CN103294823B - Rail transit multi-mode optimal transit transfer inquiring method based on cultural ant colony - Google Patents
Rail transit multi-mode optimal transit transfer inquiring method based on cultural ant colony Download PDFInfo
- Publication number
- CN103294823B CN103294823B CN201310241721.7A CN201310241721A CN103294823B CN 103294823 B CN103294823 B CN 103294823B CN 201310241721 A CN201310241721 A CN 201310241721A CN 103294823 B CN103294823 B CN 103294823B
- Authority
- CN
- China
- Prior art keywords
- optimal
- ant colony
- subgroup
- rail transit
- cultural
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 34
- 238000012546 transfer Methods 0.000 title claims abstract description 33
- 238000004364 calculation method Methods 0.000 claims abstract description 14
- 238000005457 optimization Methods 0.000 claims abstract description 5
- 239000003016 pheromone Substances 0.000 claims description 21
- 230000008569 process Effects 0.000 claims description 15
- 230000006399 behavior Effects 0.000 claims description 12
- 230000007246 mechanism Effects 0.000 claims description 6
- 238000012545 processing Methods 0.000 claims description 5
- 230000010429 evolutionary process Effects 0.000 claims 2
- 230000002452 interceptive effect Effects 0.000 claims 2
- 230000006870 function Effects 0.000 description 12
- 230000003993 interaction Effects 0.000 description 6
- 241000257303 Hymenoptera Species 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000007704 transition Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 2
- 244000144980 herd Species 0.000 description 2
- 230000002028 premature Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 238000003012 network analysis Methods 0.000 description 1
Landscapes
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明涉及一种基于文化蚁群系统的轨道交通多模式最优换乘查询方法,包括以下步骤:1)中央处理器通过触摸屏接收查询请求,并根据查询请求从数据库中获取站点信息,构建路径选择模型;2)中央处理器基于路径选择模型执行文化蚁群系统,计算获得不同最优目标下的最优轨道交通换乘方案,输出最优路径;3)对路径选择模型的数值进行更新,并判断优化是否结束,若是,则将计算结果反馈给触摸屏,执行步骤4),若否,返回步骤2);4)触摸屏显示计算结果。与现有技术相比,本发明通过文化蚁群系统高速、精确地计算不同最优目标下的轨道交通最优换乘方案,提高了居民出行对轨道交通换乘的灵活性和高效性。
The invention relates to a multi-mode optimal transfer query method for rail transit based on a cultural ant colony system, comprising the following steps: 1) a central processor receives a query request through a touch screen, and obtains station information from a database according to the query request, and constructs a route Select the model; 2) The central processor executes the cultural ant colony system based on the path selection model, calculates and obtains the optimal rail transit transfer scheme under different optimal goals, and outputs the optimal path; 3) Updates the value of the path selection model, And judge whether the optimization is over, if so, feed back the calculation result to the touch screen, and execute step 4), if not, return to step 2); 4) the touch screen displays the calculation result. Compared with the prior art, the present invention uses the cultural ant colony system to quickly and accurately calculate the optimal rail transit transfer scheme under different optimal objectives, thereby improving the flexibility and efficiency of residents' travel to rail transit transfers.
Description
技术领域technical field
本发明涉及一种轨道交通最优换乘计算方法,尤其是涉及一种基于文化蚁群系统的轨道交通多模式最优换乘查询方法。The invention relates to a calculation method for optimal transfer of rail transit, in particular to a multi-mode optimal transfer query method for rail transit based on a cultural ant colony system.
背景技术Background technique
城市轨道交通系统是与城市居民日常生活联系最为紧密的环节之一,甚至在一定程度上决定着城市居民的生活方式,因而,时下众多城市的电子地图产品都把实现轨道交通网络最优路径查询作为其重中之重,以期使电子地图能够更好地满足用户的需求,但现有的查询系统不但容易出错,而且效率低下,同时不能进行多模式换乘:The urban rail transit system is one of the links most closely related to the daily life of urban residents, and even determines the lifestyle of urban residents to a certain extent. Therefore, the electronic map products of many cities nowadays focus on the optimal route query of the rail transit network. As its top priority, it is hoped that the electronic map can better meet the needs of users, but the existing query system is not only error-prone, but also inefficient, and it cannot perform multi-modal transfers:
一方面,大多数软件开发者认为,轨道交通网络最优路径分析同其他网络分析一样,也应该是以最短为基础的,但用户的最优不仅仅是最短路径,所以其离用户要求还有很大的差距;On the one hand, most software developers believe that the optimal path analysis of rail transit network, like other network analysis, should also be based on the shortest path, but the user’s optimal path is not only the shortest path, so it is far from the user’s requirements. big difference;
另一方面,多数用户认为,最少换乘才是关键问题。最少换乘和最短路径看似统一,但其实不然,因此如何做到两者的统一,提出现实可行的优化换乘模型和算法已经成为迫切需要解决的问题。On the other hand, most users believe that the least number of transfers is the key issue. The least transfer and the shortest path seem to be unified, but they are not. Therefore, how to achieve the unity of the two and propose a realistic and feasible optimized transfer model and algorithm have become urgent problems to be solved.
发明内容Contents of the invention
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种计算速度快、精度高的基于文化蚁群系统的轨道交通多模式最优换乘查询方法,提高了居民出行对轨道交通换乘的灵活性和高效性。The purpose of the present invention is to overcome the above-mentioned defects in the prior art and provide a multi-mode optimal transfer query method of rail transit based on the cultural ant colony system with fast calculation speed and high precision, which improves the impact of residents' travel on rail transit transfer. multiplied flexibility and efficiency.
本发明的目的可以通过以下技术方案来实现:The purpose of the present invention can be achieved through the following technical solutions:
一种基于文化蚁群系统的轨道交通多模式最优换乘查询方法,该方法包括以下步骤:A multi-modal optimal transfer query method for rail transit based on a cultural ant colony system, the method comprising the following steps:
1)中央处理器通过触摸屏接收查询请求,并根据查询请求从数据库中获取站点信息,构建路径选择模型;1) The central processing unit receives the query request through the touch screen, and obtains site information from the database according to the query request, and builds a path selection model;
2)中央处理器基于路径选择模型执行多种群文化蚁群系统,计算获得不同最优目标下的最优轨道交通换乘方案,输出最优路径;2) The central processing unit executes the multi-population cultural ant colony system based on the path selection model, calculates and obtains the optimal rail transit transfer scheme under different optimal goals, and outputs the optimal path;
3)对路径选择模型的数值进行更新,并判断优化是否结束,若是,则将计算结果反馈给触摸屏,执行步骤4),若否,返回步骤2);3) Update the value of the path selection model, and judge whether the optimization is over, if so, feed back the calculation result to the touch screen, and execute step 4), if not, return to step 2);
4)触摸屏显示计算结果。4) The touch screen displays the calculation results.
所述的查询请求包括起始站点和最终站点。The query request includes a starting site and a final site.
所述的最优目标包括时间最短、换乘最少和路程最少。The optimal goals include the shortest time, the least transfer and the least distance.
所述的文化蚁群系统包括群体空间的蚁群演化过程和信仰空间的知识更新过程,所述的群体空间的蚁群演化过程包括以下步骤:The cultural ant colony system includes the ant colony evolution process in the group space and the knowledge update process in the belief space, and the ant colony evolution process in the group space includes the following steps:
a1)初始化群体空间的信息素分布,并将群体空间划分为多个子群,各子群分别采用不同行为的蚁群系统进行并行演化,获得各子群的局部最优解;a1) Initialize the pheromone distribution of the group space, and divide the group space into multiple subgroups, and each subgroup adopts the ant colony system with different behaviors for parallel evolution, and obtains the local optimal solution of each subgroup;
a2)各子群间根据基于学习机制的信息交互策略更新各自的局部信息素;a2) The subgroups update their respective local pheromones according to the information interaction strategy based on the learning mechanism;
a3)根据各子群的局部最优解更新全局最优解,并将其通过接受函数存储到信仰空间;a3) Update the global optimal solution according to the local optimal solution of each subgroup, and store it in the belief space through the acceptance function;
a4)根据信仰空间的输出进行全局信息素更新;a4) Update the global pheromone according to the output of the belief space;
a5)判断是否满足算法终止条件,若满足,则算法终止;否则,转步骤a2);a5) judging whether the algorithm termination condition is satisfied, if satisfied, the algorithm is terminated; otherwise, go to step a2);
所述的信仰空间的知识更新过程包括以下步骤:The knowledge update process of the belief space includes the following steps:
b1)初始化信仰空间;b1) Initialize the belief space;
b2)通过接收函数接收群体空间提供的当前全局最优解;b2) Receive the current global optimal solution provided by the group space through the receiving function;
b3)对信仰空间实施2-OPT操作,优化信仰空间;b3) Implement 2-OPT operation on the belief space to optimize the belief space;
b4)输出最优解,并通过影响函数将其提供给步骤a4)。b4) Output the optimal solution and provide it to step a4) through the influence function.
所述的各子群分别采用不同行为的蚁群系统进行并行演化具体为:Each of the subgroups adopts the ant colony system with different behaviors to perform parallel evolution, specifically as follows:
a101)各子群将不同数量的m个蚂蚁随机地置于n个站点中的一个站点上;a101) Each subgroup randomly places m ants of different numbers on one of the n sites;
a102)各子群根据各自的行为方式进行状态转移,选择下一节点,同时进行局部信息素更新,所述的行为方式包括随机、从众、贪婪或混合;a102) Each subgroup performs state transition according to its own behavior, selects the next node, and updates the local pheromone at the same time, and the behavior includes random, herd, greedy or mixed;
a103)重复步骤a102),直至每只蚂蚁均形成一条完整路径,即各子群分别遍历所有节点,获得各自的局部最优解。a103) Step a102) is repeated until each ant forms a complete path, that is, each subgroup traverses all nodes respectively to obtain their respective local optimal solutions.
所述的基于学习机制的信息交互策略为:The information interaction strategy based on the learning mechanism is:
每一子群与比邻的其他两个子群进行信息交互,将当前的局部最优解与比邻的其他两个子群的局部最优解进行比较,并以更优的局部最优解更新自身的局部信息素。Each subgroup performs information interaction with the other two adjacent subgroups, compares the current local optimal solution with the local optimal solutions of the other two adjacent subgroups, and updates its own local optimal solution with a better local optimal solution. Pheromones.
所述的接受函数Accept()为:Described acceptance function Accept () is:
Accept()=TAccept()=T
T为设定的常数。T is a set constant.
所述的对信仰空间实施2-OPT操作具体为:The implementation of the 2-OPT operation on the belief space is as follows:
b301)设置r0为一个给定的在[0,1]的常数,产生一个[0,1]范围的随机数r,如果r>r0则转步骤b4);b301) set r 0 as a given constant in [0, 1], generate a random number r in the range of [0, 1], if r>r 0 then go to step b4);
b302)如果当前最优路径中存在节点ci、cj,其中j≥i+2,且b302) If there are nodes c i and c j in the current optimal path, where j≥i+2, and
d(ci,ci+1)+d(cj,cj+1)>d(ci,cj)+d(ci+1,cj+1)d(c i , c i+1 )+d(c j , c j+1 )>d(c i , c j )+d(c i+1 , c j+1 )
那么将边(ci,cj)、(ci+1,cj+1)代替(ci,ci+1)、(cj,cj+1),交换后线路中的路径(cj,…,ci+1)被反向;否则转步骤b4)。Then replace the edges (c i , c j ), (c i+1 , c j+1 ) with (c i , c i+1 ), (c j , c j+1 ), and the path in the line after exchange ( c j ,..., c i+1 ) are reversed; otherwise go to step b4).
所述的影响函数Influence()为:The influence function Influence() is:
其中,EndStep为预先设定的蚁群系统最大演化代数,CurrentStep为蚁群演化当前代数,BaseNum和C为常数。Among them, EndStep is the preset maximum evolution algebra of ant colony system, CurrentStep is the current algebra of ant colony evolution, BaseNum and C are constants.
与现有技术相比,本发明具有以下优点:Compared with the prior art, the present invention has the following advantages:
1、本发明采用文化蚁群系统进行最优路径求解,文化蚁群系统是一种将蚁群系统纳入文化算法框架的新的高效优化方法,该计算模型包含基于蚁群系统的群体空间和基于当前最优解的信仰空间,两空间具有各自群体并独立并行演化,提高了算法求解的速度和精度;1. The present invention uses the cultural ant colony system to solve the optimal path. The cultural ant colony system is a new efficient optimization method that incorporates the ant colony system into the cultural algorithm framework. The calculation model includes the group space based on the ant colony system and the The belief space of the current optimal solution, the two spaces have their own groups and evolve independently and in parallel, which improves the speed and accuracy of the algorithm solution;
2、本发明采用多种群并行演化的蚁群系统,且各子群间通过基于学习机制的信息交互策略进行交互,提高了算法的精度;2. The present invention adopts the ant colony system of multi-population parallel evolution, and each sub-group interacts through the information interaction strategy based on the learning mechanism, which improves the accuracy of the algorithm;
3、本发明文化蚁群系统的信仰空间采用随机2-OPT交换操作,对最优解进行变异优化,经演化后的解个体用来对群体空间全局信息素更新,帮助指导群体空间的进化过程,从而达到提高种群的多样性,防止早熟,降低计算代价的目的;3. The belief space of the cultural ant colony system of the present invention adopts random 2-OPT exchange operation to mutate and optimize the optimal solution, and the evolved solution individuals are used to update the global pheromone of the group space to help guide the evolution process of the group space , so as to achieve the purpose of increasing the diversity of the population, preventing premature maturity, and reducing the calculation cost;
4、本发明方法具有更好的精确度和鲁棒性,即使对于大规模问题,也能以较小的种群数目和较短的运行时间求得相对误差较小的满意解。4. The method of the present invention has better accuracy and robustness. Even for large-scale problems, a satisfactory solution with relatively small errors can be obtained with a small number of populations and a short running time.
总之,本发明的有益效果在于:本发明设计和实现了一种新型的智能计算方法,能够对不同居民多模式换乘进行高效的优化设计,提高了居民出行对轨道交通换乘的灵活性、高效性。本发明适应了城市交通发展的未来需求,可持续对规模和复杂程度日益增长的轨道交通换乘进行科学的管理。In a word, the beneficial effects of the present invention are: the present invention designs and implements a new type of intelligent computing method, which can efficiently optimize the design of multi-modal transfers for different residents, and improves the flexibility of residents' travel to rail transit transfers. Efficiency. The invention adapts to the future demand of urban traffic development, and can carry out scientific management on rail transit transfers with increasing scale and complexity in a sustainable manner.
附图说明Description of drawings
图1为本发明的流程示意图;Fig. 1 is a schematic flow sheet of the present invention;
图2为本发明多种群文化蚁群系统的系统框架图;Fig. 2 is the system frame diagram of multi-population cultural ant colony system of the present invention;
图3为本发明多种群并行演化的框架示意图;Fig. 3 is a schematic diagram of the framework of multi-population parallel evolution of the present invention;
图4为本发明文化蚁群系统的原理示意图。Fig. 4 is a schematic diagram of the principle of the cultural ant colony system of the present invention.
具体实施方式detailed description
下面结合附图和具体实施例对本发明进行详细说明。本实施例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。The present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments. This embodiment is carried out on the premise of the technical solution of the present invention, and detailed implementation and specific operation process are given, but the protection scope of the present invention is not limited to the following embodiments.
如图1所示,一种基于文化蚁群系统的轨道交通多模式最优换乘查询方法,该方法包括以下步骤:As shown in Figure 1, a multi-modal optimal transfer query method for rail transit based on the cultural ant colony system, the method includes the following steps:
1)中央处理器通过触摸屏接收查询请求,包括起始站点和最终站点,并根据查询请求从数据库中获取站点信息,构建路径选择模型;1) The central processor receives the query request through the touch screen, including the starting site and the final site, and obtains site information from the database according to the query request, and builds a path selection model;
2)中央处理器基于路径选择模型执行多种群文化蚁群系统,计算获得不同最优目标(包括时间最短、换乘最少和路程最少等)下的最优轨道交通换乘方案,输出最优路径;2) The central processing unit executes the multi-population cultural ant colony system based on the path selection model, calculates and obtains the optimal rail transit transfer scheme under different optimal goals (including the shortest time, the least transfer and the least distance, etc.), and outputs the optimal route ;
3)对路径选择模型的数值进行更新,并判断优化是否结束,若是,则将计算结果反馈给触摸屏,执行步骤4),若否,返回步骤2);3) Update the value of the path selection model, and judge whether the optimization is over, if so, feed back the calculation result to the touch screen, and execute step 4), if not, return to step 2);
4)触摸屏显示计算结果,展示路径选择模型,展现内容包括轨道交通换乘信息和线路图。4) The touch screen displays the calculation results and the route selection model, and the display content includes rail transit transfer information and line diagrams.
如图2-图4所示,所述的文化蚁群系统包括群体空间的蚁群演化过程和信仰空间的知识更新过程,所述的群体空间的蚁群演化过程包括以下步骤:As shown in Figures 2-4, the cultural ant colony system includes the ant colony evolution process in the group space and the knowledge update process in the belief space, and the ant colony evolution process in the group space includes the following steps:
a1)初始化群体空间的信息素分布,并将群体空间划分为多个子群(如图2、图3中的子群1、子群2、子群3、子群4),各子群将不同数量的m个蚂蚁随机地置于n个站点中的一个站点上,根据各自的行为方式进行状态转移,选择下一节点,同时进行局部信息素更新,所述的行为方式包括随机、从众、贪婪或混合;直至每只蚂蚁均形成一条完整路径,即各子群分别遍历所有节点,获得各自的局部最优解。a1) Initialize the pheromone distribution of the population space, and divide the population space into multiple subgroups (such as subgroup 1, subgroup 2, subgroup 3, and subgroup 4 in Figure 2 and Figure 3), each subgroup will be different A number of m ants are randomly placed on one of the n sites, and the state transition is performed according to their respective behaviors, the next node is selected, and the local pheromone is updated at the same time. The behaviors include random, herd, greedy Or mixed; until each ant forms a complete path, that is, each subgroup traverses all nodes separately to obtain their own local optimal solutions.
每一子群进行演化的具体步骤为:The specific steps for each subgroup to evolve are as follows:
a101)初始化:t=0,Nc=0,τij(t)=τ0,Δτij(t)=0,将m个蚂蚁随机地置于n个站点上;a101) Initialization: t=0, Nc=0, τ ij (t)=τ 0 , Δτ ij (t)=0, m ants are randomly placed on n sites;
a102)置禁忌表索引s=1,并将其起点站点加入各自禁忌表中,判断禁忌表是否已满,若是,则执行步骤a104),若否,则s=s+1,执行步骤a103),a102) set the taboo table index s=1, and add its starting point site in the taboo table respectively, judge whether the taboo table is full, if so, then execute step a104), if not, then s=s+1, execute step a103) ,
a103)各蚂蚁按其各自计算的转移概率选择下一站点,并将该站点加入禁忌表中,同时进行局部信息素更新:a103) Transition probability calculated by each ant Select the next site, and add this site to the taboo table, and update the local pheromones at the same time:
τij=(1-ρ)τij+ρτ0 τ ij =(1-ρ)τ ij +ρτ 0
其中:ρ(0<ρ<1)是信息素的局部挥发因子;τ0是各条路径上的初始信息素浓度值;Among them: ρ( 0 <ρ<1) is the local volatilization factor of pheromone; τ0 is the initial pheromone concentration value on each path;
a104)每只蚂蚁均形成一条完整路径,即遍历所有节点,计算所有蚂蚁走过的周游长度Lk,更新当前最优解,获得局部最优解。a104) Each ant forms a complete path, that is, traverses all nodes, calculates the travel length L k traveled by all ants, updates the current optimal solution, and obtains a local optimal solution.
a2)各子群间根据基于学习机制的信息交互策略更新各自的局部信息素。a2) The subgroups update their respective local pheromones according to the information interaction strategy based on the learning mechanism.
如图3所示,各子群呈环状连接,每一子群与比邻的其他两个子群进行信息交互,将当前的局部最优解与比邻的其他两个子群的局部最优解进行比较,并以更优的局部最优解更新自身的局部信息素。As shown in Figure 3, each subgroup is connected in a ring, each subgroup performs information interaction with the other two adjacent subgroups, and compares the current local optimal solution with the local optimal solution of the other two adjacent subgroups , and update its own local pheromone with a better local optimal solution.
a3)根据各子群的局部最优解更新全局最优解,并将其通过接受函数存储到信仰空间;a3) Update the global optimal solution according to the local optimal solution of each subgroup, and store it in the belief space through the acceptance function;
所述的接受函数Accept()为:Described acceptance function Accept () is:
Accept()=TAccept()=T
T为设定的常数,可设为20;T is a set constant, which can be set to 20;
a4)根据信仰空间的输出进行全局信息素更新:a4) Update the global pheromone according to the output of the belief space:
其中:是信息素的全局挥发因子,in: is the global volatilization factor of pheromone,
Lgb代表当前全局最优解的路径长度(从试验开始所得到的全局最优路径的长度); Lgb represents the path length of the current global optimal solution (the length of the global optimal path obtained from the beginning of the experiment);
a5)判断是否满足算法终止条件,若满足,则算法终止;否则,清空所有禁忌表,转步骤a103):a5) Judging whether the algorithm termination condition is satisfied, if satisfied, the algorithm is terminated; otherwise, all taboo lists are cleared, and then step a103):
算法终止条件为达到设定的最大演化代数或全局最优解在设定代数内连续不发生变化。The termination condition of the algorithm is to reach the set maximum evolution algebra or the global optimal solution does not change continuously within the set algebra.
各子群空间采用的蚁群系统是一种用信息素的局部更新规则和全局更新规则进行路径上的信息素更新,从而使扩大算法的搜索空间和算法得以收敛能有机统一起来。如图3所示,A表示各子群通过局部合作交流最优解更新局部信息素,B表示各子群交互将全局最优解提供给信仰空间更新全局信息素。The ant colony system used in each subgroup space is a kind of pheromone update on the path using local update rules and global update rules of pheromone, so that the search space of the expanded algorithm and the convergence of the algorithm can be organically unified. As shown in Figure 3, A indicates that each subgroup updates the local pheromone through local cooperation and communication of the optimal solution, and B indicates that each subgroup interacts and provides the global optimal solution to the belief space to update the global pheromone.
所述的信仰空间的知识更新过程包括以下步骤:The knowledge update process of the belief space includes the following steps:
b1)初始化信仰空间;b1) Initialize the belief space;
b2)通过接收函数接收群体空间提供的当前全局最优解;b2) Receive the current global optimal solution provided by the group space through the receiving function;
b3)对信仰空间实施2-OPT操作,优化信仰空间;b3) Implement 2-OPT operation on the belief space to optimize the belief space;
所述的对信仰空间实施2-OPT操作具体为:The implementation of the 2-OPT operation on the belief space is as follows:
b301)设置r0为一个给定的在[0,1]的常数,产生一个[0,1]范围的随机数r,如果r>r0则转步骤b4);b301) set r 0 as a given constant in [0, 1], generate a random number r in the range of [0, 1], if r>r 0 , turn to step b4);
b302)如果当前最优路径中存在节点ci、cj,其中j≥i+2,且b302) If there are nodes c i and c j in the current optimal path, where j≥i+2, and
d(ci,ci+1)+d(cj,cj+1)>d(ci,cj)+d(ci+1,cj+1)d(c i , c i+1 )+d(c j , c j+1 )>d(c i , c j )+d(c i+1 , c j+1 )
那么将边(ci,cj)、(ci+1,cj+1)代替(ci,ci+1)、(cj,cj+1),交换后线路中的路径(ci,…,ci+1)被反向;否则转步骤b4)。Then replace the edges (c i , c j ), (c i+1 , c j+1 ) with (c i , c i+1 ), (c j , c j+1 ), and the path in the line after exchange ( c i ,..., c i+1 ) are reversed; otherwise go to step b4).
b4)输出最优解,并通过影响函数将其提供给步骤a4)。b4) Output the optimal solution and provide it to step a4) through the influence function.
所述的影响函数Influence()为:The influence function Influence() is:
其中,EndStep为预先设定的蚁群系统最大演化代数,CurrentStep为蚁群演化当前代数,BaseNum和C为常数,由用户设定。通常BaseNum取值为30,C:EndStep取值为1∶3,这样在蚁群演化的初始阶段,信仰空间的知识解对其影响较小,使其能够保证快速演化,在蚁群演化的后期,知识解对其影响逐渐加大,使其能够更多地接受知识空间的引导,同时扩大搜索空间,具备更好的全局搜索能力。Among them, EndStep is the preset maximum evolution algebra of the ant colony system, CurrentStep is the current algebra of ant colony evolution, BaseNum and C are constants, set by the user. Usually the value of BaseNum is 30, and the value of C: EndStep is 1:3. In this way, in the initial stage of ant colony evolution, the knowledge solution of belief space has little influence on it, so that it can ensure rapid evolution. In the later stage of ant colony evolution , the influence of the knowledge solution on it gradually increases, making it more able to accept the guidance of the knowledge space, expand the search space at the same time, and have better global search capabilities.
群体空间个体在进化过程中形成个体经验,通过函数accept()将个体经验传递到信仰空间,信仰空间将收到的个体经验根据一定的行为规则进行比较和优化,形成最优解。信仰空间对进化过程中所发现的最优解,采用随机2-OPT交换操作,对最优解进行变异优化,并充分利用随机2-OPT算法简洁高效的特点,完成自身的变异,经演化后的解个体用来对群体空间全局信息素更新,帮助指导群体空间的进化过程,从而达到提高种群的多样性,防止早熟,降低计算代价的目的。信仰空间在形成群体经验后通过影响函数对群体空间中个体的行为规则进行修改,以使个体空间获得更高的进化效率。Individuals in the group space form individual experience during the evolution process, and pass the individual experience to the belief space through the function accept(), and the belief space compares and optimizes the received individual experience according to certain behavior rules to form an optimal solution. For the optimal solution found in the evolution process, the belief space adopts the random 2-OPT exchange operation to mutate and optimize the optimal solution, and makes full use of the simple and efficient characteristics of the random 2-OPT algorithm to complete its own mutation. After evolution The solution individuals are used to update the global pheromone of the population space, helping to guide the evolution process of the population space, so as to achieve the purpose of increasing the diversity of the population, preventing premature maturity, and reducing the calculation cost. After forming the group experience, the belief space modifies the behavior rules of individuals in the group space through the influence function, so that the individual space can obtain higher evolutionary efficiency.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310241721.7A CN103294823B (en) | 2013-06-18 | 2013-06-18 | Rail transit multi-mode optimal transit transfer inquiring method based on cultural ant colony |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310241721.7A CN103294823B (en) | 2013-06-18 | 2013-06-18 | Rail transit multi-mode optimal transit transfer inquiring method based on cultural ant colony |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103294823A CN103294823A (en) | 2013-09-11 |
CN103294823B true CN103294823B (en) | 2017-05-03 |
Family
ID=49095685
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310241721.7A Active CN103294823B (en) | 2013-06-18 | 2013-06-18 | Rail transit multi-mode optimal transit transfer inquiring method based on cultural ant colony |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103294823B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103648139B (en) * | 2013-12-09 | 2017-06-20 | 天津工业大学 | Wireless sensor network node deployment method for designing based on cultural ant group algorithm |
CN106775944A (en) * | 2016-12-12 | 2017-05-31 | 天津工业大学 | The method integrated based on cultural multi-ant colony algorithm virtual machine under cloud platform |
CN106971245A (en) * | 2017-03-30 | 2017-07-21 | 广东工业大学 | A kind of determining method of path and system based on improvement ant group algorithm |
CN111582582A (en) * | 2020-05-08 | 2020-08-25 | 西安建筑科技大学 | Warehouse picking path optimization method based on improved GA-PAC |
CN112053010B (en) * | 2020-10-09 | 2022-02-08 | 腾讯科技(深圳)有限公司 | Riding path determining method and device, computer equipment and storage medium |
-
2013
- 2013-06-18 CN CN201310241721.7A patent/CN103294823B/en active Active
Non-Patent Citations (3)
Title |
---|
基于蚁群算法的轨道交通路径选择模型及应用研究;刘坤;《中国优秀硕士学位论文全文数据库工程科技Ⅱ辑》;20110815;正文第1.3、4.1、5.3节 * |
多种群蚁群算法解机组组合优化;王威;《机电工程》;20120531;正文第3节 * |
求解TSP问题的文化蚁群优化算法;刘升;《华东理工大学学报(自然科学版)》;20090430;正文第2节 * |
Also Published As
Publication number | Publication date |
---|---|
CN103294823A (en) | 2013-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103294823B (en) | Rail transit multi-mode optimal transit transfer inquiring method based on cultural ant colony | |
CN103971161B (en) | Hybrid recommendation method based on Cauchy distribution quantum-behaved particle swarm optimization | |
CN111612252A (en) | Automatic location method, device and readable storage medium for large-scale emergency facilities | |
CN105608276B (en) | Transmission line of electricity path automatic selecting method and device | |
CN102932479B (en) | Virtual network mapping method for realizing topology awareness based on historical data | |
CN105224959A (en) | The training method of order models and device | |
CN105574708A (en) | Travel route planning method and apparatus | |
CN112347596B (en) | Urban public transport network optimization method | |
CN105743763B (en) | A kind of mapping method of virtual network based on study and reasoning | |
CN110298491A (en) | A kind of transportation network node selecting method based on slime mould swarm intelligence | |
CN106462585B (en) | System and method for particular column materialization scheduling | |
CN104408528A (en) | Optimization scheduling method in raw material leaching process for chemical industry production | |
CN106610867A (en) | Network-on-chip task scheduling method and device | |
CN111340303A (en) | Traveling Salesman Route Planning Method Based on Novel Hybrid Frog Leaping Algorithm | |
Zhang et al. | Q-learning-based multi-objective particle swarm optimization with local search within factories for energy-efficient distributed flow-shop scheduling problem | |
Gan et al. | Propagation path optimization of product attribute design changes based on petri net fusion ant colony algorithm | |
CN103455612A (en) | Method for detecting non-overlapping network communities and overlapping network communities based on two-stage strategy | |
Xue et al. | Integrating Energy Smart Grid’s ontologies through multi-objective particle swarm optimization algorithm with competitive mechanism | |
CN109582985A (en) | A kind of NoC mapping method of improved genetic Annealing | |
CN104883388A (en) | Car networking road-side unit deployment method based on genetic algorithm | |
Wang et al. | A personalized self‐learning system based on knowledge graph and differential evolution algorithm | |
CN109447312A (en) | Route planning method, device, electronic equipment and readable storage medium storing program for executing | |
Xu et al. | [Retracted] Research on Collaborative Optimization Model of Tourism Resources and Highway Network Based on IoT Network and Deep Learning | |
Li et al. | Integrating lstm and bert for long-sequence data analysis in intelligent tutoring systems | |
CN111797331B (en) | A multi-objective and multi-constraint route recommendation method based on crowd sensing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |