CN103293394B - One kind of compression field generating means - Google Patents

One kind of compression field generating means Download PDF

Info

Publication number
CN103293394B
CN103293394B CN 201210050862 CN201210050862A CN103293394B CN 103293394 B CN103293394 B CN 103293394B CN 201210050862 CN201210050862 CN 201210050862 CN 201210050862 A CN201210050862 A CN 201210050862A CN 103293394 B CN103293394 B CN 103293394B
Authority
CN
Grant status
Grant
Patent type
Prior art keywords
metal
sheet
core layer
refractive index
substrate
Prior art date
Application number
CN 201210050862
Other languages
Chinese (zh)
Other versions
CN103293394A (en )
Inventor
刘若鹏
季春霖
岳玉涛
李星昆
Original Assignee
深圳光启创新技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Abstract

本发明涉及一种用于天线测试的紧缩场装置,公开了一种紧缩场产生装置,该装置包括馈源以及超材料面板,超材料面板包括核心层,核心层包括核心层片层,核心层片层包括圆形区域及分布在圆形区域周围的多个环形区域,圆形区域及环形区域内相同半径处的折射率相同,且在圆形区域及环形区域各自的区域内随着半径的增大折射率逐渐减小,圆形区域的折射率的最小值小于与其相邻的环形区域的折射率的最大值,相邻两个环形区域,处于内侧的环形区域的折射率的最小值小于处于外侧的环形区域的折射率的最大值。 The present invention relates to an antenna device for a compact antenna test, discloses a compression field generating means, the apparatus comprising feed materials and ultra panel, the panel comprising a core layer of a meta-material, the core layer comprising a core layer sheet, the core layer sheet includes a circular region and a plurality of annular regions are distributed around a circular region, the same refractive index at the same radius of the circular area and the annular region, and the inner circular area and the annular region as the radius of the respective areas increase the refractive index decreases, the minimum value of the refractive index is less than the maximum refractive index of the circular area of ​​the annular region adjacent thereto, two adjacent annular areas, the inner annular region at a minimum index less than that at a maximum refractive index of the annular outer area. 根据本发明的紧缩场产生装置,由片状的超材料面板代替了传统的抛物状反射面,制造加工更加容易,成本更加低廉。 CATR generating device according to the present invention, the panel is replaced by a sheet of material over conventional parabolic reflective surface, the manufacturing process easier, lower cost.

Description

一种紧缩场产生装置 One kind of compression field generating means

技术领域 FIELD

[0001] 本发明涉及天线测试领域,尤其涉及一种基于超材料的紧缩场产生装置。 [0001] The present invention relates to an antenna testing field, particularly to a material-based ultra CATR generating means.

背景技术 Background technique

[0002] 紧缩场是一种在近距离内靠光滑的反射面,包括单反射面和双反射面,将馈源发出的球面波变为平面波的测试设备。 [0002] is a compact antenna by smooth reflecting surface at close range, including single and dual-reflector reflective surface, the spherical wave becomes a plane wave emitted feed test equipment. 它所产生的平面波环境,可以充分满足天线方向图的测试要求,从而达到在近距离内对天线进行测试的目的。 It produces a plane wave environment, can fully meet the test requirements of the antenna pattern, so as to achieve the purpose of testing the antenna at close range. 紧缩场系统上可以分为紧缩场天线部分和微波暗室部分。 It can be divided into portions and the tightening field antenna anechoic chamber portion CATR system. 在现有技术中,紧缩场天线部分是采用精密的反射面,将点源产生的球面波在近距离内变换为平面波的一套装置,通常按照设计要求,将天线部分的位置准确地安装于微波暗室中,并调节好水平度,通过对紧缩场天线反射面边缘的处理和微波暗室的配合,在空间测试区域创造出一个静区,在静区里可以模拟被测物在无反射的自由空间中的辐射特性。 In the prior art, the antenna portion is a tightening field using precision reflective surface, a spherical wave generated by the point source means is converted into a plane wave at close range, generally in accordance with the design requirements, the exact position of the antenna portion mounted to the an anechoic chamber, and regulate the level of, and through the process of fitting the microwave darkroom compact range antenna reflector edge of the test area in the space to create a dead zone, the dead zone where the test was to simulate a free nonreflective radiation characteristics of space.

[0003] 与室外远场和室内近场比较,紧缩场主要具有以下特点: [0003] indoor and outdoor far-field and near-field comparison, the compact range has the following characteristics:

[0004] 1、安装在微波暗室的紧缩场具有较好的保密性; [0004] 1, CATR mounted anechoic chamber having a good confidentiality;

[0005] 2、安装在室内的紧缩场受气候环境影响小,改善了测试条件,进而提高了RCS (Radar Cross-Section,雷达散射截面)的测量效率; [0005] 2, CATR installed in the indoor climate of the subject is small, the test condition improved, thereby improving the RCS (Radar Cross-Section, the radar cross section) of the measurement efficiency;

[0006] 3、可以将室外远场测试问题转换为暗室内近距离测试问题。 [0006] 3, it can be converted to outdoor far-field test problems in a dark room close test questions.

[0007] 这些特点决定了紧缩场是研究电磁散射的重要测试设备,也是高性能雷达天线测试、卫星整星测试、飞机反射特性测试等系统性能测试的重要基础设施。 [0007] These characteristics determine the austerity field is the study of electromagnetic scattering of important testing equipment, critical infrastructure is a high-performance radar antenna test, satellites and test aircraft reflection characteristic testing system performance testing. 同时,紧缩场技术在军事领域越来越发挥着不可替代的作用。 At the same time, more and more compact range technology plays an irreplaceable role in the military field. 无论是卫星、飞机,还是导弹、坦克、大炮等大型武器装备的隐身性能测试、调整等,都依赖于发挥紧缩场的技术作用。 Whether satellites, aircraft or missiles, tanks, artillery and other large weapons stealth performance testing, adjustment, rely on technology to play a role in tightening field. 可以说,紧缩场的技术水平如何,不仅制约着军队武器装备的性能与质量,也关系到一个国家的国防安全问题。 It can be said, how tight the field of technology, not only restricts the performance and quality of military weapons and equipment, but also issues related to national security of a country. 因此,当今各大军事强国都把紧缩场系统作为国防战略技术之一,重点加以研究和发展。 Therefore, today's major military powers regard the compact range system as one of the strategic defense technology, to be the focus of research and development.

[0008] 目前,国内外从事电磁产品研发和技术研究的公司及科研院所,一般都建立了自己的紧缩场系统,使用起来非常方便和快捷。 [0008] At present, domestic and foreign research and development of electromagnetic technology product companies and research institutes, are generally set up their own compact range systems, ease of use and fast. 紧缩场系统作为现代天线测试的先进设备,无疑具有越来越重要的技术进步意义和极其广泛的运用前景。 Compact range antenna system as modern advanced testing equipment, has undoubtedly more and more important significance of technological progress and an extremely broad application prospects.

[0009] 但现有设计仍存在一定的问题:采用的光滑反射面是抛物面状,且反射面必须很大,大约比测试静区大三倍,制造抛物面状反射面的机械平台十分复杂,要达到较好的反射面工艺也比较困难,表面处理依赖度高,造价昂贵,且馈源位置必须置于反射面的焦点上, 否则没法达到球面波与平面波的转换,而反射面的焦点与光滑反射面的距离给制造工艺精度造成了很大困难。 [0009] However, existing designs are still some problems: smooth reflecting surface is used in parabolic and reflecting surface must be very large, about three times larger than the dead zone test, parabolic reflecting surface mechanical manufacturing platform is very complicated, to achieve a better reflection surface is also more difficult to process, it relies on high surface treatment, expensive, and must feed at the focal position of the reflecting surface, or can not achieve the plane wave and a spherical wave converter of the focus point of the reflecting surface from the smooth reflecting surface precision of the manufacturing process to cause great difficulties.

发明内容 SUMMARY

[0010] 本发明的目的在于克服现有技术制造光滑反射面必须很大,且工艺困难、复杂,造价昂贵的缺陷,提供一种基于超材料的紧缩场产生装置,该装置采用超材料制造紧缩场的天线部分,将球面电磁波转换为平面电磁波,制造简单,价格便宜。 [0010] The object of the present invention to overcome the prior art for producing smooth reflecting surface must be large and difficult process, complicated, costly defect, there is provided a material-based ultra CATR generating means for producing ultra-tight material portion of the field of the antenna, converts the spherical wave to the plane wave, is simple to manufacture, inexpensive.

[0011] 为了达到上述目的,本发明采用的如下技术方案: [0011] To achieve the above object, the present invention employs the following technical solutions:

[0012] -种紧缩场产生装置,所述装置包括馈源,所述装置还包括设置在所述馈源前方的超材料面板,所述超材料面板包括核心层,所述核心层包括至少一个核心层片层,所述核心层片层包括片状的第一基材以及设置在所述第一基材上的多个人造微结构,所述核心层片层按照折射率分布可划分为位于中间位置的圆形区域以及分布在圆形区域周围且与所述圆形区域共圆心的多个环形区域,所述圆形区域及环形区域内相同半径处的折射率相同,且在圆形区域及环形区域各自的区域内随着半径的增大折射率逐渐减小,所述圆形区域的折射率的最小值小于与其相邻的环形区域的折射率的最大值,相邻两个环形区域,处于内侧的环形区域的折射率的最小值小于处于外侧的环形区域的折射率的最大值。 [0012] - species tightening field generating means, said means comprising a feed, said apparatus further comprising a meta-material panel is disposed in front of the feeds, the meta-material panel comprises a core layer, the core layer comprises at least one core layer sheet, the plurality of artificial microstructures core layer sheet comprising a first sheet-like base material disposed on the first substrate, the core layer sheet can be divided in accordance with the refractive index profile located an intermediate circular region and the distribution position in the plurality of annular regions surrounding the circular area and the center of the circular common region, the same as the refractive index of the circular region at the same radius and the inner annular region and in a circular region the maximum value of the refractive index of the annular region and the inner region of each of the annular area as the radius increase the refractive index decreases, the refractive index is less than the minimum circular region adjacent thereto, two adjacent annular areas , the minimum value of the refractive index in the inner annular region is less than the maximum index of refraction in the annular outer area.

[0013] 进一步地,所述第一基材包括片状的第一前基板及第一后基板,所述多个第一人造微结构夹设在第一前基板与第一后基板之间。 [0013] Further, the first substrate having a first substrate and a first rear front substrate comprising a sheet of a first plurality of microstructures artificial sandwiched between the first substrate and the first rear front substrate.

[00M] 进一步地,所述核心层包括多个厚度相同且折射率分布相同的核心层片层。 [00M] Further, the core layer comprises a plurality of identical thickness and refractive index distribution of the core layer of the same sheet.

[0015] 进一步地,所述圆心为核心层片层的中心,所述圆形区域以及多个环形区域的折射率变化范围相同,所述核心层片层的折射率n (r)分布满足如下公式: [0015] Further, the center is a center of the core sheet, the same range of the refractive index change regions and a plurality of circular annular regions, the refractive index n (r) is the distribution of the core layer sheet satisfies the following formula:

Figure CN103293394BD00051

[0018] 其中,i表示核心层片层分段数,i = l表示核心层片层第一段、i = 2表示核心层片层第二段、……、i=P表示核心层片层的第P段,所述核心层片层第一段最靠近核心层片层的中心; [0018] where, i denotes the number of the segment core sheet, i = l represents the first segment core sheet, i = 2 represents a second segment core sheet, ......, i = P represents a core sheet the first section P, the first segment closest to the center of the core layer of the core layer sheet sheet;

[0019] m (r)表示核心层片层第i段上半径为r处的折射率值; [0019] m (r) denotes the radius value r of the refractive index of the i-th upper layer core sheet;

[0020] nmin表示核心层片层的折射率的最小值; [0020] nmin is the minimum value of the refractive index of the core layer of the sheet;

[0021] λ表示电磁波波长; [0021] λ represents the wavelength of electromagnetic waves;

[0022] r表示核心层片层上任意一点距离核心层片层中心的距离; [0022] r denotes the distance from the point of the center core sheet of any sheet on the core layer;

[0023] s为馈源等效点到超材料面板的垂直距离; [0023] s is the vertical distance from the feed point to the equivalent metamaterial panel;

[0024] ai表示核心层片层第i段距离核心层片层中心的最大值; [0024] ai represents the i-th maximum value of the center sheet some distance to the core layer of the core layer;

[0025] d表示所述核心层的厚度。 [0025] d represents the thickness of the core layer.

[0026] 进一步地,所述超材料面板还包括对称分布在核心层两侧表面的阻抗匹配层,所述阻抗匹配层包括厚度相同的多个阻抗匹配层片层,所述阻抗匹配层片层包括片状的第二基材以及设置在第二基材上的多个第二人造微结构,所述阻抗匹配层片层的折射率分布满足如下公式: [0026] Further, the meta-material panel further comprising a matching layer is symmetrically distributed on both side surfaces of the core layer, the thickness of the matching layer comprises a plurality of impedance matching layers of the same sheet, the matching layer sheet and a sheet-like base material including a second plurality of the second substrate disposed on the second artificial microstructures, a refractive index matching layer profile of the sheet satisfies the following formula:

Figure CN103293394BD00052

[0029] 其中,j表示阻抗匹配层片层的编号,靠近馈源的阻抗匹配层片层的编号为m,由馈源向核心层方向,编号依次减小,靠近核心层的阻抗匹配层片层的编号为1; [0029] where, j is the number of impedance matching layer sheet, the sheet number impedance matching layer adjacent feed is m, the direction of the core layer, numbered sequentially decreases from the feed, impedance matching layer close to the core layer of sheet layer is numbered 1;

[0030] 上述的nmax与nmin与核心层片层的折射率的最大值与最小值相同; [0030] The same as the above maximum and minimum values ​​of the refractive index nmax and nmin of the core layer of the sheet;

[0031] r表示阻抗匹配层片层上任意一点到其中心的距离; [0031] r represents an arbitrary impedance matching layer on the sheet from one point to the center thereof;

[0032] λ表示电磁波波长; [0032] λ represents the wavelength of electromagnetic waves;

[0033] dl为阻抗匹配层的厚度; [0033] dl impedance matching layer thickness;

[0034] d为核心层的厚度。 [0034] d is the thickness of the core layer.

[0035] 进一步地,所述第二基材包括片状的第二前基板及第二后基板,所述多个第二人造微结构夹设在第二前基板与第二后基板之间。 [0035] Further, the second substrate and the second substrate before the second substrate comprises a sheet, said second plurality of microstructures artificial interposed between the front substrate and the second substrate after the second.

[0036] 进一步地,所述第一人造微结构及第二人造微结构均为由铜线或银线构成的金属微结构,所述金属微结构通过蚀刻、电镀、钻刻、光刻、电子刻或离子刻的方法分别附着在第一基材及第二基材上。 [0036] Further, the metal microstructure of the first and the second artificial man-made microstructures microstructures are made of copper or silver, the metal microstructure by etching, electroplating, drilling, photolithography, electron ion carved or engraved methods attached to the first substrate and the second substrate.

[0037] 进一步地,所述金属微结构呈平面雪花状,所述金属微结构具有相互垂直平分的第一金属线及第二金属线,所述第一金属线与第二金属线的长度相同,所述第一金属线两端连接有相同长度的两个第一金属分支,所述第一金属线两端连接在两个第一金属分支的中点上,所述第二金属线两端连接有相同长度的两个第二金属分支,所述第二金属线两端连接在两个第二金属分支的中点上,所述第一金属分支与第二金属分支的长度相等。 [0037] Further, the metal microstructure planar flakes, the metal microstructure with mutually perpendicular bisecting line and the second metal to the first metal wire, metal wire of the same length of the first and the second metal wire the first metal line is connected at both ends have the same length of the two branches of the first metal, the first metal line is connected to a midpoint between two ends of two branches of a first metal, the second metal line ends is connected to two branches of the same length of the second metal, the second metal lines are connected to a midpoint between the two ends of the second metal two branches of equal length branch of the first metal and the second metal branch.

[0038] 进一步地,所述平面雪花状的金属微结构的每个第一金属分支及每个第二金属分支的两端还连接有完全相同的第三金属分支,相应的第三金属分支的中点分别与第一金属分支及第二金属分支的端点相连。 [0038] Further, both ends of each branch of the first metal and the second metal each branch of the planar snowflake metal microstructure is also connected to a third metal identical branches of the corresponding third branch of metal a first end connected to the midpoint of each branch of metal and a second metal branch.

[0039] 进一步地,所述平面雪花状的金属微结构的第一金属线与第二金属线均设置有两个弯折部,所述平面雪花状的金属微结构绕垂直于第一金属线与第二金属线交点的轴线向任意方向旋转90度的图形都与原图重合。 [0039] Further, the planar shape of the metal microstructure snowflake first metal wire and the second metal lines are provided with two bent portions, the planar shape of the metal microstructure snowflake about perpendicular to the first metal wire rotated by 90 degrees in an arbitrary direction with the axis of intersection of the second metal wire pattern are coincident with the original image.

[0040] 本发明相对于现有技术,具有以下有益效果:本发明一种紧缩场产生装置通过采用超材料面板将从馈源出射的球面电磁波调制为平面电磁波,制造超材料面板工艺简单, 加工材料为价格便宜的介质基板,成本降低,且采用超薄超材料面板使得馈源与超材料面板之间的距离减小,测试静区与超材料面板的面积比例是1:1的关系,比采用光滑抛物状反射面大大的减少了面积,节约了成本;同时本发明也避免了为制造光滑反射面的复杂工艺。 [0040] The present invention relative to the prior art, has the following advantages: the present invention is one kind of compression field generating means by using a meta-material feed from the panel modulating the electromagnetic waves emitted spherical wave planar, simple process of making ultra-panel materials, processing material is inexpensive dielectric substrate, reduce costs, and the use of ultra-thin panels of material such that the distance between the feed material and the super panel is reduced, the area ratio of the test materials and super quiet zone panel is 1: 1 relationship, than with smooth parabolic reflective surface area greatly reduced cost savings; while the present invention also avoids the complex process of manufacturing a smooth reflecting surface.

附图说明 BRIEF DESCRIPTION

[0041] 图1是本发明的紧缩场产生装置的结构示意图; [0041] FIG. 1 is a schematic tightening field generating apparatus of the present invention;

[0042] 图2是本发明的核心层片层其中一个超材料单元的透视示意图; [0042] Figure 2 is a schematic perspective view of a metamaterial unit core layer sheet of the present invention;

[0043] 图3是本发明的核心层片层的结构示意图; [0043] FIG. 3 is a schematic view of the core layer sheet of the present invention;

[0044] 图4是本发明的阻抗匹配层片层的结构示意图; [0044] FIG. 4 is a schematic view of the impedance matching layer sheet of the present invention;

[0045] 图5是本发明的平面雪花状的金属微结构的示意图; [0045] FIG. 5 is a schematic view of a planar metal microstructure of the flakes of the present invention;

[0046] 图6是图5所示的平面雪花状的金属微结构的一种衍生结构; [0046] FIG. 6 is a derivative of the structure of the metal microstructure shown in FIG. 5 snowflake plane;

[0047] 图7是图5所示的平面雪花状的金属微结构的一种变形结构。 [0047] FIG. 7 is a modification of the structure of the metal microstructure snowflake plane shown in FIG. 5.

[0048] 图8是平面雪花状的金属微结构的拓扑形状的演变的第一阶段; [0048] FIG. 8 is a first stage of the evolution of the topological shape of a planar metal microstructure snowflake;

[0049] 图9是平面雪花状的金属微结构的拓扑形状的演变的第二阶段。 [0049] FIG. 9 is a second phase of the evolution of the topological shape of a planar metal microstructure snowflake.

具体实施方式 detailed description

[0050] 下面结合实施例及附图,对本发明作进一步地详细说明,但本发明的实施方式不限于此。 [0050] The following examples and the accompanying drawings in conjunction with embodiments of the present invention will be further described in detail, but the embodiment of the present invention is not limited thereto.

[0051] 如图1至图3所示,根据本发明一种紧缩场产生装置包括馈源1以及设置在馈源1前方的超材料面板100,所述超材料面板100包括核心层10,所述核心层10包括至少一个核心层片层11,所述核心层片层包括片状的基材13以及设置在基材13上的多个人造微结构12, 所述核心层片层11按照折射率分布可划分为位于中间位置的圆形区域以及分布在圆形区域周围且与所述圆形区域共圆心的多个环形区域,所述圆形区域及环形区域内相同半径处的折射率相同,且在圆形区域及环形区域各自的区域内随着半径的增大折射率逐渐减小, 所述圆形区域的折射率的最小值小于与其相邻的环形区域的折射率的最大值,相邻两个环形区域,处于内侧的环形区域的折射率的最小值小于处于外侧的环形区域的折射率的最大值。 [0051] As shown in FIG. 1 to FIG. 3, the device 1 comprises a feed material and disposed over the front panel 100 of feed 1, the metamaterial panel 100 includes a core layer 10 to produce the field compression according to one of the present invention, the said core layer 10 includes at least one core layer sheet 11, the core layer comprises a plurality of plies of artificial microstructures 13 and the sheet-like base material disposed on the substrate 13, 12, the core layer sheet 11 in accordance with the refractive rate profile may be divided into a region located in the middle and a plurality of circular annular regions and are distributed around a circular area with the center of the circular common region, the same refractive index at the same radius of circular region and annular region and increase the refractive index with the radius gradually decreases in the region of a respective circular area and an annular region, the refractive index of the circular region is less than the maximum refractive index of the minimum of the annular area adjacent thereto, minimum of two adjacent annular areas, the inner annular region is a refractive index less than the refractive index at the maximum of the annular outer area. 核心层片层11按照折射率划分为圆形区域与多个环形区域是为了更好的描述本发明, 并不意味着本发明的核心层片层11具有此种实际结构。 The core layer a refractive index of sheet 11 is divided according to a circular area with a plurality of annular regions in order to better describe the present invention, the core layer does not mean that the present invention sheet 11 having such a physical structure. 本发明中,馈源1设置在超材料面板100的中轴线上,即馈源1与核心层片层11的中心的连线与超材料面板100的中轴线重合。 In the present invention, a feed material disposed over the central axis of the panel 100, i.e. a connection with a central feed core ply layer 11 coincides with the central axis 100 of the meta-material panel. 馈源1与超材料面板100均有支架支撑,图中并未出支架,其不是本发明的核心,采用传统的支撑方式即可。 1 and feed metamaterial panel 100 are supporting brackets, not shown in FIG stent, which is not the core of the present invention, a conventional support can manner.

[0052] 本发明中,所述核心层片层11的折射率分布满足如下公式: [0052] In the present invention, the refractive index of the core layer 11 of the sheet distribution satisfies the following formula:

Figure CN103293394BD00071

[0055] 其中,i表示核心层片层分段数,i = l表示核心层片层第一段、i = 2表示核心层片层第二段、……、i=p表示核心层片层的第P段,所述核心层片层第一段最靠近核心层片层的中心; [0055] where, i denotes the number of the segment core sheet, i = l represents the first segment core sheet, i = 2 represents a second segment core sheet, ......, i = p represents the core sheet the first section P, the first segment closest to the center of the core layer of the core layer sheet sheet;

[0056] m ω表示核心层片层第i段上半径为r处的折射率值; [0056] m ω r represents the radius of a refractive index value at the i-th upper core sheet;

[0057] nmin表示核心层片层的折射率的最小值; [0057] nmin is the minimum value of the refractive index of the core layer of the sheet;

[0058] λ表示电磁波波长; [0058] λ represents the wavelength of electromagnetic waves;

[0059] r表示核心层片层上任意一点距离核心层片层中心的距离; [0059] r denotes the distance from the point of the center core sheet of any sheet on the core layer;

[0060] s为馈源等效点到超材料面板的垂直距离; [0060] s is the vertical distance from the feed point to the equivalent metamaterial panel;

[0061] ai表示核心层片层第i段距离核心层片层中心的最大值; [0061] ai represents the i-th maximum value of the center sheet some distance to the core layer of the core layer;

[0062] d表示核心层的厚度。 [0062] d represents the thickness of the core layer.

[0063] 由公式(1)和公式(2)所确定的超材料面板,能够使得馈源1发出的电磁波经超材料面板后能够以平面波的形式出射。 [0063] From equations (1) and (2) the determined metamaterial panels, such that electromagnetic waves can be emitted, after a feed metamaterial panel can be in the form of a plane wave exit.

[0064] 本发明中,如图3所示,所述第一基材13包括片状的第一前基板131及第一后基板132,所述多个第一人造微结构12夹设在第一前基板131与第一后基板132之间。 [0064] In the present invention, shown in Figure 3, the first substrate 13 includes a first sheet-shaped front substrate 131 and the first rear substrate 132, a plurality of first artificial microstructures 12 sandwiched at its a front substrate 131 between the substrate 132 and the first rear. 优选地,所述核心层片层的厚度为0.818_,其中,第一前基板及第一后基板的厚度均为0.4_,多个第一人造微结构的厚度为0.018mm。 Preferably, the thickness of the core layer is 0.818_ plies, wherein a first thickness of the first substrate and the front substrate are 0.4_ rear, a first plurality of artificial microstructures thickness of 0.018mm.

[0065] 本发明中,所述超材料面板还包括设置在核心层10两侧表面的阻抗匹配层20,所述阻抗匹配层20包括厚度相同的多个阻抗匹配层片层21,所述阻抗匹配层片层21包括片状的第二基材23以及设置在第二基材23上的多个第二人造微结构(图中未标示),所述阻抗匹配层片层21的折射率分布满足如下公式: [0065] In the present invention, the metamaterial panel further comprising a matching layer is provided on both surfaces of the core layer 10, 20, the impedance matching layer 20 comprises a plurality of the same thickness plies impedance matching layer 21, the impedance 21 comprises a sheet-like second base sheet layer 23 and a matching layer disposed on a second substrate 23 a second plurality of artificial microstructures (not shown in the drawing), the impedance matching layer, the refractive index profile of the sheet 21 satisfies the following formula:

Figure CN103293394BD00072

[0068] 其中,j表示阻抗匹配层片层的编号,靠近馈源的阻抗匹配层片层的编号为m,由馈源向核心层方向,编号依次减小,靠近核心层的阻抗匹配层片层的编号为1; [0068] where, j is the number of impedance matching layer sheet, the sheet number impedance matching layer adjacent feed is m, the direction of the core layer, numbered sequentially decreases from the feed, impedance matching layer close to the core layer of sheet layer is numbered 1;

[0069] 上述的11111£«与1111^与核心层片层的折射率的最大值与最小值相同; [0069] The same as the above maximum and minimum values ​​of the refractive index 11111 £ «^ and 1111 of the core layer of the sheet;

[0070] r表示阻抗匹配层片层上任意一点到其中心的距离; [0070] r represents an arbitrary point on the impedance matching layer sheet to the distance from the center thereof;

[0071] λ表示电磁波波长; [0071] λ represents the wavelength of electromagnetic waves;

[0072] dl为阻抗匹配层的厚度,即阻抗匹配层片层的厚度与层数的乘积。 [0072] dl impedance matching layer thickness, i.e., the product of the thickness and number of layers of the impedance matching layer sheet.

[0073] d为核心层的厚度,即核心层片层的厚度与层数的乘积。 [0073] d is the thickness of the core layer, i.e., the product of the number of layers and the thickness of the core layer of the sheet.

[0074] 本发明中,所述第二基材23包括片状的第二前基板231及第二后基板232,所述多个第二人造微结构夹设在第二前基板231与第二后基板232之间,如图4所示。 [0074] In the present invention, the second sheet-shaped base material 23 comprises a second front substrate 231 and the second rear substrate 232, a plurality of the second artificial microstructures interposed second front substrate 231 and a second between the rear substrate 232, as shown in FIG. 优选地,所述阻抗匹配层片层的厚度为0.818_,其中,第二前基板及第二后基板的厚度均为0.4mm,多个第二人造微结构的厚度为0.018mm。 Preferably, the impedance matching layer thickness 0.818_ sheet layer, wherein the thickness of the second substrate and the second front rear substrate are 0.4mm, the thickness of the plurality of the second artificial microstructures is 0.018mm.

[0075] 公式(4)用于确定核心层与匹配层的厚度,当核心层的厚度确定后,利用公式(4) 即可得到匹配层的厚度,用此厚度除以每层的厚度即得到阻抗匹配层的层数j。 [0075] Equation (4) for determining the thickness of the core layer and the matching layer, when the thickness of the core layer is determined by equation (4) to a thickness of the matching layer, the thickness is divided by the thickness of each layer to obtain j layers impedance matching layer.

[0076] 本发明中,所述超材料面板任一纵截面具有相同的形状与面积,即核心层与匹配层具有相同的形状与面积的纵截面,此处的纵截面是指超材料面板中与超材料面板的中轴线垂直的剖面。 [0076] In the present invention, any one of the meta-material panel has the same longitudinal cross-sectional shape and area, i.e. the core layer and the matching layer having the same shape as the longitudinal sectional area, a longitudinal section here refers to the meta-material panel the cross-sectional axis perpendicular to the panel metamaterial. 所述超材料面板的纵截面为方形、圆形或椭圆形,优选地,所述超材料平板透镜的纵截面为方形,这样得到的超材料面板容易加工。 A longitudinal section of the meta-material panel is square, round or oval, preferably, the metamaterial lens flat plate is rectangular longitudinal section, the panel thus obtained metamaterial easily processed. 优选地,本发明的超材料面板的纵截面为边长为272mm的正方形。 Preferably a longitudinal section, the meta-material panel of the present invention is a square side length of 272mm.

[0077] 在本发明的一个实施例中,核心层片层的层数为4层,核心层的厚度d为3.272mm; [0077] In one embodiment of the present invention, the number of layers of the core layer 4 ply layer, the core layer thickness d of 3.272mm;

[0078] 阻抗匹配层片层分布在核心层两侧,每侧2层,阻抗匹配层的厚度dl为1.636mm; [0078] The impedance matching layer sheet located on both sides of the core layer, two layers on each side, impedance matching layer thickness dl is 1.636mm;

[0079] 本发明中,所述第一人造微结构、第二人造微结构均为由铜线或银线构成的金属微结构,所述金属微结构通过蚀刻、电镀、钻刻、光刻、电子刻或离子刻的方法分别附着在第一基材、第二基材。 [0079] In the present invention, the first artificial microstructures, a second metal microstructures artificial microstructures are made of copper or silver, the metal microstructure by etching, electroplating, drilling, photolithography, electrons or ions engraved engraving methods are attached to the first substrate, a second substrate. 优选地,所述第一人造微结构、第二人造微结构均为图5所示的平面雪花状的金属微结构通过拓扑形状演变得到的多个不同的拓扑形状的金属微结构。 Preferably, the first artificial microstructures, the microstructures are a plurality of the second artificial metal microstructure shapes different topologies metal microstructure as shown in FIG. 5 snowflake plane by the evolution of the topological shape obtained.

[0080] 本发明中,核心层片层可以通过如下方法得到,即在第一前基板与第一后基板的任意一个的表面上覆铜,再通过蚀刻的方法得到多个第一金属微结构(多个第一金属微结构的形状与排布事先通过计算机仿真获得),最后将第一前基板与第一后基板分别压合在一起,即得到本发明的核心层片层,压合的方法可以是直接热压,也可以是利用热熔胶连接,当然也可是其它机械式的连接,例如螺栓连接。 [0080] In the present invention, the core layer sheet can be obtained by the following method, i.e., any copper on a front surface of the first substrate and the first rear substrate, and then a first metal to obtain a plurality of microstructures by etching method (the first plurality of metal microstructure arranged in advance a shape is obtained by a computer simulation), and finally the first front substrate and the rear substrate are first pressed together, i.e., to obtain a core layer sheet of the present invention, the nip It may be a direct pressing method, using a hot melt adhesive may be connected, of course, but also other mechanical connections such as bolting.

[0081] 同理,阻抗匹配层片层也可以利用相同的方法得到。 [0081] Similarly, impedance matching layer sheet may be obtained by the same method. 然后分别将多个核心层片层压合一体,即形成了本发明的核心层;同样,将多个阻抗匹配层片层压合一体,即形成了本发明的阻抗匹配层;将核心层、阻抗匹配层压合一体即得到本发明的超材料面板。 And a plurality of core plies were bonded integrally laminated, i.e. formed the core layer of the present invention; similarly, a plurality of impedance matching layer lamination sheet integrally, i.e., the impedance matching layer is formed according to the present invention; core layer, i.e., obtain impedance matching lamination integrally metamaterial panel of the present invention.

[0082] 本发明中,所述第一基材、第二基材由陶瓷材料、高分子材料、铁电材料、铁氧材料或铁磁材料等制得。 [0082] In the present invention, the first substrate, the second substrate is made of a ceramic material, a polymer material, a ferroelectric material, a ferrite material or the like made of a ferromagnetic material. 高分子材料可选用的有F4B复合材料、FR-4复合材料等。 Optional polymer materials have F4B composites, FR-4 and other composites. 优选地,本发明中,所述第一基材的第一前基板与第一后基板采用相同的FR-4复合材料;同样,本发明中, 所述第二基材的第二前基板与第二后基板也采用相同的FR-4复合材料。 Preferably, in the present invention, a first front substrate of the first substrate after the first substrate and the FR-4 using the same composite material; similarly, in the present invention, a second front substrate and said second substrate after the second substrate also uses the same composite material FR-4.

[0083] 图5所示为平面雪花状的金属微结构的示意图,所述的雪花状的金属微结构具有相互垂直平分的第一金属线J1及第二金属线J2,所述第一金属线J1与第二金属线J2的长度相同,所述第一金属线J1两端连接有相同长度的两个第一金属分支F1,所述第一金属线J1 两端连接在两个第一金属分支F1的中点上,所述第二金属线J2两端连接有相同长度的两个第二金属分支F2,所述第二金属线J2两端连接在两个第二金属分支F2的中点上,所述第一金属分支F1与第二金属分支F2的长度相等。 [0083] FIG. 5 is a schematic view of a planar metal microstructure snowflake, the snow-like metal microstructure having a first metal line is perpendicular bisector of J1 and the second metal line J2, the first metal line J1 same length as the second metal line J2, and J1 of the first metal line is connected to two ends of the same length of the first metal branch F1, the first metal line is connected to two ends of the first metal J1 branches F1 is the midpoint, the second metal line J2 are connected at both ends two branches of equal length F2 of the second metal, the second metal line J2 ends connected to the two branches of the second metal midpoint F2 equal length of the first metal and the second metal branch branch F1 and F2.

[0084] 图6是图5所示的平面雪花状的金属微结构的一种衍生结构。 [0084] FIG. 6 is a derivative of the structure of the metal microstructure plane shown in FIG. 5 snowflake. 其在每个第一金属分支F1及每个第二金属分支F2的两端均连接有完全相同的第三金属分支F3,并且相应的第三金属分支F3的中点分别与第一金属分支F1及第二金属分支F2的端点相连。 Which are connected with a same branch of the third metal of the first metal F3 across each branch and each second metal branch F1 and F2, and the midpoint of the corresponding third branch F3 is metal with the first metal branch F1 and a second end connected to the metal branch F2. 依此类推,本发明还可以衍生出其它形式的金属微结构。 And so on, the present invention may also be derived from other forms of metal microstructure.

[0085] 图7是图5所示的平面雪花状的金属微结构的一种变形结构,此种结构的金属微结构,第一金属线J1与第二金属线J2不是直线,而是弯折线,第一金属线J1与第二金属线J2均设置有两个弯折部WZ,但是第一金属线J1与第二金属线J2仍然是垂直平分,通过设置弯折部的朝向与弯折部在第一金属线与第二金属线上的相对位置,使得图7所示的金属微结构绕垂直于第一金属线与第二金属线交点的轴线向任意方向旋转90度的图形都与原图重合。 [0085] FIG. 7 is a plan shown in FIG. 5 snowflake a modification of the structure of the metal microstructure, the metal microstructure of this structure, a first metal wire and the second metal line J1 J2 not straight but bend line a first metal wire and the second metal line J1 J2 are each provided with two bent portions WZ, but the first metal and the second metal line J1 and J2 remains perpendicular bisector, by providing the bent portion toward the bent portion the relative position of the first metal wire and a second metal line, so that the metal microstructure shown in FIG. 7 about an axis perpendicular to the first metal wire and the second metal pattern line intersections 90 degrees rotation in either direction for the original FIG coincide. 另外,还可以有其它变形,例如,第一金属线J1与第二金属线J2均设置多个弯折部WZ。 Further, there can be other variations, e.g., a first metal and a second metal line J1 and J2 are provided a plurality of bent portions WZ.

[0086] 本发明中,所述核心层片层11可以划分为阵列排布的多个如图2所示的超材料单元D,每个超材料单元D包括前基板单元U、后基板单元V及设置在基板单元U、后基板单元V之间的第一人造微结构12,通常超材料单元D的长宽高均不大于五分之一波长,优选为十分之一波长,因此,根据天线的工作频率可以确定超材料单元D的尺寸。 [0086] In the present invention, the core layer 11 may be divided sheet metamaterial unit D shown as a plurality of arrays arranged in FIG. 2, each of the metamaterial unit D includes a front substrate unit U, the rear substrate unit V and provided on the substrate unit U, the first artificial microstructures between the base unit V 12, generally the length and breadth metamaterial unit D not greater than one fifth of the wavelength, preferably one tenth of a wavelength, and therefore, in accordance with operating frequency of the antenna can be dimensioned metamaterial unit D. 图2为透视的画法,以表示第一人造微结构的超材料单元D中的位置,如图2所示,所述第一人造微结构夹于基板单元U、后基板单元V之间,其所在表面用SR表示。 FIG 2 is a perspective drawing, to indicate the position D of the first artificial metamaterial unit in the microstructure, shown in Figure 2, the first artificial microstructures sandwiched substrate unit U, between the substrate unit V, it is represented by the surface SR.

[0087] 已知折射率 [0087] Known refractive index

Figure CN103293394BD00091

,其中μ为相对磁导率,ε为相对介电常数,μ与ε合称为电磁参数。 , Where [mu] is the relative permeability, relative permittivity [epsilon], [mu] and [epsilon] together called electromagnetic parameters. 实验证明,电磁波通过折射率非均匀的介质材料时,会向折射率大的方向偏折。 Experiments show that the refractive index of the electromagnetic wave by a dielectric material of non-uniform, will be deflected to a large refractive index direction. 在相对磁导率一定的情况下(通常接近1),折射率只与介电常数有关,在第一基材选定的情况下, 利用只对电场响应的第一人造微结构可以实现超材料单元折射率的任意值(在一定范围内),在该天线中心频率(12.5GHZ)下,利用仿真软件,如CST、MATLAB等,通过仿真获得某一特定形状的人造微结构(如图5所示的平面雪花状的金属微结构)的介电常数随着拓扑形状的变化折射率变化的情况,即可列出一一对应的数据,即可设计出我们需要的特定折射率分布的核心层片层11,同理可以得到阻抗匹配层片层的折射率分布,从而得到整个超材料面板的折射率分布。 In the case where the relative magnetic permeability constant (usually close to 1), the refractive index and the dielectric constant is only relevant in the case of a first substrate selected using only the first man-made microstructures can be achieved in response to an electric field metamaterial means any value of the refractive index (within a certain range), at the antenna center frequency (12.5GHz), using the simulation software, such as CST, MATLAB, etc., to obtain a specific shape by simulation artificial microstructures (FIG. 5 snowflake shaped planar metal microstructure shown) with the case where the dielectric constant changes in the topology of the shape of the refractive index change, correspond to the data listed, the core layer can be devised we need specific refractive index distribution sheet 11, a refractive index matching layer can empathy sheet distribution, thereby obtaining a refractive index profile throughout the metamaterial panel.

[0088] 本发明中,核心层片层的结构设计可通过计算机仿真(CST仿真)得到,具体如下: (1)确定第一金属微结构的附着基材(第一基材)。 [0088] In the present invention, the core layer sheet structure design can be obtained by computer simulation (CST simulation) obtained as follows: (1) determining the attachment base (first base) the first metal microstructure. 本明中,所述第一基材的第一前基板与第一后基板采用相同的FR-4复合材料制成,所述的FR-4复合材料制成具有一个预定的介电常数,例如介电常数为3.3的FR-4复合材料。 Akira, the first substrate before the first substrate after the first substrate using the FR-4 made of the same composite, having a predetermined dielectric constant of the FR-4 with a composite material, e.g. FR-4 dielectric constant of the composite material is 3.3.

[0089] (2)确定超材料单元的尺寸。 [0089] (2) dimensioned metamaterial unit. 超材料单元的尺寸的尺寸由天线的中心频率得到,利用频率得到其波长,再取小于波长的五分之一的一个数值做为超材料单元D的长度CD与宽度KD。 Metamaterial unit size is a size obtained by the center frequency of the antenna, obtained by the frequency of its wavelength, and then take a value of less than one-fifth of the wavelength width as the length of the CD KD metamaterial unit D. 本发明中,所述超材料单元D为如图2所示的长⑶与宽KD均为2.5mm、厚度HD为0.818mm 的方形小板。 In the present invention, the metamaterial unit D ⑶ length and width as shown in KD are 2.5mm, the thickness of the HD shown in small square plate of 0.818mm.

[0090] (3)确定金属微结构的材料及拓扑结构。 [0090] (3) Materials and determining the topology of the metal microstructure. 本发明中,金属微结构的材料为铜,金属微结构的拓扑结构为图5所示的平面雪花状的金属微结构,其线宽W各处一致;此处的拓扑结构,是指拓扑形状演变的基本形状。 In the present invention, the material is copper metal microstructure, the metal microstructure topology snowflake planar metal microstructure shown in Figure 5, which is consistent throughout the width W is; topology herein, refers to the topological shape the basic shape evolution.

[0091] ⑷确定金属微结构的拓扑形状参数。 [0091] ⑷ determine the topology of the shape parameters of the metal microstructure. 如图5所示,本发明中,平面雪花状的金属微结构的拓扑形状参数包括金属微结构的线宽W,第一金属线J1的长度a,第一金属分支F1的长度b。 5, the present invention, the topology of the shape parameter planar metal microstructure comprises snowflake line width W of the metal microstructure, a first metal line J1 of length a, length F1 of the first metal branch b.

[0092] ⑶确定金属微结构的拓扑形状的演变限制条件。 [0092] ⑶ determine the evolution of the shape metal microstructure topology restrictions. 本发明中,金属微结构的拓扑形状的演变限制条件有,金属微结构之间的最小间距WL(即如图8所示,金属微结构与超材料单元的长边或宽边的距离为WL/2),金属微结构的线宽W,超材料单元的尺寸;由于加工工艺限制,WL大于等于0.1mm,同样,线宽W也是要大于等于0.1mm。 In the present invention, the evolution of the shape of the topology restrictions of the metal microstructure has a minimum distance WL between the metal microstructure (i.e., from the long side or the wide side of the metal microstructure metamaterial unit shown in FIG. 8 is WL / 2), the line width W of the metal microstructure, the size of the metamaterial unit; processing due to process limitations, WL than or equal to 0.1mm, the same, the line width W is greater than or equal to 0.1mm. 本发明中,WL取0 . lmm,W取0.3mm,超材料单元的尺寸为长与宽为2.5mm,厚度为0.818mm,此时金属微结构的拓扑形状参数只有a和b两个变量。 In the present invention, WL takes 0. Lmm, W taken 0.3mm, size of the metamaterial unit of length and width of 2.5mm, a thickness of 0.818mm, the shape parameter case, the topology of the metal microstructure only two variables a and b. 金属微结构的拓扑形状的通过如图8至图9所示的演变方式,对应于某一特定频率(例如12.5GHZ),可以得到一个连续的折射率变化范围。 Topological shape of the metal microstructure evolution in the manner shown by FIG. 8 to FIG. 9, corresponding to a specific frequency (e.g. 12.5GHz), can be a continuous change in refractive index range.

[0093] 具体地,所述金属微结构的拓扑形状的演变包括两个阶段(拓扑形状演变的基本形状为图5所示的金属微结构): [0093] In particular, the evolution of the shape of the metal microstructure topology structure includes two stages (metal microstructures basic shape evolution topological shape as shown in FIG. 5):

[0094] 第一阶段:根据演变限制条件,在b值保持不变的情况下,将a值从最小值变化到最大值,此演变过程中的金属微结构均为"十"字形(a取最小值时除外)。 [0094] The first stage: The evolution constraints, the b value remains unchanged, the changes from the minimum value to a maximum value, the metal microstructure of this evolution are "ten" (a take except the minimum value). 本实施例中,a的最小值即为0 · 3mm (线宽W),a的最大值为(CD-WL),即2 · 5-0 · 1mm,则a的最大值为2 · 4mm。 In this embodiment, the minimum value that is a 0 · 3mm (width W is), a maximum value of (CD-WL), i.e., 2 · 5-0 · 1mm, the maximum value of a is 2 · 4mm. 因此,在第一阶段中,金属微结构的拓扑形状的演变如图8所示,即从边长为W的正方形JX1,逐渐演变成最大的"十"字形拓扑形状JD1,在最大的"十"字形拓扑形状JD1中,第一金属线J1与第二金属线J2长度均为2.4mm,宽度W均为0.3mm。 Thus, in a first stage, the evolution of the shape of the metal microstructure topology shown in Figure 8, i.e. from the side of a square with JX1 W, gradually evolved into the largest "ten" JD1 topological shape, the largest "ten "JD1 shaped topological shape, the first metal wires are 2.4mm J1 J2 and the second metal line length, both the width W of 0.3mm. 在第一阶段中,随着金属微结构的拓扑形状的演变,与其对应的超材料单元的折射率连续增大((对应天线一特定频率),当频率为12.5GHZ时,超材料单元对应的折射率的最小值n min为1.91。 In the first stage, with the evolution of the shape of the topology of the metal microstructure, index metamaterial unit continuously increases corresponding thereto ((antenna corresponding to a specific frequency), when the frequency is 12.5GHz, corresponding metamaterial unit refractive index n min is the minimum value of 1.91.

[0095] 第二阶段:根据演变限制条件,当a增加到最大值时,a保持不变;此时,将b从最小值连续增加到最大值,此演变过程中的金属微结构均为平面雪花状。 [0095] Second Stage: The evolution constraints, when a maximum value is increased, a remains unchanged; In this case, the maximum value is increased continuously from the minimum value b, the metal microstructure evolution in this plane are snowflake. 本实施例中,b的最小值即为0 · 3mm (线宽W),b的最大值为(CD-WL-2W),即2 · 5-0 · 1-2*0 · 3mm,则b的最大值为1.8mm。 In this embodiment, b is the minimum value of 0 · 3mm (width W is), b is the maximum value (CD-WL-2W), i.e., 2 · 5-0 · 1-2 * 0 · 3mm, then b the maximum value of 1.8mm. 因此,在第二阶段中,金属微结构的拓扑形状的演变如图9所示,即从最大的"十"字形拓扑形状JD1,逐渐演变成最大的平面雪花状的拓扑形状JD2,此处的最大的平面雪花状的拓扑形状JD2是指,第一金属分支J1与第二金属分支J2的长度b已经不能再伸长,否则第一金属分支与第二金属分支将发生相交,b的最大值为1.8mm。 Thus, in the second stage, the evolution of the shape of the metal microstructure topology shown in Figure 9, i.e. from the largest "ten" JD1 topological shape, gradually evolved into the largest planar topology snowflake shape JD2, here snowflake largest planar shape topology JD2 means, a first metal and a second metal branch J1 J2 branch length b can no longer elongate, metal or intersection of the first branch and the second branch of the metal occurs, the maximum value of b It is 1.8mm. 此时,第一金属线与第二金属线长度均为2.4mm,宽度均为0.3mm,第一金属分支及第二金属分支的长度均为1.8mm,宽度为0.3mm。 At this time, the first metal and the second metal wire are length 2.4mm, width are 0.3mm, a length of a first metal and a second metal branch are branch 1.8mm, width is 0.3mm. 在第二阶段中,随着金属微结构的拓扑形状的演变,与其对应的超材料单元的折射率连续增大(对应天线一特定频率),当频率为12.5GHZ时,超材料单元对应的折射率的最大值Umax为5.6 〇 In the second stage, with the evolution of the shape of the topology of the metal microstructure, index metamaterial unit continuously increases corresponding thereto (corresponding to a specific frequency antenna), when the frequency is 12.5GHz, units corresponding to refractive metamaterials Umax maximum rate of 5.6 billion

[0096] 通过上述演变得到超材料单元的折射率变化范围满足设计需要。 [0096] needs to meet the design range of the refractive index change by said metamaterial unit evolution. 如果上述演变得到超材料单元的折射率变化范围不满足设计需要,例如最大值太小,则变动WL与W,重新仿真,直到得到我们需要的折射率变化范围。 If the above range of the refractive index change obtained Evolution metamaterial unit does not meet design requirements, for example the maximum value is too small, the fluctuation WL and W, the simulation again until a change in refractive index range we need.

[0097] 根据公式(1),将仿真得到的一系列的超材料单元按照其对应的折射率排布以后(实际上就是不同拓扑形状的多个第一人造微结构在第一基材上的排布),即能得到本发明的核心层片层。 [0097] According to the formula (1), a series of metamaterial unit obtained by the simulation after the corresponding refractive index arrangement (actually a first plurality of artificial microstructures different topologies shape on the first substrate, arrangement), i.e., the core layer can be obtained sheet according to the present invention.

[0098]同理,可以得到本发明的阻抗匹配层片层。 [0098] Similarly, it is possible to obtain impedance matching layer sheet of the present invention.

[0099]上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未违背本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化, 均应为等效的置换方式,都包含在本发明的保护范围之内。 [0099] The preferred embodiment of the present invention embodiment, but the embodiment of the present invention is not limited to the above embodiments, changes made to any other not departing from the spirit and principle of the present invention, modifications, substitutions , combined, simplified, should be equivalent replacement method, it is included within the scope of the present invention.

Claims (10)

  1. 1. 一种紧缩场产生装置,所述装置包括馈源,其特征在于,所述装置还包括设置在所述馈源前方的超材料面板,所述超材料面板包括核心层,所述核心层包括至少一个核心层片层,所述核心层片层包括片状的第一基材以及设置在所述第一基材上的多个第一人造微结构,所述核心层片层按照折射率分布可划分为位于中间位置的圆形区域以及分布在圆形区域周围且与所述圆形区域共圆心的多个环形区域,所述圆形区域及环形区域内相同半径处的折射率相同,且在圆形区域及环形区域各自的区域内随着半径的增大折射率逐渐减小, 所述圆形区域的折射率的最小值小于与其相邻的环形区域的折射率的最大值,相邻两个环形区域,处于内侧的环形区域的折射率的最小值小于处于外侧的环形区域的折射率的最大值。 A compression field generating means, said means comprising a feed, characterized in that said apparatus further comprises a meta-material panel is disposed in front of the feeds, the meta-material panel comprises a core layer, the core layer a core layer comprising at least one sheet, the first plurality of plies of artificial microstructures core layer comprises a first sheet-like base material disposed on the first substrate, the refractive index of the core layer sheet in accordance with distribution may be divided into a region located in the middle and a plurality of circular annular regions and are distributed around a circular area with the center of the circular common region, the circular area and the same refractive index at the same radius within the annular region, with the increase of the radius of the refractive index is gradually reduced in the region of the circular region and annular regions of each of the minimum refractive index of the circular region is less than the maximum refractive index of the annular region adjacent thereto, with o two annular regions, the minimum value of the refractive index in the inner annular region is less than the maximum index of refraction in the annular outer area.
  2. 2. 根据权利要求1所述的一种紧缩场产生装置,其特征在于,所述第一基材包括片状的第一前基板及第一后基板,所述多个第一人造微结构夹设在第一前基板与第一后基板之间。 2. According to a tightening of the field generating apparatus 1, characterized in that said first substrate comprises a first sheet-shaped front substrate and the rear substrate a first, a plurality of first clamp claim artificial microstructures disposed between the first substrate and the first rear front substrate.
  3. 3. 根据权利要求1所示的一种紧缩场产生装置,其特征在于,所述核心层包括多个厚度相同且折射率分布相同的核心层片层,多个核心层片层压合一体。 3. A generating apparatus according to any preceding shown CATR 1, wherein the core layer comprises a plurality of identical thickness and refractive index distribution of the core layer of the same sheet, a plurality of integral core lamination plies.
  4. 4. 根据权利要求1所示的一种紧缩场产生装置,其特征在于,所述圆心为核心层片层的中心,所述圆形区域以及多个环形区域的折射率变化范围相同,所述核心层片层的折射率η (r)分布满足如下公式: 4. A member according to claim tightening field generating apparatus shown in claim 1, wherein said center core layer is a center of the sheet, the same range of the refractive index change regions and a plurality of circular annular area, the refractive index η (r) of the core layer sheet distribution satisfies the following formula:
    Figure CN103293394BC00021
    其中,i表示核心层片层分段数,i = 1表示核心层片层第一段、i = 2表示核心层片层第二段、……、i = P表示核心层片层的第P段,所述核心层片层第一段最靠近核心层片层的中心; m ω表示核心层片层第i段上半径为r处的折射率值; nmin表示核心层片层的折射率的最小值; λ表不电磁波波长; r表示核心层片层上任意一点距离核心层片层中心的距离; s为馈源等效点到超材料面板的垂直距离; m表示核心层片层第i段距离核心层片层中心的最大值; d表示所述核心层的厚度。 Where, i denotes the number of the segment core sheet, i = 1 represents the first segment core sheet, i = 2 represents a second segment core sheet, ......, i = P denotes the core layer sheets P section, said central core sheet of the first segment closest to the core layer sheet; m ω represents the core of the i-layer sheet segment radius r at the refractive index value; Nmin represents the refractive index of the core layer of sheet minimum; [lambda] the wavelength of the electromagnetic wave table does; R & lt point represents a distance from the core center of any sheet on the sheet core layer; S is the vertical distance from the feed point to the equivalent metamaterial panel; m represents a slice of the core layer i maximum sheet some distance of the center core layer; D represents the thickness of the core layer.
  5. 5. 根据权利要求4所述的一种紧缩场产生装置,其特征在于,所述超材料面板还包括对称分布在核心层两侧表面的阻抗匹配层,所述阻抗匹配层包括厚度相同的多个阻抗匹配层片层,所述阻抗匹配层片层包括片状的第二基材以及设置在第二基材上的多个第二人造微结构,所述阻抗匹配层片层的折射率分布满足如下公式: The generating apparatus according to any preceding claim CATR 4, characterized in that said panel further comprises a metamaterial impedance matching layer symmetrically distributed on both side surfaces of the core layer, the impedance matching layer comprises a plurality of the same thickness impedance matching layer of plies, the second plurality of artificial microstructures matching layer sheet comprising a sheet-like second substrate is disposed on the second substrate, the refractive index matching layer sheet distribution satisfies the following formula:
    Figure CN103293394BC00022
    其中,j表示阻抗匹配层片层的编号,靠近馈源的阻抗匹配层片层的编号为m,由馈源向核心层方向,编号依次减小,靠近核心层的阻抗匹配层片层的编号为1; 上述的11111£«与1111^与核心层片层的折射率的最大值与最小值相同; r表示阻抗匹配层片层上任意一点到其中心的距离; λ表不电磁波波长; dl为阻抗匹配层的厚度; d为核心层的厚度。 Wherein, j is the number of impedance matching layer sheet, the sheet number impedance matching layer adjacent feed is m, the direction of the core layer, numbered sequentially decreases from the feed, NO impedance matching layer adjacent to the core sheet layer 1; the same maximum and minimum values ​​of the refractive index 11111 £ «^ and 1111 of the core layer of the sheet; represents R & lt arbitrary impedance matching layer on the sheet from one point to the center thereof; [lambda] wavelength of electromagnetic waves is not the table; DL impedance matching layer thickness; d is the thickness of the core layer.
  6. 6. 根据权利要求5所述的一种紧缩场产生装置,其特征在于,所述第二基材包括片状的第二前基板及第二后基板,所述多个第二人造微结构夹设在第二前基板与第二后基板之间。 6. According to a tightening field generating apparatus according to claim 5, characterized in that said second substrate comprises a second sheet-shaped front substrate and the second substrate after a plurality of the second artificial microstructures clip disposed between the front substrate and the second substrate after the second.
  7. 7. 根据权利要求6所述的一种紧缩场产生装置,其特征在于,所述第一人造微结构及第二人造微结构均为由铜线或银线构成的金属微结构,所述金属微结构通过蚀刻、电镀、钻亥IJ、光刻、电子刻或离子刻的方法分别附着在第一基材及第二基材上。 7. A member according to claim CATR generating apparatus according to claim 6, characterized in that the metal microstructure of the first and the second artificial man-made microstructures microstructures are made of copper or silver, the metal microstructures by etching, electroplating, Hai IJ drilling, photolithography, electron or ion engraved engraving method are attached to the first substrate and the second substrate.
  8. 8. 根据权利要求7所述的紧缩场产生装置,其特征在于,所述金属微结构呈平面雪花状,所述金属微结构具有相互垂直平分的第一金属线及第二金属线,所述第一金属线与第二金属线的长度相同,所述第一金属线两端连接有相同长度的两个第一金属分支,所述第一金属线两端连接在两个第一金属分支的中点上,所述第二金属线两端连接有相同长度的两个第二金属分支,所述第二金属线两端连接在两个第二金属分支的中点上,所述第一金属分支与第二金属分支的长度相等。 8. The tightening field generating apparatus according to claim 7, characterized in that the metal flakes planar microstructure, the metal microstructure with mutually perpendicular bisecting line and the second metal to the first metal line, the a first metal wire and the second metal line of the same length, the first metal line is connected at both ends with two branches of the same length as the first metal, the first metal line is connected at both ends of the two branches of the first metal the midpoint, the second metal wire is connected at both ends with two branches the same length of the second metal, the second metal wire ends connected to a midpoint of the two branches of the second metal, the first metal equal to the length of the branch and the second branch of the metal.
  9. 9. 根据权利要求8所述的一种紧缩场产生装置,其特征在于,所述平面雪花状的金属微结构的每个第一金属分支及每个第二金属分支的两端还连接有完全相同的第三金属分支, 相应的第三金属分支的中点分别与第一金属分支及第二金属分支的端点相连。 9. A member according to claim CATR generating apparatus according to claim 8, characterized in that the two ends of each branch of the first metal and the second metal each branch of the planar snowflake metal microstructure is also connected completely the third branch of the same metal, metal midpoint corresponding third branch are connected to a first end of the second metal and metal branch branches.
  10. 10. 根据权利要求9所述的一种紧缩场产生装置,其特征在于,所述平面雪花状的金属微结构的第一金属线与第二金属线均设置有两个弯折部,所述平面雪花状的金属微结构绕垂直于第一金属线与第二金属线交点的轴线向任意方向旋转90度的图形都与原图重合。 10. A member according to claim CATR generating apparatus according to claim 9, wherein the planar flakes first metal line and the second metal line metal microstructures are provided with two bent portions, said snowflake plane about an axis perpendicular to the metal microstructure of the first metallic wire and the second metal line intersection of the axis of rotation of the pattern 90 degrees in either direction coincides with the original image.
CN 201210050862 2012-02-29 2012-02-29 One kind of compression field generating means CN103293394B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201210050862 CN103293394B (en) 2012-02-29 2012-02-29 One kind of compression field generating means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201210050862 CN103293394B (en) 2012-02-29 2012-02-29 One kind of compression field generating means

Publications (2)

Publication Number Publication Date
CN103293394A true CN103293394A (en) 2013-09-11
CN103293394B true CN103293394B (en) 2017-04-05

Family

ID=49094608

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201210050862 CN103293394B (en) 2012-02-29 2012-02-29 One kind of compression field generating means

Country Status (1)

Country Link
CN (1) CN103293394B (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1286815A (en) * 1997-11-18 2001-03-07 艾利森公司 Compact antenna feed circuits
EP1065509B1 (en) * 1999-07-02 2004-11-03 FUBA Automotive GmbH & Co. KG Diagnostic device for multiple antenna system
CN1588699A (en) * 2004-07-30 2005-03-02 摩比天线技术(深圳)有限公司 Aray antenna optimum gain shaping method
CN101013772A (en) * 2006-09-13 2007-08-08 北京航空航天大学 Low-frequency ultra-wideband compact feed
CN101207881A (en) * 2006-12-19 2008-06-25 中兴通讯股份有限公司 Apparatus and method for testing mobile terminal near field radiation
CN101231316A (en) * 2006-11-30 2008-07-30 中兴通讯股份有限公司 Method for determining antenna minimum test distance
EP2003800B1 (en) * 2007-06-15 2009-07-15 Research In Motion Limited System for determining total isotropic sensitivity (TIS) using target received signal strength indicator (RSSI) value and related methods
CN101576591A (en) * 2009-06-09 2009-11-11 北京邮电大学 System and method for measuring compact range antenna by three reflectors
CN101699659A (en) * 2009-11-04 2010-04-28 东南大学 Lens antenna
EP2322944A2 (en) * 2009-11-17 2011-05-18 Astrium GmbH High frequency measurement assembly and method for measuring a high frequency test subject, in particular an antenna

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7965228B2 (en) * 2007-11-05 2011-06-21 The Aerospace Corporation Quasi-compact range

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1286815A (en) * 1997-11-18 2001-03-07 艾利森公司 Compact antenna feed circuits
EP1065509B1 (en) * 1999-07-02 2004-11-03 FUBA Automotive GmbH & Co. KG Diagnostic device for multiple antenna system
CN1588699A (en) * 2004-07-30 2005-03-02 摩比天线技术(深圳)有限公司 Aray antenna optimum gain shaping method
CN101013772A (en) * 2006-09-13 2007-08-08 北京航空航天大学 Low-frequency ultra-wideband compact feed
CN101231316A (en) * 2006-11-30 2008-07-30 中兴通讯股份有限公司 Method for determining antenna minimum test distance
CN101207881A (en) * 2006-12-19 2008-06-25 中兴通讯股份有限公司 Apparatus and method for testing mobile terminal near field radiation
EP2003800B1 (en) * 2007-06-15 2009-07-15 Research In Motion Limited System for determining total isotropic sensitivity (TIS) using target received signal strength indicator (RSSI) value and related methods
CN101576591A (en) * 2009-06-09 2009-11-11 北京邮电大学 System and method for measuring compact range antenna by three reflectors
CN101699659A (en) * 2009-11-04 2010-04-28 东南大学 Lens antenna
EP2322944A2 (en) * 2009-11-17 2011-05-18 Astrium GmbH High frequency measurement assembly and method for measuring a high frequency test subject, in particular an antenna

Also Published As

Publication number Publication date Type
CN103293394A (en) 2013-09-11 application

Similar Documents

Publication Publication Date Title
Silveirinha et al. Parallel-plate metamaterials for cloaking structures
Alitalo et al. Transmission-line networks cloaking objects from electromagnetic fields
Kim et al. Optical Huygens’ metasurfaces with independent control of the magnitude and phase of the local reflection coefficients
WO2013013465A1 (en) Cassegrain radar antenna
Jackson et al. The fundamental physics of directive beaming at microwave and optical frequencies and the role of leaky waves
CN102544745A (en) Hybrid transmission-reflection microwave antenna
CN202231160U (en) Antenna based on metamaterial
Demetriadou et al. Slim Luneburg lens for antenna applications
CN1835277A (en) Negative refracting power microwave medium material and prepn. method thereof
CN102480030A (en) Feed-forward type microwave antenna
Mei et al. Experimental verification of a broadband planar focusing antenna based on transformation optics
CN101527394A (en) Highly directive antenna based on grooved cross metal strip artificial medium structure
CN102480024A (en) Feed-backward type radar antenna
Liu et al. Tunable ultrathin mantle cloak via varactor-diode-loaded metasurface
Xu et al. An octave-bandwidth half Maxwell fish-eye lens antenna using three-dimensional gradient-index fractal metamaterials
CN202231156U (en) Feedback type microwave antenna
Oraizi et al. Design and optimization of planar multilayer antireflection metamaterial coatings at Ku band under circularly polarized oblique plane wave incidence
Vehmas et al. Experimental demonstration of antenna blockage reduction with a transmission-line cloak
CN203589220U (en) Antenna
Zhou et al. A high-directive patch antenna based on all-dielectric near-zero-index metamaterial superstrates
CN102749529A (en) Compact range antenna measuring system
Xu et al. Dual-mode transmissive metasurface and its applications in multibeam transmitarray
CN102480031A (en) Feedback type radar antenna
CN102480034A (en) Feedback type microwave antenna
CN102593611A (en) Point focusing flat lens antenna

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
GR01