CN103279923A - Partial image fusion processing method based on overlapped region - Google Patents
Partial image fusion processing method based on overlapped region Download PDFInfo
- Publication number
- CN103279923A CN103279923A CN2013102343355A CN201310234335A CN103279923A CN 103279923 A CN103279923 A CN 103279923A CN 2013102343355 A CN2013102343355 A CN 2013102343355A CN 201310234335 A CN201310234335 A CN 201310234335A CN 103279923 A CN103279923 A CN 103279923A
- Authority
- CN
- China
- Prior art keywords
- image
- fusion
- carry out
- size
- img1
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 34
- 238000007499 fusion processing Methods 0.000 title claims abstract description 26
- 230000004927 fusion Effects 0.000 claims abstract description 84
- 239000011159 matrix material Substances 0.000 claims description 18
- 230000008569 process Effects 0.000 claims description 10
- 238000007500 overflow downdraw method Methods 0.000 claims description 9
- 238000010586 diagram Methods 0.000 claims description 6
- 238000000605 extraction Methods 0.000 claims description 6
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 230000008676 import Effects 0.000 claims description 3
- 238000005267 amalgamation Methods 0.000 claims 8
- 238000012876 topography Methods 0.000 claims 8
- 238000002156 mixing Methods 0.000 claims 7
- 239000004744 fabric Substances 0.000 claims 6
- 230000007704 transition Effects 0.000 claims 5
- 238000000151 deposition Methods 0.000 claims 2
- 230000009466 transformation Effects 0.000 description 7
- 238000007781 pre-processing Methods 0.000 description 5
- 238000013519 translation Methods 0.000 description 5
- 230000014616 translation Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000009966 trimming Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
Images
Landscapes
- Image Processing (AREA)
Abstract
Description
技术领域 technical field
本发明涉及图像融合及其应用领域,特别是基于重叠区域的局部图像融合处理方法。 The invention relates to image fusion and its application field, in particular to a partial image fusion processing method based on overlapping regions.
背景技术 Background technique
图像融合是多传感器数据融合的一个重要分支。图像融合是将不同传感器得到的多幅图像根据某种算法进行综合处理,以得到一个新的、满足某种需求的图像。 Image fusion is an important branch of multi-sensor data fusion. Image fusion is the comprehensive processing of multiple images obtained by different sensors according to a certain algorithm to obtain a new image that meets certain requirements.
目前,应用较为广泛的融合算法主要有简单融合算法、分量替换算法、Brovey算法、高通滤波HPF(high-pass filtering )融合算法、多尺度多分辨率分析融合算法等。但是现有绝大部分研究和算法的实现都是在一定的前提条件下进行的,这些前提条件包括:1)参与融合的原始图片必须是相同大小的、且已经完全配准的;2)其融合是全域融合,也就是说两幅图像包含的内容必须完全一致,且融合的区域是整个图像区域;3)对于小波融合算法和Contourlet融合算法来说,除了上述条件之外,还要求参与融合的图片大小必须是N*N且N必须为2的整数幂。这些前提条件有时和真实应用情况不一致,因此也就限制了图像融合算法及相关软件的适用性。 At present, the widely used fusion algorithms mainly include simple fusion algorithm, component replacement algorithm, Brovey algorithm, high-pass filtering HPF (high-pass filtering) fusion algorithm, multi-scale and multi-resolution analysis fusion algorithm, etc. However, most of the existing research and algorithm implementations are carried out under certain prerequisites. These prerequisites include: 1) The original images participating in the fusion must be of the same size and have been fully registered; 2) Other Fusion is global fusion, that is to say, the content contained in the two images must be exactly the same, and the fusion area is the entire image area; 3) For the wavelet fusion algorithm and the Contourlet fusion algorithm, in addition to the above conditions, it is also required to participate in the fusion The image size of must be N*N and N must be an integer power of 2. These preconditions are sometimes inconsistent with real application conditions, thus limiting the applicability of image fusion algorithms and related software.
在实际应用中,参与融合的图像往往是不同大小的、没有配准的(图像间往往还有平移、旋转和尺度变化)、仅有部分重叠区域的图像。对于这种情况下的融合问题,传统的融合处理方法根本无法完成相应的处理,现有的文献和相关资料也都没有正面的给出相应的解决方案。 In practical applications, the images involved in fusion are often of different sizes, without registration (there are often translation, rotation and scale changes between images), and images with only partial overlapping regions. For the fusion problem in this case, the traditional fusion processing method cannot complete the corresponding processing at all, and the existing literature and related materials have not given a positive corresponding solution.
发明内容 Contents of the invention
本发明的目的是提供一种基于重叠区域的局部图像融合处理方法。本发明通过对读入的图像进行配准,对重叠区域进行定位、提取,对重叠区域进行相应处理与融合,并对非重叠的图像区域进行无缝拼接,实现了重叠区域的局部图像融合处理。该发明能够达到较好的图像处理效果,提高融合算法的适应性和实用性。其关键步骤是对重叠区域进行配准、定位和提取,并针对不同融合算法对重叠区域进行相应处理。 The purpose of the present invention is to provide a local image fusion processing method based on overlapping regions. The present invention realizes local image fusion processing of overlapping areas by registering the read-in images, positioning and extracting overlapping areas, performing corresponding processing and fusion on overlapping areas, and seamlessly splicing non-overlapping image areas . The invention can achieve better image processing effect and improve the adaptability and practicability of the fusion algorithm. The key steps are to register, locate and extract the overlapping areas, and to deal with the overlapping areas according to different fusion algorithms.
本发明的技术方案是,基于重叠区域的局部图像融合处理方法,其特征是:包括如下步骤: The technical solution of the present invention is a local image fusion processing method based on overlapping regions, which is characterized in that: comprising the following steps:
步骤101:开始基于重叠区域的局部图像融合处理方法; Step 101: start the local image fusion processing method based on overlapping regions;
步骤102:导入两幅有部分重叠区域的图像,标记为img1,img2; Step 102: Import two images with partially overlapping regions, marked as img1, img2;
步骤103:选择配准算法,获得相关参数和判定图像,并进行相应处理; Step 103: Select a registration algorithm, obtain relevant parameters and judgment images, and perform corresponding processing;
步骤104:选择融合算法,依据步骤103的结果和所选的融合算法,对重叠区域进行定位、提取和处理,实现融合;
Step 104: Select a fusion algorithm, and perform positioning, extraction and processing on overlapping regions according to the result of
步骤105:对非重叠的图像区域进行无缝拼接; Step 105: seamlessly splicing non-overlapping image regions;
步骤106:结束基于重叠区域的局部图像融合处理方法。 Step 106: End the local image fusion processing method based on overlapping regions.
所述的步骤103,包括如下步骤:
Described
步骤201:开始选择配准算法; Step 201: Start selecting a registration algorithm;
步骤202:分别对读入的两幅图像进行特征点提取,其点集分别标记为P1,P2; Step 202: Extract feature points from the two read-in images respectively, and mark the point sets as P1 and P2 respectively;
步骤203:使用特征描述符进行特征点粗匹配点对,结果标记为Q1,并得到图像的粗匹配结果示意图,标记为PZ_CD; Step 203: Use the feature descriptor to perform rough matching point pairs of feature points, the result is marked as Q1, and obtain a schematic diagram of the rough matching result of the image, marked as PZ_CD;
步骤204:对Q1进行RANSAC处理得到精匹配点对,结果标记为Q2,并得到图像的粗匹配结果示意图,标记为PZ_JD; Step 204: Perform RANSAC processing on Q1 to obtain a fine matching point pair, the result is marked as Q2, and a schematic diagram of the rough matching result of the image is obtained, marked as PZ_JD;
步骤205:对Q2进行最小二乘法处理得到两幅图像配准的转换矩阵H,得到平移量参数、缩放比例参数和旋转参数; Step 205: Perform least squares processing on Q2 to obtain a transformation matrix H for registration of two images, and obtain translation parameters, scaling parameters and rotation parameters;
步骤206:根据所读入两幅图像的大小和在步骤204中得到的转换矩阵H,求出将两幅图像融合拼接后的最小幅面的大小,并创建六幅该大小的黑板图像PZ1、PZ1_PD、PZ1_CH和PZ2、PZ2_PD、PZ2_CH,并初始化为全0。同时还可以得到将img1放置在该图像中时的偏移量,标记为DX,DY;
Step 206: According to the size of the two images read in and the transformation matrix H obtained in
步骤207:根据步骤205中所得DX,DY和转换矩阵H,分别将img1、img2分别放置在图像PZ1、PZ1_PD和PZ2、PZ2_PD中,并对PZ1_PD和PZ2_PD进行处理;
Step 207: according to DX, DY and transformation matrix H obtained in
步骤208:结束选择配准算法。 Step 208: Finish selecting the registration algorithm. the
所述步骤207,包括如下步骤:
The
步骤301:开始放置img1、img2和对PZ1_PD和PZ2_PD进行处理; Step 301: start to place img1, img2 and process PZ1_PD and PZ2_PD;
步骤302:根据步骤206中所得DX,DY,将img1分别放置在图像PZ1与PZ1_PD中;
Step 302: place img1 in images PZ1 and PZ1_PD respectively according to DX and DY obtained in
步骤303:对PZ1_PD进行逐行逐列扫描,将PZ1_PD中存放img1的对应区域的值全部设置成255,其他地方的值全部设置为0; Step 303: Scan PZ1_PD row by row and column by row, set all the values in the corresponding area storing img1 in PZ1_PD to 255, and set all the values in other places to 0;
步骤304:分别用DX,DY去替换在步骤205中所得的转换矩阵H中的水平偏移量和垂直偏移量,得到新的转换矩阵H_XIN;
Step 304: Replace the horizontal offset and vertical offset in the conversion matrix H obtained in
步骤305:利用所得的新矩阵对img2进行处理,并将变换后的img2分别放在PZ2与PZ2_PD中; Step 305: use the obtained new matrix to process img2, and place the transformed img2 in PZ2 and PZ2_PD respectively;
步骤306:对PZ2_PD进行逐行逐列扫描,将PZ2_PD中存放img2的对应区域的值全部设置成255,其他地方的值全部设置为0; Step 306: Scan PZ2_PD row by row and column by row, set all the values in the corresponding area storing img2 in PZ2_PD to 255, and set all the values in other places to 0;
步骤307:结束放置img1、img2和对PZ1_PD和PZ2_PD进行处理。 Step 307: Finish placing img1 and img2 and processing PZ1_PD and PZ2_PD.
所述的步骤104,包括如下步骤:
Described
步骤401:开始选择融合算法; Step 401: start selecting a fusion algorithm;
步骤402:对PZ1图像进行逐行逐列扫描,若PZ1_PD和PZ2_PD同时为255,则该位置属于图像PZ1和PZ2的重叠区域,并将该位置的像素值存在图像PZ1_CH的对应位置上。同样对图像PZ2,进行类似处理,其结果放在PZ2_CH中; Step 402: Scan the PZ1 image row by row and column by row. If PZ1_PD and PZ2_PD are 255 at the same time, this position belongs to the overlapping area of images PZ1 and PZ2, and store the pixel value of this position in the corresponding position of image PZ1_CH. Also perform similar processing on the image PZ2, and the result is placed in PZ2_CH;
步骤403:根据选择不同的融合算法对图像PZ1_CH和PZ2_CH进行相应的预处理,并使其完成融合过程,其结果存在Fusion中; Step 403: Perform corresponding preprocessing on the images PZ1_CH and PZ2_CH according to the selection of different fusion algorithms, and make them complete the fusion process, and the results are stored in Fusion;
步骤404:结束选择融合算法。 Step 404: End selection of fusion algorithm.
所述的步骤403,包括如下步骤: The step 403 includes the following steps:
步骤501:开始根据不同的融合算法对图像PZ1_CH和PZ2_CH进行预处理和融合; Step 501: Start to preprocess and fuse images PZ1_CH and PZ2_CH according to different fusion algorithms;
步骤502:选择不同的融合方法,若选的融合方法不是小波融合或者Contourlet融合方法,直接进行步骤505,否则进行步骤503;
Step 502: Select different fusion methods, if the selected fusion method is not wavelet fusion or Contourlet fusion method, directly proceed to
步骤503:判断图像PZ1_CH、PZ2_CH图像大小是不是N*N且N为2的整数次幂。如果不是进行步骤504,否则进行步骤505;
Step 503: Determine whether the size of the images PZ1_CH and PZ2_CH is N*N and N is an integer power of 2. If not go to step 504, otherwise go to
步骤504:对图像PZ1_CH、PZ2_CH大小进行修整,其大小为大于PZ1_CH、PZ2_CH图像长、宽最大值的最小的2的整数次幂。根据所得到的最新大小,生成该大小的黑板图像PZ1_CH_XIN、PZ2_CH_XIN,并初值为全0,并将PZ1_CH、PZ2_CH分别从00位置放在PZ1_CH_XIN、PZ2_CH_XIN中; Step 504: trim the size of the images PZ1_CH and PZ2_CH, and the size is the smallest integer power of 2 greater than the maximum value of the length and width of the images of PZ1_CH and PZ2_CH. According to the latest size obtained, generate the blackboard images PZ1_CH_XIN, PZ2_CH_XIN of this size, and the initial value is all 0, and put PZ1_CH, PZ2_CH from the 00 position in PZ1_CH_XIN, PZ2_CH_XIN respectively;
步骤505:对此时的图像PZ1_CH、PZ2_CH或从步骤504得到的PZ1_CH_XIN、PZ2_CH_XIN,进行融合处理,融合结果标记为Fusion; Step 505: Perform fusion processing on the images PZ1_CH, PZ2_CH or PZ1_CH_XIN, PZ2_CH_XIN obtained from step 504 at this time, and the fusion result is marked as Fusion;
步骤506:判断是否经过大小修整,若在此之前经过步骤504,则还需要进行步骤507,否则直接进行508;
Step 506: Judging whether it has undergone size trimming, if step 504 has been passed before, then
步骤507:对融合后的图像Fusion进行处理,只从00位置开始提取大小与PZ1_CH大小相同的一部分,赋值给大小与PZ1_CH相同的被修正后的Fusion中; Step 507: Process the fused image Fusion, extract only a part of the same size as PZ1_CH from position 00, and assign it to the corrected Fusion with the same size as PZ1_CH;
步骤508:结束根据不同的融合算法对图像PZ1_CH和PZ2_CH进行预处理和融合。 Step 508: End the preprocessing and fusion of images PZ1_CH and PZ2_CH according to different fusion algorithms.
所述的步骤105,包括如下步骤:
Described
步骤601:开始对非重叠的图像区域进行无缝拼接; Step 601: Start seamless stitching of non-overlapping image regions;
步骤602:对PZ1_PD图像进行逐行逐列扫描,当PZ1_PD中像素值等于0时,用img2中的这一位置的像素值去替换Fusion中相同位置的像素值; Step 602: Scan the PZ1_PD image row by row and column by row. When the pixel value in PZ1_PD is equal to 0, replace the pixel value at the same position in Fusion with the pixel value at this position in img2;
步骤603:对PZ2_PD图像进行逐行逐列扫描,当PZ2_PD中像素值等于0时,用img1中的这一位置的像素值去替换Fusion中相同位置的像素值; Step 603: Scan the PZ2_PD image row by row and column by row. When the pixel value in PZ2_PD is equal to 0, replace the pixel value at the same position in Fusion with the pixel value at this position in img1;
步骤604:结束对非重叠的图像区域进行无缝拼接。 Step 604: End the seamless splicing of non-overlapping image regions.
本发明的优点是:克服了传统融合算法只能用于相同大小、完全配准、整幅图像的全域融合的限制,实现了:1)不同大小、没有配准(图像间往往还有平移、旋转和尺度变化)、仅有部分重叠区域的图像的融合处理;2)重叠区域图像不规则(大小不是N*N且N不为2的整数幂)情况下的小波及Contourlet融合处理,达到了良好的融合处理效果;3)对重叠区域的定位、提取和融合,对非重叠的图像区域的无缝拼接。 The advantages of the present invention are: it overcomes the limitation that the traditional fusion algorithm can only be used for the same size, complete registration, and global fusion of the entire image, and realizes: 1) different sizes, no registration (there are often translations between images, Rotation and scale change), fusion processing of images with only partial overlapping areas; 2) wavelet and Contourlet fusion processing in the case of irregular overlapping area images (the size is not N*N and N is not an integer power of 2), reaching Good fusion processing effect; 3) Positioning, extraction and fusion of overlapping areas, seamless splicing of non-overlapping image areas.
本发明突破了常规融合处理方法苛刻的前提条件,降低了对参与融合图像的要求,有良好的适应性和实用性。 The invention breaks through the harsh preconditions of conventional fusion processing methods, reduces the requirements for participating in fusion images, and has good adaptability and practicability.
附图说明 Description of drawings
图1 基于重叠区域的局部图像融合处理方法的主流程图; Figure 1. The main flow chart of the local image fusion processing method based on overlapping regions;
图2选择配准算法,获得相关参数和判定图像,并进行相应处理的流程图; Figure 2 is a flow chart of selecting a registration algorithm, obtaining relevant parameters and judging images, and performing corresponding processing;
图3 放置img1、img2和对PZ1_PD和PZ2_PD进行处理的流程图; Figure 3 is a flow chart for placing img1, img2 and processing PZ1_PD and PZ2_PD;
图4 选择融合算法,依据步骤103的结果和所选的融合算法,对重叠区域进行判定、提取和处理,实现融合的流程图;
Fig. 4 selects the fusion algorithm, according to the result of
图5 根据不同的融合算法对图像PZ1_CH和PZ2_CH进行预处理和融合的流程图; Figure 5 is a flowchart of preprocessing and fusion of images PZ1_CH and PZ2_CH according to different fusion algorithms;
图6对非重叠的图像区域进行无缝拼接的流程图。 Fig. 6 is a flow chart of seamless stitching of non-overlapping image regions.
具体实施方式 Detailed ways
基于重叠区域的局部图像融合处理方法,其关键步骤是对重叠区域进行配准、定位、提取,并针对不同融合算法对重叠区域进行相应处理。由于两幅图像有部分重叠区域,所以我们必须先对图像进行配准,获得相关参数(平移量、缩放参数、旋转参数等),然后对重叠区域进行定位、提取。但是提取到的重叠区域可能是规则图像,也可能是任意大小、任意形状的图像。除此之外,有些融合算法对图像的大小还有特殊的要求,所以我们必须对重叠区域图像进行一定的处理,才能进行局部区域的融合。 The key steps of the local image fusion processing method based on overlapping areas are registration, positioning, and extraction of overlapping areas, and corresponding processing of overlapping areas for different fusion algorithms. Since the two images have partial overlapping areas, we must first register the images to obtain relevant parameters (translation, scaling parameters, rotation parameters, etc.), and then locate and extract the overlapping areas. However, the extracted overlapping regions may be regular images, or images of any size and shape. In addition, some fusion algorithms have special requirements on the size of the image, so we must perform some processing on the overlapping area images to perform local area fusion.
基于重叠区域的局部图像融合处理方法的特征是:首先对读入的两幅有部分重叠区域的图像进行配准操作并获得相关参数和判定图像,然后对配准后的图像进行重叠区域定位、提取和融合(这里需要注意:对于有些融合算法来说,在融合前,还需要对重叠区域图像进行一下处理),最后通过判定图像对非重叠的图像区域进行无缝拼接。这样就完成了对读入的两幅有部分重叠区域的图像进行局部图像融合处理。 The feature of the local image fusion processing method based on overlapping regions is: firstly, register the two read-in images with partial overlapping regions and obtain relevant parameters and judgment images, and then perform overlapping region positioning, Extraction and fusion (note here: for some fusion algorithms, images in overlapping areas need to be processed before fusion), and finally non-overlapping image areas are seamlessly spliced by judging images. In this way, the partial image fusion processing of the read-in two images with partially overlapping regions is completed.
如图1所示。 As shown in Figure 1.
主流程图步骤特征是: The main flowchart step features are:
步骤101:开始基于重叠区域的局部图像融合处理方法; Step 101: start the local image fusion processing method based on overlapping regions;
步骤102:导入两幅有部分重叠区域的图像,标记为img1,img2; Step 102: Import two images with partially overlapping regions, marked as img1, img2;
步骤103:选择配准算法,获得相关参数和判定图像,并进行相应处理; Step 103: Select a registration algorithm, obtain relevant parameters and judgment images, and perform corresponding processing;
步骤104:选择融合算法,依据步骤103的结果和所选的融合算法,对重叠区域进行定位、提取和处理,实现融合;
Step 104: Select a fusion algorithm, and perform positioning, extraction and processing on overlapping regions according to the result of
步骤105:对非重叠的图像区域进行无缝拼接; Step 105: seamlessly splicing non-overlapping image regions;
步骤106:结束基于重叠区域的局部图像融合处理方法; Step 106: End the local image fusion processing method based on overlapping regions;
如图2所示, as shown in picture 2,
所述的步骤103,包括如下步骤:
Described
步骤201:开始选择配准算法; Step 201: Start selecting a registration algorithm;
步骤202:分别对读入的两幅图像进行特征点提取,其点集分别标记为P1,P2; Step 202: Extract feature points from the two read-in images respectively, and mark the point sets as P1 and P2 respectively;
步骤203:使用特征描述符进行特征点粗匹配点对,结果标记为Q1,并得到图像的粗匹配结果示意图,标记为PZ_CD; Step 203: Use the feature descriptor to perform rough matching point pairs of feature points, the result is marked as Q1, and obtain a schematic diagram of the rough matching result of the image, marked as PZ_CD;
步骤204:对Q1进行RANSAC处理得到精匹配点对,结果标记为Q2,并得到图像的粗匹配结果示意图,标记为PZ_JD; Step 204: Perform RANSAC processing on Q1 to obtain a fine matching point pair, the result is marked as Q2, and a schematic diagram of the rough matching result of the image is obtained, marked as PZ_JD;
步骤205:对Q2进行最小二乘法处理得到两幅图像配准的转换矩阵H,得到平移量参数、缩放比例参数和旋转参数; Step 205: Perform least squares processing on Q2 to obtain a transformation matrix H for registration of two images, and obtain translation parameters, scaling parameters and rotation parameters;
步骤206:根据所读入两幅图像的大小和在步骤204中得到的转换矩阵H, 求出将两幅图像融合拼接后的最小幅面的大小,并创建六幅该大小的黑板图像PZ1、PZ1_PD、PZ1_CH和PZ2、PZ2_PD、PZ2_CH,并初始化为全0。同时还可以得到将img1放置在该图像中时的偏移量,标记为DX,DY;
Step 206: According to the size of the two images read in and the transformation matrix H obtained in
步骤207:根据步骤205中所得DX,DY和转换矩阵H,分别将img1、img2分别放置在图像PZ1、PZ1_PD和PZ2、PZ2_PD中,并对PZ1_PD和PZ2_PD进行处理;
Step 207: according to DX, DY and transformation matrix H obtained in
步骤208:结束选择配准算法; Step 208: end the selection registration algorithm;
如图3所示, As shown in Figure 3,
所述步骤207,包括如下步骤:
The
步骤301:开始放置img1、img2和对PZ1_PD和PZ2_PD进行处理; Step 301: start to place img1, img2 and process PZ1_PD and PZ2_PD;
步骤302:根据步骤206中所得DX,DY,将img1分别放置在图像PZ1与PZ1_PD中;
Step 302: place img1 in images PZ1 and PZ1_PD respectively according to DX and DY obtained in
步骤303:对PZ1_PD进行逐行逐列扫描,将PZ1_PD中存放img1的对应区域的值全部设置成255,其他地方的值全部设置为0; Step 303: Scan PZ1_PD row by row and column by row, set all the values in the corresponding area storing img1 in PZ1_PD to 255, and set all the values in other places to 0;
步骤304:分别用DX,DY去替换在步骤205中所得的转换矩阵H中的水平偏移量和垂直偏移量,得到新的转换矩阵H_XIN;
Step 304: Replace the horizontal offset and vertical offset in the conversion matrix H obtained in
步骤305:利用所得的新的转换矩阵H_XIN对img2进行处理,并将变换后的img2分别放在PZ2与PZ2_PD中; Step 305: use the obtained new transformation matrix H_XIN to process img2, and place the transformed img2 in PZ2 and PZ2_PD respectively;
步骤306:对PZ2_PD进行逐行逐列扫描,将PZ2_PD中存放img2的对应区域的值全部设置成255,其他地方的值全部设置为0; Step 306: Scan PZ2_PD row by row and column by row, set all the values in the corresponding area storing img2 in PZ2_PD to 255, and set all the values in other places to 0;
步骤307:结束放置img1、img2和对PZ1_PD和PZ2_PD进行处理; Step 307: finish placing img1 and img2 and process PZ1_PD and PZ2_PD;
如图4所示, As shown in Figure 4,
所述的步骤104,包括如下步骤:
Described
步骤401:开始选择融合算法; Step 401: start selecting a fusion algorithm;
步骤402:对PZ1图像进行逐行逐列扫描,若PZ1_PD和PZ2_PD同时为255,则该位置属于图像PZ1和PZ2的重叠区域,并将该位置的像素值存在图像PZ1_CH的对应位置上。同样对图像PZ2,进行类似处理,其结果放在PZ2_CH中; Step 402: Scan the PZ1 image row by row and column by row. If PZ1_PD and PZ2_PD are 255 at the same time, this position belongs to the overlapping area of images PZ1 and PZ2, and store the pixel value of this position in the corresponding position of image PZ1_CH. Also perform similar processing on the image PZ2, and the result is placed in PZ2_CH;
步骤403:根据选择不同的融合算法对图像PZ1_CH和PZ2_CH进行相应的预处理,并使其完成融合过程,其结果存在Fusion中; Step 403: Perform corresponding preprocessing on the images PZ1_CH and PZ2_CH according to the selection of different fusion algorithms, and make them complete the fusion process, and the results are stored in Fusion;
步骤404:结束选择融合算法; Step 404: End selection of the fusion algorithm;
如图5所示, As shown in Figure 5,
所述的步骤403,包括如下步骤: The step 403 includes the following steps:
步骤501:开始根据不同的融合算法对图像PZ1_CH和PZ2_CH进行预处理和融合; Step 501: Start to preprocess and fuse images PZ1_CH and PZ2_CH according to different fusion algorithms;
步骤502:选择不同的融合方法,若选的融合方法不是小波融合或者Contourlet融合方法,直接进行步骤505,否则进行步骤503; Step 502: Select different fusion methods, if the selected fusion method is not wavelet fusion or Contourlet fusion method, directly proceed to step 505, otherwise proceed to step 503;
步骤503:判断图像PZ1_CH、PZ2_CH图像大小是不是N*N且N为2的整数次幂。如果不是进行步骤504,否则进行步骤505; Step 503: Determine whether the size of the images PZ1_CH and PZ2_CH is N*N and N is an integer power of 2. If not go to step 504, otherwise go to step 505;
步骤504:对图像PZ1_CH、PZ2_CH大小进行修整,其大小为大于PZ1_CH、PZ2_CH图像长、宽最大值的最小的2的整数次幂。根据所得到的最新大小,生成该大小的黑板图像PZ1_CH_XIN、PZ2_CH_XIN,并初值为全0,并将PZ1_CH、PZ2_CH分别从00位置放在PZ1_CH_XIN、PZ2_CH_XIN中; Step 504: trim the size of the images PZ1_CH and PZ2_CH, and the size is the smallest integer power of 2 greater than the maximum value of the length and width of the images of PZ1_CH and PZ2_CH. According to the latest size obtained, generate the blackboard images PZ1_CH_XIN, PZ2_CH_XIN of this size, and the initial value is all 0, and put PZ1_CH, PZ2_CH from the 00 position in PZ1_CH_XIN, PZ2_CH_XIN respectively;
步骤505:对此时的图像PZ1_CH、PZ2_CH或从步骤504得到的PZ1_CH_XIN、PZ2_CH_XIN,进行融合处理,融合结果标记为Fusion; Step 505: Perform fusion processing on the images PZ1_CH, PZ2_CH or PZ1_CH_XIN, PZ2_CH_XIN obtained from step 504 at this time, and the fusion result is marked as Fusion;
步骤506:判断是否经过大小修整,若在此之前经过步骤504,则还需要进行步骤507,否则直接进行508; Step 506: Judging whether it has undergone size trimming, if step 504 has been passed before, then step 507 is still required, otherwise, go directly to step 508;
步骤507:对融合后的图像Fusion进行处理,只从00位置开始提取大小与PZ1_CH大小相同的一部分,赋值给大小与PZ1_CH相同的被修正后的Fusion中; Step 507: Process the fused image Fusion, extract only a part of the same size as PZ1_CH from position 00, and assign it to the corrected Fusion with the same size as PZ1_CH;
步骤508:结束根据不同的融合算法对图像PZ1_CH和PZ2_CH进行预处理和融合; Step 508: End the preprocessing and fusion of images PZ1_CH and PZ2_CH according to different fusion algorithms;
如图6所示, As shown in Figure 6,
所述的步骤105,包括如下步骤:
The
步骤601:开始对非重叠的图像区域进行无缝拼接; Step 601: Start seamless stitching of non-overlapping image regions;
步骤602:对PZ1_PD图像进行逐行逐列扫描,当PZ1_PD中像素值等于0时,用img2中的这一位置的像素值去替换Fusion中相同位置的像素值; Step 602: Scan the PZ1_PD image row by row and column by row. When the pixel value in PZ1_PD is equal to 0, replace the pixel value at the same position in Fusion with the pixel value at this position in img2;
步骤603:对PZ2_PD图像进行逐行逐列扫描,当PZ2_PD中像素值等于0时,用img1中的这一位置的像素值去替换Fusion中相同位置的像素值; Step 603: Scan the PZ2_PD image row by row and column by row. When the pixel value in PZ2_PD is equal to 0, replace the pixel value at the same position in Fusion with the pixel value at this position in img1;
步骤604:结束对非重叠的图像区域进行无缝拼接; Step 604: End the seamless splicing of non-overlapping image areas;
本实施例没有详细叙述的部分属本行业的公知的常用手段,这里不一一叙述。 The parts that are not described in detail in this embodiment belong to well-known common means in this industry, and will not be described here one by one.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310234335.5A CN103279923B (en) | 2013-06-14 | 2013-06-14 | Based on topography's method for amalgamation processing of overlapping region |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310234335.5A CN103279923B (en) | 2013-06-14 | 2013-06-14 | Based on topography's method for amalgamation processing of overlapping region |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103279923A true CN103279923A (en) | 2013-09-04 |
CN103279923B CN103279923B (en) | 2015-12-23 |
Family
ID=49062430
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310234335.5A Expired - Fee Related CN103279923B (en) | 2013-06-14 | 2013-06-14 | Based on topography's method for amalgamation processing of overlapping region |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103279923B (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104252705A (en) * | 2014-09-30 | 2014-12-31 | 中安消技术有限公司 | Method and device for splicing images |
CN106991645A (en) * | 2017-03-22 | 2017-07-28 | 腾讯科技(深圳)有限公司 | Image split-joint method and device |
CN107085842A (en) * | 2017-04-01 | 2017-08-22 | 上海讯陌通讯技术有限公司 | The real-time antidote and system of self study multiway images fusion |
CN107710276A (en) * | 2015-09-30 | 2018-02-16 | 高途乐公司 | The unified image processing of the combination image in the region based on spatially co-located |
CN108230281A (en) * | 2016-12-30 | 2018-06-29 | 北京市商汤科技开发有限公司 | Remote sensing image processing method, device and electronic equipment |
CN108347540A (en) * | 2017-01-23 | 2018-07-31 | 精工爱普生株式会社 | The production method of scanner, scanner program and scan data |
CN108460724A (en) * | 2018-02-05 | 2018-08-28 | 湖北工业大学 | The Adaptive image fusion method and system differentiated based on mahalanobis distance |
CN113810665A (en) * | 2021-09-17 | 2021-12-17 | 北京百度网讯科技有限公司 | Video processing method, device, equipment, storage medium and product |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101221661A (en) * | 2008-01-29 | 2008-07-16 | 深圳市迅雷网络技术有限公司 | A method and device for image registration |
CN101556692A (en) * | 2008-04-09 | 2009-10-14 | 西安盛泽电子有限公司 | Image mosaic method based on neighborhood Zernike pseudo-matrix of characteristic points |
CN101840570A (en) * | 2010-04-16 | 2010-09-22 | 广东工业大学 | Fast image splicing method |
US20110002544A1 (en) * | 2009-07-01 | 2011-01-06 | Fujifilm Corporation | Image synthesizer and image synthesizing method |
CN102968777A (en) * | 2012-11-20 | 2013-03-13 | 河海大学 | Image stitching method based on overlapping region scale-invariant feather transform (SIFT) feature points |
-
2013
- 2013-06-14 CN CN201310234335.5A patent/CN103279923B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101221661A (en) * | 2008-01-29 | 2008-07-16 | 深圳市迅雷网络技术有限公司 | A method and device for image registration |
CN101556692A (en) * | 2008-04-09 | 2009-10-14 | 西安盛泽电子有限公司 | Image mosaic method based on neighborhood Zernike pseudo-matrix of characteristic points |
US20110002544A1 (en) * | 2009-07-01 | 2011-01-06 | Fujifilm Corporation | Image synthesizer and image synthesizing method |
CN101840570A (en) * | 2010-04-16 | 2010-09-22 | 广东工业大学 | Fast image splicing method |
CN102968777A (en) * | 2012-11-20 | 2013-03-13 | 河海大学 | Image stitching method based on overlapping region scale-invariant feather transform (SIFT) feature points |
Non-Patent Citations (2)
Title |
---|
李琳娜: ""基于特征匹配的图像拼接技术研究"", 《中国优秀硕士学位论文全文数据库-信息科技辑 》 * |
赵万金: ""图像自动拼接技术研究与应用"", 《中国优秀硕士学位论文全文数据库-信息科技辑》 * |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104252705B (en) * | 2014-09-30 | 2017-05-17 | 中安消技术有限公司 | Method and device for splicing images |
CN104252705A (en) * | 2014-09-30 | 2014-12-31 | 中安消技术有限公司 | Method and device for splicing images |
CN107710276A (en) * | 2015-09-30 | 2018-02-16 | 高途乐公司 | The unified image processing of the combination image in the region based on spatially co-located |
CN107710276B (en) * | 2015-09-30 | 2022-05-13 | 高途乐公司 | Method, system, and non-transitory computer readable medium for image processing |
CN108230281B (en) * | 2016-12-30 | 2020-11-20 | 北京市商汤科技开发有限公司 | Remote sensing image processing method and device and electronic equipment |
CN108230281A (en) * | 2016-12-30 | 2018-06-29 | 北京市商汤科技开发有限公司 | Remote sensing image processing method, device and electronic equipment |
CN108347540A (en) * | 2017-01-23 | 2018-07-31 | 精工爱普生株式会社 | The production method of scanner, scanner program and scan data |
CN106991645A (en) * | 2017-03-22 | 2017-07-28 | 腾讯科技(深圳)有限公司 | Image split-joint method and device |
CN106991645B (en) * | 2017-03-22 | 2018-09-28 | 腾讯科技(深圳)有限公司 | Image split-joint method and device |
US10878537B2 (en) | 2017-03-22 | 2020-12-29 | Tencent Technology (Shenzhen) Company Limited | Image splicing method, apparatus, terminal, and storage medium |
CN107085842A (en) * | 2017-04-01 | 2017-08-22 | 上海讯陌通讯技术有限公司 | The real-time antidote and system of self study multiway images fusion |
CN107085842B (en) * | 2017-04-01 | 2020-04-10 | 上海讯陌通讯技术有限公司 | Self-learning multipath image fusion real-time correction method and system |
CN108460724A (en) * | 2018-02-05 | 2018-08-28 | 湖北工业大学 | The Adaptive image fusion method and system differentiated based on mahalanobis distance |
CN113810665A (en) * | 2021-09-17 | 2021-12-17 | 北京百度网讯科技有限公司 | Video processing method, device, equipment, storage medium and product |
Also Published As
Publication number | Publication date |
---|---|
CN103279923B (en) | 2015-12-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103279923B (en) | Based on topography's method for amalgamation processing of overlapping region | |
Ren et al. | CorrI2P: Deep image-to-point cloud registration via dense correspondence | |
CN105100640B (en) | A kind of local registration parallel video joining method and system | |
CN112862685A (en) | Image stitching processing method and device and electronic system | |
US9349152B2 (en) | Image identifiers and methods and systems of presenting image identifiers | |
CN104036244B (en) | Checkerboard pattern corner point detecting method and device applicable to low-quality images | |
CN104680516A (en) | Acquisition method for high-quality feature matching set of images | |
CN104794701A (en) | Image splicing device, method and image processing equipment | |
CN112085708B (en) | Method and equipment for detecting defects of straight line edges in outer contour of product | |
CN109360145A (en) | A method for stitching infrared thermal images based on eddy current pulses | |
CN110276279A (en) | A Text Detection Method of Arbitrarily Shaped Scenes Based on Image Segmentation | |
CN107451985A (en) | A kind of joining method of the micro- sequence image of mouse tongue section | |
TWI664421B (en) | Method,apparatus ,and computer software product for image processing | |
TW405059B (en) | Method for combining the computer models of two surfaces in 3-D space | |
CN111861866A (en) | A panorama reconstruction method of substation equipment inspection image | |
Zhang et al. | Automatic crack inspection for concrete bridge bottom surfaces based on machine vision | |
JP2020067308A (en) | Image processing method and image processing device | |
Li et al. | Automated rust-defect detection of a steel bridge using aerial multispectral imagery | |
CN104966283A (en) | Imaging layered registering method | |
US9305235B1 (en) | System and method for identifying and locating instances of a shape under large variations in linear degrees of freedom and/or stroke widths | |
CN117853848B (en) | A method and processor for constructing a binocular vision RGB-IR image pair data set | |
CN100574360C (en) | A kind of preprocess method that obtains difference image | |
JP5142836B2 (en) | Scanning image element alignment method | |
Shahsavarani et al. | Multi-modal image processing pipeline for NDE of structures and industrial assets | |
CN104992432B (en) | Multimode image registering method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20151223 Termination date: 20160614 |