗口都是(CW/2,CW),设各节点产生的基础退避数分别是40、57、60、63、51,节点2、5是第三次竞争信道,节点4是第二次竞争信道,节点6是第一次竞争信道,节点3因为本次是第一次发送非时延敏感分组,也是第一次竞争信道。各节点的最终退避时隙为:Suppose that in Figure 4(a) after the start of the third round of communication, each node wakes up and starts to compete for the channel after the communication of
B2=40*1/3*(1-3/20)=11B2=40*1/3*(1-3/20)=11
B3=57*1*(1-2/20)=51B3=57*1*(1-2/20)=51
B4=60*1/2*(1-3/20)=25B4=60*1/2*(1-3/20)=25
B5=63*1/3*(1-2/20)=18B5=63*1/3*(1-2/20)=18
B6=51*1*(1-4/20)=40B6=51*1*(1-4/20)=40
因此节点2将竞争赢得信道,如图4(b)、(c)由计算结果可见,虽然节点5的基础退避时隙较大,但最终退避时隙数仍然小于节点3、4、6,因为节点5传输次数多于它们,因此传输次数权值很小,使得最终的退避时隙数仍小于它们,体现了网络的公平性。Therefore,
后面几轮通信就不一一说明,若下轮无新的时延敏感分组出现,那各竞争节点的退避窗口将恢复至(0,CW),其他过程不变。The following rounds of communication will not be explained one by one. If there is no new delay-sensitive packet in the next round, the backoff window of each competing node will be restored to (0, CW), and other processes will remain unchanged.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310194239.2A CN103313421B (en) | 2013-05-22 | 2013-05-22 | Back off algorithm in the media access control protocol of multihop network and wireless sense network |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310194239.2A CN103313421B (en) | 2013-05-22 | 2013-05-22 | Back off algorithm in the media access control protocol of multihop network and wireless sense network |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103313421A true CN103313421A (en) | 2013-09-18 |
CN103313421B CN103313421B (en) | 2016-08-31 |
Family
ID=49138075
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310194239.2A Active CN103313421B (en) | 2013-05-22 | 2013-05-22 | Back off algorithm in the media access control protocol of multihop network and wireless sense network |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103313421B (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105850217A (en) * | 2014-01-16 | 2016-08-10 | 华为技术有限公司 | Channel reservation method and communication device |
CN106060955A (en) * | 2016-05-17 | 2016-10-26 | 杨志军 | Method and system for controlling wireless sensor network MAC protocol polling based on three types of services |
CN106060903A (en) * | 2016-07-18 | 2016-10-26 | 北京交通大学 | New load network access back-off method for wireless multi-hop collaborative network |
WO2017066942A1 (en) * | 2015-10-21 | 2017-04-27 | 华为技术有限公司 | Data transmission method and device |
CN103957605B (en) * | 2014-05-05 | 2017-07-11 | 中国科学院微电子研究所 | Wireless resource dynamic access control method and system in body area network simulation |
CN107969021A (en) * | 2016-10-19 | 2018-04-27 | 中南大学 | A kind of high usage route strategy between event and actuator based on Differentiated Services |
CN108307439A (en) * | 2017-08-17 | 2018-07-20 | 上海大学 | A kind of self-adoptive retreating method under a large amount of multi-hop wireless nodes |
CN108353427A (en) * | 2015-11-25 | 2018-07-31 | 高通股份有限公司 | Random Access Channel Signaling on Shared Communication Medium |
CN108541076A (en) * | 2018-06-08 | 2018-09-14 | 上海交通大学 | CSMA/CA multiple access methods based on gated polling system |
CN108834219A (en) * | 2018-07-20 | 2018-11-16 | 东北电力大学 | Optimization method of S-MAC protocol in wireless sensor network based on traffic adaptation |
CN109428951A (en) * | 2017-08-31 | 2019-03-05 | 亚瑞源科技(深圳)有限公司 | Address automatic allocating method in serial communication system |
CN110536473A (en) * | 2019-08-16 | 2019-12-03 | 中兴通讯股份有限公司 | Signaling method, device and storage medium |
US11220033B2 (en) | 2017-02-08 | 2022-01-11 | Fundacio Eurecat | Computer implemented method for generating a mold model for production predictive control and computer program products thereof |
CN114339983A (en) * | 2021-12-31 | 2022-04-12 | 电子科技大学 | Wireless Ad Hoc Network Time Synchronization Method |
CN114390001A (en) * | 2022-01-18 | 2022-04-22 | 中国联合网络通信集团有限公司 | Non-delay sensitive service queuing method, service access control method and device |
CN114666917A (en) * | 2022-02-18 | 2022-06-24 | 南京邮电大学 | An optimization method of LTE system delay in unlicensed frequency band |
CN114884629A (en) * | 2016-07-19 | 2022-08-09 | 德克萨斯仪器股份有限公司 | Channel hopping aware channel access and retransmission |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040004973A1 (en) * | 2002-07-08 | 2004-01-08 | Samsung Electronics Co., Ltd. | Method for performing contention-based access for real-time application and medium access control hierarchy module |
CN102624608A (en) * | 2012-01-16 | 2012-08-01 | 华南理工大学 | A multi-access level dynamic backoff method to improve the plug-and-play speed of smart sensors |
-
2013
- 2013-05-22 CN CN201310194239.2A patent/CN103313421B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040004973A1 (en) * | 2002-07-08 | 2004-01-08 | Samsung Electronics Co., Ltd. | Method for performing contention-based access for real-time application and medium access control hierarchy module |
CN102624608A (en) * | 2012-01-16 | 2012-08-01 | 华南理工大学 | A multi-access level dynamic backoff method to improve the plug-and-play speed of smart sensors |
Non-Patent Citations (1)
Title |
---|
赵玉申: "基于区分服务的无线多媒体传感器网络MAC协议研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 * |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10154434B2 (en) | 2014-01-16 | 2018-12-11 | Huawei Technologies Co., Ltd | Channel reservation method and communications device |
CN105850217B (en) * | 2014-01-16 | 2019-08-20 | 华为技术有限公司 | Method and communication device for channel reservation |
CN105850217A (en) * | 2014-01-16 | 2016-08-10 | 华为技术有限公司 | Channel reservation method and communication device |
CN103957605B (en) * | 2014-05-05 | 2017-07-11 | 中国科学院微电子研究所 | Wireless resource dynamic access control method and system in body area network simulation |
US10750537B2 (en) | 2015-10-21 | 2020-08-18 | Huawei Technologies Co., Ltd. | Data transmission method and apparatus |
WO2017066942A1 (en) * | 2015-10-21 | 2017-04-27 | 华为技术有限公司 | Data transmission method and device |
CN108353427A (en) * | 2015-11-25 | 2018-07-31 | 高通股份有限公司 | Random Access Channel Signaling on Shared Communication Medium |
CN106060955A (en) * | 2016-05-17 | 2016-10-26 | 杨志军 | Method and system for controlling wireless sensor network MAC protocol polling based on three types of services |
CN106060955B (en) * | 2016-05-17 | 2019-12-13 | 杨志军 | wireless sensor network MAC protocol polling control method based on three types of services |
CN106060903A (en) * | 2016-07-18 | 2016-10-26 | 北京交通大学 | New load network access back-off method for wireless multi-hop collaborative network |
CN106060903B (en) * | 2016-07-18 | 2019-05-28 | 北京交通大学 | A kind of new node networking back-off method of wireless multi-hop collaborative network |
CN114884629B (en) * | 2016-07-19 | 2024-07-23 | 德克萨斯仪器股份有限公司 | Channel hopping aware channel access and retransmission |
CN114884629A (en) * | 2016-07-19 | 2022-08-09 | 德克萨斯仪器股份有限公司 | Channel hopping aware channel access and retransmission |
CN107969021B (en) * | 2016-10-19 | 2021-06-08 | 中南大学 | An Efficient Routing Strategy Between Events and Actuators Based on Differentiated Services |
CN107969021A (en) * | 2016-10-19 | 2018-04-27 | 中南大学 | A kind of high usage route strategy between event and actuator based on Differentiated Services |
US11220033B2 (en) | 2017-02-08 | 2022-01-11 | Fundacio Eurecat | Computer implemented method for generating a mold model for production predictive control and computer program products thereof |
CN108307439A (en) * | 2017-08-17 | 2018-07-20 | 上海大学 | A kind of self-adoptive retreating method under a large amount of multi-hop wireless nodes |
CN109428951A (en) * | 2017-08-31 | 2019-03-05 | 亚瑞源科技(深圳)有限公司 | Address automatic allocating method in serial communication system |
CN108541076A (en) * | 2018-06-08 | 2018-09-14 | 上海交通大学 | CSMA/CA multiple access methods based on gated polling system |
