CN103288437B - Six-layer ferrotitanium yttrium bismuth cobaltate ceramic material with multiferroic performance and preparation method thereof - Google Patents
Six-layer ferrotitanium yttrium bismuth cobaltate ceramic material with multiferroic performance and preparation method thereof Download PDFInfo
- Publication number
- CN103288437B CN103288437B CN201210209229.7A CN201210209229A CN103288437B CN 103288437 B CN103288437 B CN 103288437B CN 201210209229 A CN201210209229 A CN 201210209229A CN 103288437 B CN103288437 B CN 103288437B
- Authority
- CN
- China
- Prior art keywords
- sample
- preparation
- sintering
- acid
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- FKJLQFQNWHLUSS-UHFFFAOYSA-N bismuth yttrium Chemical compound [Y].[Bi] FKJLQFQNWHLUSS-UHFFFAOYSA-N 0.000 title claims abstract description 9
- 238000002360 preparation method Methods 0.000 title abstract description 8
- 229910010293 ceramic material Inorganic materials 0.000 title abstract description 3
- 229910001200 Ferrotitanium Inorganic materials 0.000 title abstract 2
- 238000000034 method Methods 0.000 claims abstract description 11
- 230000005621 ferroelectricity Effects 0.000 claims abstract description 7
- 229910017135 Fe—O Inorganic materials 0.000 claims abstract description 4
- 239000000126 substance Substances 0.000 claims abstract description 3
- 229910020647 Co-O Inorganic materials 0.000 claims abstract 2
- 229910020704 Co—O Inorganic materials 0.000 claims abstract 2
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 27
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical group OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 claims description 15
- 239000000843 powder Substances 0.000 claims description 8
- 238000005245 sintering Methods 0.000 claims description 7
- 239000002253 acid Substances 0.000 claims description 5
- 239000008139 complexing agent Substances 0.000 claims description 5
- 229910021645 metal ion Inorganic materials 0.000 claims description 4
- 238000000465 moulding Methods 0.000 claims description 3
- 229910052727 yttrium Inorganic materials 0.000 claims description 2
- 235000013495 cobalt Nutrition 0.000 claims 5
- 229910017052 cobalt Inorganic materials 0.000 claims 2
- 239000010941 cobalt Substances 0.000 claims 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims 2
- 229910016874 Fe(NO3) Inorganic materials 0.000 claims 1
- 229910003077 Ti−O Inorganic materials 0.000 claims 1
- PQLVXDKIJBQVDF-UHFFFAOYSA-N acetic acid;hydrate Chemical compound O.CC(O)=O PQLVXDKIJBQVDF-UHFFFAOYSA-N 0.000 claims 1
- YHWCPXVTRSHPNY-UHFFFAOYSA-N butan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] YHWCPXVTRSHPNY-UHFFFAOYSA-N 0.000 claims 1
- 238000009702 powder compression Methods 0.000 claims 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims 1
- 230000005291 magnetic effect Effects 0.000 abstract description 12
- 230000005307 ferromagnetism Effects 0.000 abstract description 6
- 230000008878 coupling Effects 0.000 abstract description 5
- 238000010168 coupling process Methods 0.000 abstract description 5
- 238000005859 coupling reaction Methods 0.000 abstract description 5
- 229910052574 oxide ceramic Inorganic materials 0.000 abstract description 5
- 238000005516 engineering process Methods 0.000 abstract description 4
- 239000011224 oxide ceramic Substances 0.000 abstract description 4
- 238000009776 industrial production Methods 0.000 abstract 1
- 239000000463 material Substances 0.000 description 16
- 230000005294 ferromagnetic effect Effects 0.000 description 7
- 150000002500 ions Chemical class 0.000 description 7
- 239000010936 titanium Substances 0.000 description 7
- 239000000919 ceramic Substances 0.000 description 6
- 229910016870 Fe(NO3)3-9H2O Inorganic materials 0.000 description 5
- 238000011160 research Methods 0.000 description 5
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 239000003814 drug Substances 0.000 description 4
- 229940079593 drug Drugs 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 4
- 241001198704 Aurivillius Species 0.000 description 3
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 3
- FBXVOTBTGXARNA-UHFFFAOYSA-N bismuth;trinitrate;pentahydrate Chemical compound O.O.O.O.O.[Bi+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O FBXVOTBTGXARNA-UHFFFAOYSA-N 0.000 description 3
- ZBYYWKJVSFHYJL-UHFFFAOYSA-L cobalt(2+);diacetate;tetrahydrate Chemical compound O.O.O.O.[Co+2].CC([O-])=O.CC([O-])=O ZBYYWKJVSFHYJL-UHFFFAOYSA-L 0.000 description 3
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 3
- 229910017604 nitric acid Inorganic materials 0.000 description 3
- 239000005416 organic matter Substances 0.000 description 3
- QBAZWXKSCUESGU-UHFFFAOYSA-N yttrium(3+);trinitrate;hexahydrate Chemical compound O.O.O.O.O.O.[Y+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O QBAZWXKSCUESGU-UHFFFAOYSA-N 0.000 description 3
- 230000005290 antiferromagnetic effect Effects 0.000 description 2
- 230000005303 antiferromagnetism Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 229910000416 bismuth oxide Inorganic materials 0.000 description 2
- 229910002115 bismuth titanate Inorganic materials 0.000 description 2
- 229910000428 cobalt oxide Inorganic materials 0.000 description 2
- TYIXMATWDRGMPF-UHFFFAOYSA-N dibismuth;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Bi+3].[Bi+3] TYIXMATWDRGMPF-UHFFFAOYSA-N 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000002524 electron diffraction data Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- SZQUEWJRBJDHSM-UHFFFAOYSA-N iron(3+);trinitrate;nonahydrate Chemical compound O.O.O.O.O.O.O.O.O.[Fe+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O SZQUEWJRBJDHSM-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- NGDQQLAVJWUYSF-UHFFFAOYSA-N 4-methyl-2-phenyl-1,3-thiazole-5-sulfonyl chloride Chemical compound S1C(S(Cl)(=O)=O)=C(C)N=C1C1=CC=CC=C1 NGDQQLAVJWUYSF-UHFFFAOYSA-N 0.000 description 1
- 244000248349 Citrus limon Species 0.000 description 1
- 235000005979 Citrus limon Nutrition 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229940011182 cobalt acetate Drugs 0.000 description 1
- QAHREYKOYSIQPH-UHFFFAOYSA-L cobalt(II) acetate Chemical compound [Co+2].CC([O-])=O.CC([O-])=O QAHREYKOYSIQPH-UHFFFAOYSA-L 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- RXPAJWPEYBDXOG-UHFFFAOYSA-N hydron;methyl 4-methoxypyridine-2-carboxylate;chloride Chemical compound Cl.COC(=O)C1=CC(OC)=CC=N1 RXPAJWPEYBDXOG-UHFFFAOYSA-N 0.000 description 1
- 125000003010 ionic group Chemical group 0.000 description 1
- QZRHHEURPZONJU-UHFFFAOYSA-N iron(2+) dinitrate nonahydrate Chemical compound O.O.O.O.O.O.O.O.O.[Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O QZRHHEURPZONJU-UHFFFAOYSA-N 0.000 description 1
- MVFCKEFYUDZOCX-UHFFFAOYSA-N iron(2+);dinitrate Chemical compound [Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MVFCKEFYUDZOCX-UHFFFAOYSA-N 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000012916 structural analysis Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
技术领域 technical field
本发明涉及多铁氧化物陶瓷材料领域,更具体而言,涉及一种具有多铁性能的六层状结构钛铁钴酸钇铋陶瓷材料及其制备方法。The invention relates to the field of multiferroic oxide ceramic materials, and more specifically relates to a six-layer structure yttrium bismuth titanate cobaltate ceramic material with multiferroic properties and a preparation method thereof.
背景技术 Background technique
磁电多铁材料是指在某个温区内,同时表现出铁电序和铁磁/反铁磁序,且彼此之间存在某种耦合的材料。近来,这种材料日益受到瞩目,一方面因为其不但可以用在铁电和磁性设备的研发上,更为重要的是它能利用磁电之间的耦合,为设备的设计和应用提供附加的一个自由度,从而在新兴的自旋电子学、多态信息存储、电驱动铁磁谐振器及磁调控压电传感器上表现出极为诱人的应用前景。到目前为止,在已发现的多铁材料中,只有ABO3型结构的BiFeO3在室温以上具有铁电性和铁磁性,但样品的漏电流较大且室温以上是反铁磁等特性不能满足实际应用的需求。近年来,对BiFeO3样品进行了广泛的研究,研究结果表明,用A位掺杂的方法可能改善样品的电学性能,降低样品的漏电流,样品的铁电性能也得到了明显提高。由于BiFeO3在常温下为反铁磁性,而反铁磁性对外加磁场的响应不够敏感,目前还没有单一相结构的BiFeO3材料在实际应用方面的报道。Magnetoelectric multiferroic materials refer to materials that exhibit ferroelectric order and ferromagnetic/antiferromagnetic order at the same time in a certain temperature range, and there is a certain coupling between them. Recently, this material has attracted more and more attention. On the one hand, it can not only be used in the research and development of ferroelectric and magnetic devices, but more importantly, it can use the coupling between magnetoelectricity to provide additional advantages for the design and application of devices. One degree of freedom, thus showing extremely attractive application prospects in emerging spintronics, multi-state information storage, electrically driven ferromagnetic resonators, and magnetically regulated piezoelectric sensors. So far, among the multiferroic materials discovered so far, only BiFeO 3 with ABO 3 type structure has ferroelectricity and ferromagnetism above room temperature, but the leakage current of the sample is large and the properties such as antiferromagnetism above room temperature cannot meet the requirements. practical application needs. In recent years, extensive research has been carried out on BiFeO 3 samples, and the results show that the electrical properties of the samples may be improved by the method of A-site doping, the leakage current of the samples can be reduced, and the ferroelectric properties of the samples have also been significantly improved. Since BiFeO 3 is antiferromagnetic at room temperature, and antiferromagnetism is not sensitive enough to the applied magnetic field, there is no report on the practical application of BiFeO 3 materials with a single phase structure.
为了满足多铁材料在实际应用中的需要,近年来,多铁电材料成为材料学科研究的热点之一。目前研究多铁电材料的一个主要方向是研究单一结构的材料,在这类材料中双钙钛矿材料得到了人们广泛的重视。在研究中发现,在样品的B位用两种具有d0电子结构的磁性离子进行耦合可大大改善样品的铁磁性能,但目前在双钙钛矿材料研究中还存在两个主要问题:(1)样品合成必须在高压下制备,并且很难做到样品B位离子具有较好的有序性;(2)样品的铁电和铁磁的相变温度不同时在室温以上。具有类钙钛矿中Aurivillius型层状材料以其独特的晶体结构和性能,近年来得到了较为广泛的重视。Aurivillius型层状多铁材料其结构式可以写成:Bi2Am-1BmO3m+3,具体到本发明的体系是 Bi2Bim+2FemTi3O3m+12,或者写为Bi2O2+Bi4Ti3O12(BTO)+nBiMO3(n=1,2...,M为磁性离子),也就是材料可以看成由三层具有钙钛矿结构的铁电材料BTO与具有一个或多个磁性单元的离子团BiFeO3组合而成,其结构为在2个铋氧层((Bi2O2)2+)之间夹着3个钛氧(Ti-O)八面体和1个或多个磁性单元的(Fe-O)八面体。由于铋氧层具有绝缘层和电荷库的作用,可有效降低样品的漏电流,对改善样品电学性能有着积极意义。In order to meet the needs of multiferroic materials in practical applications, multiferroelectric materials have become one of the hotspots in materials science research in recent years. One of the main research directions of multiferroelectric materials at present is to study materials with a single structure, in which double perovskite materials have been widely paid attention to. In the research, it was found that coupling two kinds of magnetic ions with d 0 electronic structure at the B site of the sample can greatly improve the ferromagnetic properties of the sample, but there are still two main problems in the research of double perovskite materials: ( 1) The sample synthesis must be prepared under high pressure, and it is difficult to ensure that the B-site ions of the sample have a good order; (2) The ferroelectric and ferromagnetic phase transition temperatures of the sample are not at the same time above room temperature. Aurivillius-type layered materials with perovskite-like properties have received extensive attention in recent years due to their unique crystal structure and properties. The structural formula of the Aurivillius type layered multiferroic material can be written as: Bi 2 A m-1 B m O 3m+3 , specifically the system of the present invention is Bi 2 Bi m+2 Fe m Ti 3 O 3m+12 , or written as Bi 2 O 2 +Bi 4 Ti 3 O 12 (BTO)+nBiMO 3 (n=1, 2..., M is a magnetic ion), that is, the material can be regarded as a three-layer ferroelectric with a perovskite structure The material BTO is combined with the ionic group BiFeO 3 with one or more magnetic units, and its structure is that three titanium oxide (Ti-O ) octahedron and (Fe-O) octahedron with 1 or more magnetic units. Since the bismuth oxide layer functions as an insulating layer and a charge pool, it can effectively reduce the leakage current of the sample, which is of positive significance for improving the electrical properties of the sample.
发明内容 Contents of the invention
为了优化Aurivillius型层状陶瓷的铁电性能和铁磁性能,本发明提供一种具有多铁性能的六层状结构钛铁钴酸钇铋陶瓷,其化学式为Bi6YFe2CoTi3O21。In order to optimize the ferroelectric and ferromagnetic properties of Aurivillius-type layered ceramics, the present invention provides a six-layer structure yttrium-bismuth titanate-iron-cobaltate ceramic with multiferroic properties, the chemical formula of which is Bi 6 YFe 2 CoTi 3 O 21 .
本发明的钛铁钴酸钇铋陶瓷在室温以上同时具有铁电性和铁磁性,且漏电流较小,铁磁性可观,为在信息存储、谐振、传感等方面的应用提供了可能。The yttrium bismuth titanate cobaltate ceramic of the present invention has ferroelectricity and ferromagnetism at the same time above room temperature, and has small leakage current and considerable ferromagnetism, which provides the possibility for application in information storage, resonance, sensing and the like.
本发明的另一目的是提供该Aurivillius型多铁氧化物陶瓷(具有多铁性能的六层状结构钛铁钴酸钇铋陶)的制备方法,所述方法包括:Another object of the present invention is to provide the preparation method of this Aurivillius type multiferroic oxide ceramics (six-layer structure titanic iron cobaltate yttrium bismuth ceramics with multiferroic properties), said method comprising:
将钛酸酯(优选钛酸正丁酯(C16H36O4Ti))、硝酸铋(优选五水合硝酸铋(Bi(NO3)3·5H2O))、硝酸钇(优选六水合硝酸钇(Y(NO3)3·6H2O))、硝酸铁(优选九水合硝酸铁(Fe(NO3)3·9H2O))、乙酸钴(优选四水合乙酸钴(C4H6O4Co·4H2O)) 按化学计量比 3∶6∶1∶2∶1 溶于硝酸溶液,加入络合剂(优选乙二胺四乙酸(EDTA)和柠檬酸),EDTA、柠檬酸和金属离子摩尔比优选是0.7∶1∶1;将溶液蒸干,所得粉体在700-800℃预烧2-4小时,除去有机物;预烧过的粉体压片成型后在800-1100℃烧结5-10小时,最终制得目标产物。本发明方法中除了马弗炉烧结外,还可以采用热压烧结。Titanate (preferably n-butyl titanate (C 16 H 36 O 4 Ti)), bismuth nitrate (preferably bismuth nitrate pentahydrate (Bi(NO 3 ) 3 ·5H 2 O)), yttrium nitrate (preferably hexahydrate Yttrium nitrate (Y(NO 3 ) 3 6H 2 O)), iron nitrate (preferably iron nitrate nonahydrate (Fe(NO 3 ) 3 9H 2 O)), cobalt acetate (preferably cobalt acetate tetrahydrate (C 4 H 6 O 4 Co·4H 2 O)) according to stoichiometric ratio 3:6:1:2:1 dissolved in nitric acid solution, add complexing agent (preferably ethylenediaminetetraacetic acid (EDTA) and citric acid), EDTA, lemon The molar ratio of the acid to the metal ion is preferably 0.7:1:1; the solution is evaporated to dryness, and the obtained powder is calcined at 700-800°C for 2-4 hours to remove organic matter; Sintering at 1100°C for 5-10 hours to finally obtain the target product. In addition to muffle furnace sintering, hot pressing sintering can also be used in the method of the present invention.
本发明工艺简单,采用改进的Pechini法,制备了Bi6YFe2CoTi3O21六层状Aurivillius型多铁氧化物陶瓷,结构为2个铋氧层((Bi2O2)2+)之间夹着3个钛氧(Ti-O)八面体、2个铁氧(Fe-O)八面体和1个钴氧(Co-O)八面体。其中用Y离子部分取代A位的Bi离子,可有效的降低漏电流,改善了样品的铁电性能;用两种具有d0电子结构的磁性离子(M) Fe和Co作为B位离子,通过耦合,改善了样品的铁磁性能。The invention has a simple process and adopts the improved Pechini method to prepare Bi 6 YFe 2 CoTi 3 O 21 six-layer Aurivillius type multiferroic oxide ceramics, the structure of which is two bismuth oxide layers ((Bi 2 O 2 ) 2+ ). There are three titanium oxide (Ti-O) octahedrons, two iron oxide (Fe-O) octahedrons and one cobalt oxide (Co-O) octahedron sandwiched between them. Among them, the Bi ions at the A site are partially replaced by Y ions, which can effectively reduce the leakage current and improve the ferroelectric properties of the sample; two magnetic ions (M) Fe and Co with d 0 electronic structures are used as the B site ions, through Coupling improves the ferromagnetic properties of the sample.
本发明提供的六层多铁氧化物陶瓷在室温下具有良好的铁电性和铁磁性,样品在测量电场为50kV/cm时,剩余极化强度(2Pr)为0.88μC/cm2,矫顽场(2Ec)为20kV/cm;样品剩余磁化率(2Mr)为1.48emu/g,矫顽场(2Hc)为244Oe。The six-layer multiferroic oxide ceramic provided by the present invention has good ferroelectricity and ferromagnetism at room temperature. When the sample is measured at an electric field of 50kV/cm, the remanent polarization (2P r ) is 0.88μC/cm 2 . The coercive field (2E c ) is 20kV/cm; the remanent magnetic susceptibility (2M r ) of the sample is 1.48emu/g, and the coercive field (2H c ) is 244Oe.
附图说明 Description of drawings
图1是本发明实施例1中样品的X射线图;Fig. 1 is the X-ray picture of sample in the embodiment of the present invention 1;
图2是本发明实施例1中样品的扫描电镜照片;Fig. 2 is the scanning electron micrograph of sample in the embodiment of the present invention 1;
图3是本发明实施例1中样品的透射电镜照片;Fig. 3 is the transmission electron micrograph of sample in the embodiment of the present invention 1;
图4是本发明实施例1中样品的铁电性能测量图;Fig. 4 is the ferroelectric performance measurement figure of sample in the embodiment of the present invention 1;
图5是本发明实施例1中样品的铁磁性能测量图。Fig. 5 is a measurement diagram of ferromagnetic properties of the sample in Example 1 of the present invention.
具体实施方法Specific implementation method
实施例1Example 1
选取化学纯钛酸正丁酯(C16H36O4Ti)、分析纯五水合硝酸铋(Bi(NO3)3·5H2O)、高纯(4N)六水合硝酸钇(Y(NO3)3·6H2O)、分析纯九水合硝酸铁(Fe(NO3)3·9H2O)、分析纯四水合乙酸钴(C4H6O4Co·4H2O)为原料,按化学计量比3∶6∶1∶2∶1准确称量后溶于硝酸溶液,加入乙二胺四乙酸(EDTA)和柠檬酸作为络合剂,EDTA、柠檬酸和金属离子摩尔比是0.7∶1∶1,均速搅拌,形成澄清溶液。Select chemically pure n-butyl titanate (C 16 H 36 O 4 Ti), analytically pure bismuth nitrate pentahydrate (Bi(NO 3 ) 3 5H 2 O), high-purity (4N) yttrium nitrate hexahydrate (Y(NO 3 ) 3 6H 2 O), analytically pure ferric nitrate nonahydrate (Fe(NO 3 ) 3 9H 2 O), analytically pure cobalt acetate tetrahydrate (C 4 H 6 O 4 Co 4H 2 O) as raw materials, According to the stoichiometric ratio of 3:6:1:2:1, it is accurately weighed and dissolved in nitric acid solution, and ethylenediaminetetraacetic acid (EDTA) and citric acid are added as complexing agents, and the molar ratio of EDTA, citric acid and metal ions is 0.7 : 1: 1, stirring at a constant speed to form a clear solution.
表1制备Bi6YFe2CoTi3O21 Table 1 Preparation of Bi 6 YFe 2 CoTi 3 O 21
将上述配制的溶液置于坩埚中蒸干燃烧成粉;所得粉体在马弗炉中750℃预烧3小时,除去有机物;预烧过的粉体在压力为5Mpa以下的条件下制成圆柱体样品,样品尺寸为φ12mm×2mm;压片成型后在马弗炉中1000℃烧结10小时,最终制得目标产物。Put the above-prepared solution in a crucible and evaporate it to dryness and burn it into powder; the obtained powder is pre-fired in a muffle furnace at 750°C for 3 hours to remove organic matter; the pre-fired powder is made into a cylinder under the condition of a pressure below 5Mpa The body sample, the sample size is φ12mm×2mm; after tablet molding, it was sintered in a muffle furnace at 1000°C for 10 hours, and finally the target product was obtained.
用X射线衍射仪(日本Bruker公司D8型)对烧结后的样品进行结构分析,得到图1。从图中可见,样品为单一钙钛矿结构的陶瓷样品,没有发现第二相。Structural analysis of the sintered sample was carried out with an X-ray diffractometer (type D8 from Bruker Corporation of Japan), and Figure 1 was obtained. It can be seen from the figure that the sample is a ceramic sample with a single perovskite structure, and no second phase is found.
用扫描电子显微镜(日本JEOL公司JSM-6510型)观察样品的形貌,得到图2。从图中可见,样品的晶粒形状基本一致,样品的致密度较好,没有明显空洞出现。The morphology of the sample was observed with a scanning electron microscope (JSM-6510 type of Japan JEOL Company), and Figure 2 was obtained. It can be seen from the figure that the grain shapes of the samples are basically the same, the density of the samples is good, and no obvious voids appear.
用透射电子显微镜(日本JEOL公司2010型)观察样品的电子衍射花样,得到图3。从图中可见,样品为六层结构。The electron diffraction pattern of the sample was observed with a transmission electron microscope (model 2010 from Japan JEOL Company), and Figure 3 was obtained. It can be seen from the figure that the sample has a six-layer structure.
用铁电性能测量仪(美国Radiant Technologies公司Precision LC型)测量样品在常温下的铁电性能,得到图4。从图中可见,常温下,样品显示出铁电性,在测量电场为50kV/cm时,剩余极化强度(2Pr)为0.88μC/cm2,矫顽场(2Ec)为20kV/cm。The ferroelectric properties of the samples at room temperature were measured with a ferroelectric property measuring instrument (Precision LC type, Radiant Technologies, USA), and FIG. 4 was obtained. It can be seen from the figure that at room temperature, the sample exhibits ferroelectricity. When the measured electric field is 50kV/cm, the remanent polarization (2P r ) is 0.88μC/cm 2 , and the coercive field (2E c ) is 20kV/cm .
用振动样品磁强计(美国ADE公司EV7型)测量样品在常温下的磁学性能,得到图5。从图中可见,常温下,样品显示出铁磁性,剩余磁化率(2Mr)为1.48emu/g,矫顽场(2Hc)为244Oe。The magnetic properties of the sample at room temperature were measured with a vibrating sample magnetometer (EV7 type, ADE Company, USA), and Figure 5 was obtained. It can be seen from the figure that at room temperature, the sample shows ferromagnetism, the remanent magnetic susceptibility (2Mr) is 1.48emu/g, and the coercive field (2Hc) is 244Oe.
实施例2Example 2
选取化学纯钛酸正丁酯(C16H36O4Ti)、分析纯五水合硝酸铋(Bi(NO3)3·5H2O)、高纯(4N)六水合硝酸钇(Y(NO3)3·6H2O)、分析纯九水合硝酸铁(Fe(NO3)3·9H2O)、分析纯四水合乙酸钴(C4H6O4Co·4H2O)为原料,按化学计量比3∶6∶1∶2∶1准确称量后溶于硝酸溶液,加入乙二胺四乙酸(EDTA)和柠檬酸作为络合剂,EDTA、柠檬酸和金属离子摩尔比是0.7∶1∶1,均速搅拌,形成澄清溶液。Select chemically pure n-butyl titanate (C 16 H 36 O 4 Ti), analytically pure bismuth nitrate pentahydrate (Bi(NO 3 ) 3 5H 2 O), high-purity (4N) yttrium nitrate hexahydrate (Y(NO 3 ) 3 6H 2 O), analytically pure ferric nitrate nonahydrate (Fe(NO 3 ) 3 9H 2 O), analytically pure cobalt acetate tetrahydrate (C 4 H 6 O 4 Co 4H 2 O) as raw materials, According to the stoichiometric ratio of 3:6:1:2:1, it is accurately weighed and dissolved in nitric acid solution, and ethylenediaminetetraacetic acid (EDTA) and citric acid are added as complexing agents, and the molar ratio of EDTA, citric acid and metal ions is 0.7 : 1: 1, stirring at a constant speed to form a clear solution.
表2制备Bi6YFe2CoTi3O21 Table 2 Preparation of Bi 6 YFe 2 CoTi 3 O 21
将上述配制的溶液置于坩埚中蒸干燃烧成粉;所得粉体在马弗炉中700℃预烧2小时,除去有机物;预烧过的粉体在压力为5Mpa以下的条件下制成圆柱体样品,样品尺寸为φ12mm×2mm;压片成型后在热压炉中900℃烧结5小时,最终制得目标产物。Put the above-prepared solution in a crucible and evaporate it to dryness and burn it into powder; the obtained powder is pre-fired in a muffle furnace at 700°C for 2 hours to remove organic matter; the pre-fired powder is made into a cylinder under the condition of a pressure below 5Mpa Body sample, the sample size is φ12mm×2mm; after tablet molding, it is sintered in a hot-press furnace at 900°C for 5 hours, and finally the target product is obtained.
用X射线衍射仪(日本Bruker公司D8型)对烧结后的样品进行结构分析,样品为单一钙钛矿结构的陶瓷样品,没有发现第二相。The structure of the sintered sample was analyzed by X-ray diffractometer (D8 type of Japan Bruker Company), and the sample was a ceramic sample with a single perovskite structure, and no second phase was found.
用扫描电子显微镜(日本JEOL公司JSM-6510型)观察样品的形貌,样品的晶粒形状基本一致,样品的致密度较好,没有明显空洞出现。The morphology of the samples was observed with a scanning electron microscope (JSM-6510 type of Japan JEOL Company), and the grain shapes of the samples were basically the same, the density of the samples was good, and no obvious voids appeared.
用透射电子显微镜(日本JEOL公司2010型)观察样品的电子衍射花样,确定样品为六层结构。The electron diffraction pattern of the sample was observed with a transmission electron microscope (model 2010 from JEOL Corporation of Japan), and it was determined that the sample had a six-layer structure.
用铁电性能测量仪(美国Radiant Technologies公司Precision LC型)测量样品在常温下的铁电性能,常温下,样品显示出铁电性,在测量电场为50kV/cm时,剩余极化强度(2Pr)为0.92μC/cm2,矫顽场(2Ec)为28kV/cm。Measure the ferroelectric properties of the sample at normal temperature with a ferroelectric property measuring instrument (U.S. Radiant Technologies Corporation Precision LC type). At normal temperature, the sample shows ferroelectricity. r ) is 0.92 μC/cm 2 , and the coercive field (2E c ) is 28 kV/cm.
用振动样品磁强计(美国ADE公司EV7型)测量样品在常温下的磁学性能,常温下,样品显示出铁磁性,剩余磁化率(2Mr)为1.84emu/g,矫顽场(2Hc)为216Oe。Measure the magnetic properties of the sample at normal temperature with a vibrating sample magnetometer (EV7 type of American ADE Company). It is 216Oe.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210209229.7A CN103288437B (en) | 2012-06-21 | 2012-06-21 | Six-layer ferrotitanium yttrium bismuth cobaltate ceramic material with multiferroic performance and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210209229.7A CN103288437B (en) | 2012-06-21 | 2012-06-21 | Six-layer ferrotitanium yttrium bismuth cobaltate ceramic material with multiferroic performance and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103288437A CN103288437A (en) | 2013-09-11 |
CN103288437B true CN103288437B (en) | 2015-01-07 |
Family
ID=49090046
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210209229.7A Expired - Fee Related CN103288437B (en) | 2012-06-21 | 2012-06-21 | Six-layer ferrotitanium yttrium bismuth cobaltate ceramic material with multiferroic performance and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103288437B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107159226B (en) * | 2017-06-20 | 2019-11-22 | 信阳师范学院 | Multi-catalytic functional single-phase nanomaterial and preparation method thereof |
CN108558387B (en) * | 2018-01-15 | 2020-10-30 | 信阳师范学院 | Single-phase multiferroic microwave absorbing material and preparation method thereof |
CN111187066A (en) * | 2020-02-26 | 2020-05-22 | 扬州大学 | Single-layer orthogonal structure magnetoelectric multiferroic ceramic and preparation method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5198923A (en) * | 1991-01-17 | 1993-03-30 | Shin-Etsu Chemical Co., Ltd. | Optical isolator |
-
2012
- 2012-06-21 CN CN201210209229.7A patent/CN103288437B/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5198923A (en) * | 1991-01-17 | 1993-03-30 | Shin-Etsu Chemical Co., Ltd. | Optical isolator |
Non-Patent Citations (2)
Title |
---|
INVESTIGATION OF DIELECTRIC AND MAGNETIC NATURE OF Bi7Fe3Ti3O21;A.Srinivas et al.;《Materials Research Bulletin》;19991231;第34卷(第6期);第989~996页 * |
Structural, magnetic and dielectric properties of Bi5-xLaxTi3Co0.5Fe0.5O15 ceramics;C.H. Wang et al.;《Materials Science and Engineering B》;20110629;第176卷;第1243~1246页 * |
Also Published As
Publication number | Publication date |
---|---|
CN103288437A (en) | 2013-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | Room temperature multiferroic properties of Ni-doped Aurivillus phase Bi5Ti3FeO15 | |
CN101607818A (en) | Layered Bismuth Titanium Iron Cobaltate Ceramic Material with Multiferroic Properties and Preparation Method | |
CN102051582A (en) | A Method for Preparing High (100) Oriented BiFeO3 Thin Films on Si Substrates | |
CN104761252B (en) | A kind of have single-phase oxide many ferrum pottery of exchange bias effect and preparation method thereof | |
CN101704669B (en) | Layered structure ferrotitanium lanthanum bismuth cobaltate ceramic with multiferroic and preparation method thereof | |
CN102167584A (en) | Ferrotitanium bismuth cobaltate ceramic material with five-laminated structure and multiferroic performance and preparation method thereof | |
CN103771846A (en) | A kind of BaFe12O19/Y3Fe5O12 two-phase magnetic composite powder and its preparation method | |
CN102942361B (en) | Ferrotianium cobalt acid bismuth stupalith of laminate structure and preparation method thereof | |
CN103288437B (en) | Six-layer ferrotitanium yttrium bismuth cobaltate ceramic material with multiferroic performance and preparation method thereof | |
CN103193469B (en) | Nine-layer-structure titanium iron bismuth cobalt oxide multiferroic ceramic material and preparation method thereof | |
Kumar et al. | Effect of Nd 3+ substitution on structural, ferroelectric, magnetic and electrical properties of BiFeO 3–PbTiO 3 binary system | |
Wendari et al. | Structure, ferroelectric, magnetic, and energy storage performances of lead-free Bi4Ti2. 75 (FeNb) 0.125 O12 Aurivillius ceramic by doping Fe3+ ions extracted from Padang beach sand | |
CN104591721B (en) | Single-phase multiferroic M-type lead ferrite ceramic material and preparation method thereof | |
CN105967673A (en) | Single-phase multiferroic lead-lanthanum ferrite ceramic material and preparation method thereof | |
CN102875146B (en) | A kind of layered perovskite structure ceramics and preparation method thereof | |
CN105645944B (en) | A kind of Bi2Fe4O9/BaFe12O19Composite ceramics and preparation method thereof | |
CN102863211B (en) | Titanium-iron-gadolinium cobaltate-bismuth ceramic material in layer structure and preparation method of titanium-iron-gadolinium cobaltate-bismuth ceramic material | |
CN103724005B (en) | A kind of holmium, manganese possessing room temperature multiferroic mixes bismuth ferrite pottery and preparation method thereof altogether | |
CN104177076B (en) | A kind of Al 3+doping Bi 2fe 4o 9multiferroic stupalith and preparation method thereof | |
CN107840659B (en) | Tungsten bronze pure-phase room-temperature multiferroic ceramic and preparation method thereof | |
CN114560698B (en) | Method for enhancing performance of calcium bismuth niobate high-temperature piezoelectric ceramic by inducing texture through oxide sintering aid | |
CN102898133A (en) | Six-layer structure bismuth titanium-ferrum-nickelate ceramic material with multiferroic performance and preparation method thereof | |
CN105084888B (en) | A kind of ceramic material and preparation method thereof | |
CN108911740B (en) | Five-layer layered structure strontium bismuth titanium iron cobalt oxide ceramic material with multiferroic properties and preparation method thereof | |
CN102503392B (en) | Single-phase multi-ferreous strontium-ferrite ceramic material and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150107 Termination date: 20200621 |