CN108834219B (en) * | 2018-07-20 | 2021-05-25 | 东北电力大学 | Wireless sensor network S-MAC protocol optimization method based on flow self-adaption |
CN108834219A (en) * | 2018-07-20 | 2018-11-16 | 东北电力大学 | Optimization method of S-MAC protocol in wireless sensor network based on traffic adaptation |
CN110536473A (en) * | 2019-08-16 | 2019-12-03 | 中兴通讯股份有限公司 | Signaling method, device and storage medium |
CN110536473B (en) * | 2019-08-16 | 2023-03-10 | 中兴通讯股份有限公司 | Signal transmission method, signal transmission device and storage medium |
CN114339983A (en) * | 2021-12-31 | 2022-04-12 | 电子科技大学 | Wireless Ad Hoc Network Time Synchronization Method |
CN114390001A (en) * | 2022-01-18 | 2022-04-22 | 中国联合网络通信集团有限公司 | Non-delay sensitive service queuing method, service access control method and device |
CN114666917A (en) * | 2022-02-18 | 2022-06-24 | 南京邮电大学 | An optimization method of LTE system delay in unlicensed frequency band |
CN114666917B (en) * | 2022-02-18 | 2025-04-04 | 南京邮电大学 | A method for optimizing the latency of LTE systems in unlicensed frequency bands |
Also Published As
Publication number | Publication date |
---|---|
CN103313421B (en) | 2016-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103313421B (en) | Back off algorithm in the media access control protocol of multihop network and wireless sense network | |
Sun et al. | DW-MAC: a low latency, energy efficient demand-wakeup MAC protocol for wireless sensor networks | |
TWI459754B (en) | Method of crowding management in wireless mesh network | |
US8467327B2 (en) | Sensor network system and communication method thereof | |
CN102647805B (en) | Wireless sensor network transmission method based on medium access control (MAC) protocol | |
CN101827378B (en) | A Hybrid MAC Protocol Design Method for Wireless Sensor Networks | |
CN105162568B (en) | Node pairing and resource competition method in a kind of full duplex radio network | |
CN103857055B (en) | Back-off parameter designing method for realizing fairness of wireless self-organizing network links | |
JP2004312691A (en) | Apparatus and method for reducing power consumption in ad hoc networks | |
CN103929284B (en) | High-reliability transmission method for wireless sensor network | |
CN108307439B (en) | Self-adaptive back-off method under large number of multi-hop wireless nodes | |
CN102256317B (en) | Wireless channel access control method | |
Vermeulen et al. | Energy-delay analysis of full duplex wireless communication for sensor networks | |
CN114641085A (en) | Adaptive Backoff Optimization Method Based on IEEE802.15.4 CSMA/CA Mechanism | |
CN101489308B (en) | Active waiting transmission method used for wireless Ad Hoc network stream competition | |
CN106792568B (en) | Hybrid Z-MAC protocol optimization method for wireless sensor network based on energy optimization | |
CN105007586A (en) | Two-factor based self-adaptive contention window adjusting method for SMAC protocol of wireless sensor network | |
Misic et al. | Avoiding the bottlenecks in the MAC layer in 802.15. 4 low rate WPAN | |
Huang et al. | RC-MAC: A receiver-centric medium access control protocol for wireless sensor networks | |
CN111601398A (en) | A Reinforcement Learning-Based Medium Access Control Method for Ad Hoc Networks | |
Singh et al. | A cross-layer MAC protocol for contention reduction and pipelined flow optimization in wireless sensor networks | |
Liao et al. | A receiver-initiated MAC protocol for underwater acoustic sensor networks | |
Nguyen et al. | MAC 2: a multi-hop adaptive MAC protocol with packet concatenation for wireless sensor networks | |
Yang et al. | ACK-based adaptive backoff for random access protocols | |
Henna | Sa-ri-mac: sender-assisted receiver-initiated asynchronous duty cycle mac protocol for dynamic traffic loads in wireless sensor networks |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |