CN103276356A - A Method of Improving Thermal Stability of Cu3N Thin Film - Google Patents
A Method of Improving Thermal Stability of Cu3N Thin Film Download PDFInfo
- Publication number
- CN103276356A CN103276356A CN2013101868322A CN201310186832A CN103276356A CN 103276356 A CN103276356 A CN 103276356A CN 2013101868322 A CN2013101868322 A CN 2013101868322A CN 201310186832 A CN201310186832 A CN 201310186832A CN 103276356 A CN103276356 A CN 103276356A
- Authority
- CN
- China
- Prior art keywords
- target
- substrate
- vacuum chamber
- thin film
- sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Physical Vapour Deposition (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
Description
技术领域 technical field
本发明属于半导体薄膜制备领域,特别是涉及一种提高Cu3N薄膜热稳定性的方法。 The invention belongs to the field of semiconductor thin film preparation, in particular to a method for improving the thermal stability of Cu 3 N thin film.
背景技术 Background technique
具有反ReO3结构、低分解温度的氮化亚铜(Cu3N)半导体材料,在光信息存储和大规模集成电路方面具有非常光明的应用前景[1-3]。最近,该材料被报道亦可用于自旋电子器件、太阳能电池、燃料电池、磁隧道结等领域[1,4-9],因而该体系在国际上广受关注。如何把Cu3N的热分解温度提高的一个合适的温度使其更好地应用是目前Cu3N研究领域关注的焦点之一。 Cuprous nitride (Cu 3 N) semiconductor material with reverse ReO 3 structure and low decomposition temperature has very bright application prospects in optical information storage and large-scale integrated circuits [1-3] . Recently, it has been reported that this material can also be used in spintronic devices, solar cells, fuel cells, magnetic tunnel junctions and other fields [1,4-9] , so this system has attracted wide attention internationally. How to increase the thermal decomposition temperature of Cu 3 N to a suitable temperature to make it better used is one of the focuses in the current Cu 3 N research field.
提高热分解温度的方法有两种,一、改变生长条件,生长高质量、理想化学配比的Cu3N薄膜;二、由于Cu3N是一种具有反ReO3晶体结构的类似WO3的无机基质材料,外加原子(Ni, Cu, Zn, Pd, Ag, and Cd)占位在立方反ReO3晶胞的体心位置,因此通过掺杂修饰Cu3N的能带结构,可实现Cu3N热稳定性、甚至是电学、光学等特性的大范围可调。对于前者,生长理想化学配比Cu3N薄膜的技术已相对较为成熟。对于Cu3N的掺杂,目前实验上已有一些报导,但Cu3N薄膜的掺杂是一个复杂的过程,掺杂原子掺到了什么位置是否处于反ReO3晶体结构的体心位置掺杂原子的种类对Cu3N薄膜的物性有何影响掺杂薄膜特性随掺杂元素含量的依赖关系如何等都有待进一步研究。 There are two ways to increase the thermal decomposition temperature. First, change the growth conditions to grow high-quality, ideal stoichiometric Cu 3 N films ; Inorganic matrix materials, the extra atoms (Ni, Cu, Zn, Pd, Ag, and Cd) occupy the body center position of the cubic anti-ReO 3 unit cell, so the energy band structure of Cu 3 N can be modified by doping to realize Cu 3 N thermal stability, even electrical, optical and other characteristics can be adjusted in a large range. For the former, the technology of growing Cu 3 N thin films with ideal stoichiometric ratio is relatively mature. For the doping of Cu 3 N, there have been some experimental reports, but the doping of Cu 3 N thin films is a complicated process. Where do the dopant atoms are doped? How do the types of atoms affect the physical properties of Cu 3 N thin films, and how do the properties of doped thin films depend on the content of doping elements, etc. need to be further studied.
参考文献:references:
[1] Asano M, Umeda K and Tasaki A 1990 Jpn. J. Appl. Phys. 29 1985 [1] Asano M, Umeda K and Tasaki A 1990 Jpn. J. Appl. Phys. 29 1985
[2] Maruyama T and Morishita T 1996 Appl Phys. Lett. 69 890 [2] Maruyama T and Morishita T 1996 Appl Phys. Lett. 69 890
[3] Nosaka T, Yoshitake M, Okamoto A, Ogawa S and Nakayama Y 2001 Appl. Surf. Sci. 169 358 [3] Nosaka T, Yoshitake M, Okamoto A, Ogawa S and Nakayama Y 2001 Appl. Surf. Sci. 169 358
[4] Maya L 1993 Mater. Res. Soc. Symp. Proc 282 203 [4] Maya L 1993 Mater. Res. Soc. Symp. Proc 282 203
[5] Maya L 1993 J. Vac. Sci. Technol. A11 604 [5] Maya L 1993 J. Vac. Sci. Technol. A11 604
[6] Cremer R, Witthaut M, Neuschutz D, Trappe C, Laurenzis M, Winkle O and Kurz H 2000 Mikrochim. Acta 133 299 [6] Cremer R, Witthaut M, Neuschutz D, Trappe C, Laurenzis M, Winkle O and Kurz H 2000 Mikrochim. Acta 133 299
[7] Navio C, Alvarez J, Capitan M J, Camarero J and Miranda R 2009 Appl. Phys. Lett. 94 263112 [7] Navio C, Alvarez J, Capitan M J, Camarero J and Miranda R 2009 Appl. Phys. Lett. 94 263112
[8] Navio C, Capitan M J, Alvarez J, Yndurain F and R. Miranda 2007 Phys Rev B 76 085105 [8] Navio C, Capitan M J, Alvarez J, Yndurain F and R. Miranda 2007 Phys Rev B 76 085105
[9] Borsa D M, Grachev S, Presura C and Boerma D O 2002 Appl. Phys. Lett. 80 1823 [9] Borsa D M, Grachev S, Presura C and Boerma D O 2002 Appl. Phys. Lett. 80 1823
发明内容 Contents of the invention
本发明解决其技术问题所采用的技术方案具体包括如下步骤: The technical solution adopted by the present invention to solve its technical problems specifically comprises the steps:
步骤1.将用于沉积样品的Si (100)衬底依次用洗洁精、丙酮、无水酒精和去离子水各超声清洗15分钟,待用。 Step 1. The Si (100) substrate used for depositing samples is cleaned successively with detergent, acetone, absolute alcohol and deionized water for 15 minutes each ultrasonically, and set aside.
步骤2.将带掺杂材料置于Cu靶上,然后将衬底放置在样品架上,样品架与靶表面平行并且相距50-60 mm。 Step 2. Place the doped material on the Cu target, then place the substrate on the sample holder, which is parallel to the target surface and 50-60 mm apart. the
步骤3.检测靶是否接地,若接地则重新放置,确保靶不接地。 Step 3. Check whether the target is grounded, and if it is grounded, replace it to ensure that the target is not grounded. the
步骤4.将Si (100)衬底需要进行1%浓度的HF酸腐蚀,处理时间为1-2min,HF酸处理后用等离子水冲洗,然后吹干置于样品架。 Step 4. The Si (100) substrate needs to be etched with 1% concentration of HF acid for 1-2 minutes. After the HF acid treatment, it is rinsed with plasma water, then dried and placed on the sample holder. the
步骤5.关闭真空腔,抽真空。 Step 5. Close the vacuum chamber and pump the vacuum. the
步骤6.当真空腔内本底气压低于6×10-6 mbar时,向真空腔内通入纯氮气(99.99%),在低温低功率的条件下共溅射靶和掺杂材料,通过改变掺杂材料在靶上的覆盖面积、覆盖位置,在衬底上合成不同组分比的Cu3NMx薄膜。 Step 6. When the background pressure in the vacuum chamber is lower than 6×10 -6 mbar, feed pure nitrogen gas (99.99%) into the vacuum chamber, and co-sputter the target and dopant material under the condition of low temperature and low power, by changing The coverage area and location of the dopant material on the target, and Cu 3 NM x films with different composition ratios were synthesized on the substrate.
步骤7. 制备出的Cu3NMx薄膜,需进行热分解产物的电学特性测试,确保热分解产物为良导体。 Step 7. The prepared Cu 3 NM x film needs to be tested for the electrical characteristics of the thermal decomposition products to ensure that the thermal decomposition products are good conductors.
所述的共溅射的材料为In、Ti。 The materials for co-sputtering are In and Ti. the
本发明通过共溅射掺杂材料和靶材实现Cu3N薄膜热稳定性的提高,共溅射在低温、低气压和低功率的条件下进行,共溅射的材料可以是In、Ti等。 In the present invention, the thermal stability of the Cu 3 N film is improved by co-sputtering the doping material and the target material, and the co-sputtering is carried out under the conditions of low temperature, low pressure and low power, and the co-sputtering material can be In, Ti, etc. .
选择In掺杂,主要是因为InN具有相对比较高的分解温度~873K 可以设想,如果对Cu3N进行In掺杂,产生的薄膜有很可能会在结构、电学、光学等方面具有一些新颖的特性,并且可以在合理提高分解温度的同时,仍保持半导体特性。这样的话,薄膜既可以承受大多电子器件制备时的环境温度,保持高温下的稳定性,又能允许用局域加热模式(电子束/激光束快速扫描)以较低的、不对已有器件结构造成损伤的温度获得良好导电性的微纳米金属结构。 In doping is chosen mainly because InN has a relatively high decomposition temperature ~ 873K. It can be imagined that if Cu 3 N is doped with In, the resulting film may have some novel properties in terms of structure, electricity, optics, etc. characteristics, and can maintain semiconductor characteristics while reasonably increasing the decomposition temperature. In this way, the thin film can not only withstand the ambient temperature of most electronic devices, maintain the stability at high temperature, but also allow the use of localized heating mode (electron beam/laser beam fast scanning) with a lower cost and less distortion to the existing device structure. The temperature causing damage results in a micro-nano metal structure with good conductivity.
选择Ti掺杂, Ti掺杂的优势在于钛的氮化物熔点都很高,这就使得 Choose Ti doping, the advantage of Ti doping is that the melting point of titanium nitride is very high, which makes
Ti掺杂的Cu3N薄膜可能具有较高的分解温度,并且又因为钛的氮化物都是良导体,因此复合薄膜中即使存在钛氮化物的分离相,也都不会影响分解产物的金属导电性与高的反射率。所以如果少量掺钛后的氮化亚铜薄膜仍然保持半导体特性, 它就很可能仍然可以用于光信息存贮和集成电路。 Ti-doped Cu 3 N films may have a higher decomposition temperature, and because titanium nitrides are good conductors, even if there is a separate phase of titanium nitrides in the composite film, it will not affect the metal of the decomposition products. Conductivity and high reflectivity. Therefore, if the cuprous nitride film doped with a small amount of titanium still maintains semiconducting properties, it may still be used for optical information storage and integrated circuits.
本发明有益效果如下: The beneficial effects of the present invention are as follows:
本方法弥补了现有技术的不足,提高了Cu3N薄膜的热稳定性。 The method makes up for the deficiencies of the prior art and improves the thermal stability of the Cu 3 N thin film.
附图说明 Description of drawings
图1 CuxInyN 薄膜的 XRD 谱,对应样品的 In含量为 8.2at.%:(a)原生样品,(b) 330℃退火,(c) 360℃退火; Figure 1 XRD spectrum of the Cu x In y N film, corresponding to the In content of the sample is 8.2at.%: (a) as-received sample, (b) annealed at 330°C, (c) annealed at 360°C;
图2 钛含量为2.2at.%的薄膜在不同温度下的XRD谱: (a) 原生样品,(b)350℃退火,(c)400℃退火,(d)450℃退火,(e)500℃退火。 Figure 2 XRD spectra of films with a titanium content of 2.2at.% at different temperatures: (a) as-received sample, (b) annealed at 350°C, (c) annealed at 400°C, (d) annealed at 450°C, (e) at 500°C ℃ annealing.
具体实施方式 Detailed ways
下面结合附图和实施例对本发明作进一步说明。 The present invention will be further described below in conjunction with drawings and embodiments. the
如图1、图2所示,一种提高Cu3N薄膜热稳定性的方法,具体包括如下步骤: As shown in Figure 1 and Figure 2, a method for improving the thermal stability of a Cu 3 N thin film specifically includes the following steps:
步骤1.将用于沉积样品的Si (100)衬底依次用洗洁精、丙酮、无水酒精和去离子水超声清洗15分钟,待用。 Step 1. The Si (100) substrate used for depositing samples was cleaned sequentially with detergent, acetone, absolute alcohol and deionized water for 15 minutes, and then set aside.
步骤2.将带掺杂材料置于Cu靶上,然后将衬底放置在样品架上,样品架与靶表面平行并且相距55 mm。 Step 2. Place the doped material on the Cu target, and then place the substrate on the sample holder, which is parallel to the target surface and 55 mm apart. the
步骤3.当真空腔内本底气压低于6×10-6 mbar时,向真空腔内通入流速为7 sccm的纯氮气(99.99%),共溅射靶和掺杂材料,通过改变掺杂材料在靶上的覆盖面积、覆盖位置,在衬底上合成不同组分比的Cu3NMx薄膜。 Step 3. When the background pressure in the vacuum chamber is lower than 6×10 -6 mbar, feed pure nitrogen gas (99.99%) with a flow rate of 7 sccm into the vacuum chamber to co-sputter the target and the dopant material, by changing the doping The coverage area and coverage position of the material on the target, and Cu 3 NM x films with different composition ratios were synthesized on the substrate.
所述的共溅射的材料为In、Ti。 The materials for co-sputtering are In and Ti.
本发明通过共溅射掺杂材料和靶材实现Cu3N薄膜热稳定性的提高,共溅射在低温、低气压和低功率的条件下进行,共溅射的材料可以是In、Ti等。 In the present invention, the thermal stability of the Cu 3 N film is improved by co-sputtering the doping material and the target material, and the co-sputtering is carried out under the conditions of low temperature, low pressure and low power, and the co-sputtering material can be In, Ti, etc. .
Cu3MxN 薄膜的热稳定性的研究是通过在 N2 气保护下不同温度退火 20 分钟,然后测量分析其相关物理性质来进行的。退火样品的 XRD 谱中如果有金属铜峰出现,样品就被认为开始分解,分解温度即为此时对应的退火温度。从图1可以很明显地看出,In含量为 8.2at.%,并且 Cu3N 相占主导地位的样品的分解温度为360℃。 The thermal stability of the Cu 3 M x N thin films was annealed at different temperatures for 20 minutes under the protection of N 2 gas, and then the relevant physical properties were measured and analyzed. If there is a metallic copper peak in the XRD spectrum of the annealed sample, the sample is considered to start to decompose, and the decomposition temperature is the corresponding annealing temperature at this time. It can be clearly seen from Fig. 1 that the decomposition temperature of the sample with an In content of 8.2 at.% and a dominant Cu 3 N phase is 360 °C.
实施例1Example 1
利用射频磁控溅射方法在Si (100)衬底上制备不同In掺杂的氮化亚铜薄膜。首先将用于沉积样品的衬底依次用洗洁精、丙酮、无水酒精和去离子水超声清洗15分钟,然后将衬底放置在与靶表面平行并且相距55 mm的样品架上。当真空腔内本底气压低于6×10-6 mbar时,向腔内通入流速为7 sccm的纯氮气(99.99%),共溅射纯Cu靶(99.99%)和其上的高纯In(99.999%)颗粒,通过改变In在靶上的覆盖面积、覆盖位置,在衬底上合成不同组分比的CuxInyN薄膜。工作气压控制在7×10-3 mbar,预溅射与薄膜沉积过程分别维持30分钟。沉积过程中衬底的温度控制在~333K,射频输入功率为60 W。 CuN films with different In dopings were prepared on Si (100) substrates by radio frequency magnetron sputtering. First, the substrate used for depositing samples was ultrasonically cleaned with detergent, acetone, absolute alcohol, and deionized water for 15 minutes in sequence, and then the substrate was placed on a sample holder parallel to the target surface and 55 mm away from it. When the background pressure in the vacuum chamber is lower than 6× 10-6 mbar, pure nitrogen gas (99.99%) with a flow rate of 7 sccm is introduced into the chamber, and the pure Cu target (99.99%) and the high-purity In on it are co-sputtered. (99.999%) particles, by changing the coverage area and location of In on the target, Cu x In y N films with different composition ratios are synthesized on the substrate. The working pressure was controlled at 7×10 -3 mbar, and the pre-sputtering and film deposition processes were maintained for 30 minutes respectively. During the deposition process, the substrate temperature was controlled at ~333K, and the RF input power was 60 W.
CuxInyN 薄膜的热稳定性的研究是通过在 N2 气保护下不同温度退火 20 分钟,然后测量分析其相关物理性质来进行的。退火样品的 XRD 谱中如果有金属铜峰出现,样品就被认为开始分解,分解温度即为此时对应的退火温度。从图1可以很明显地看出,In含量为 8.2at.%,并且 Cu3N 相占主导地位的样品的分解温度为360℃,相较于纯Cu3N 薄膜300℃的分解温度,热稳定性略有提高。 The thermal stability of the Cu x In y N thin film was annealed at different temperatures for 20 minutes under the protection of N 2 gas, and then the relevant physical properties were measured and analyzed. If there is a metallic copper peak in the XRD spectrum of the annealed sample, the sample is considered to start to decompose, and the decomposition temperature is the corresponding annealing temperature at this time. It can be clearly seen from Fig. 1 that the decomposition temperature of the sample with an In content of 8.2 at.% and a Cu 3 N phase dominance is 360 °C, compared with the decomposition temperature of 300 °C for a pure Cu 3 N film, the thermal Stability has been slightly improved.
实施例2Example 2
利用射频磁控溅射方法在Si (100)衬底上制备不同Ti掺杂的氮化亚铜薄膜。条件同实施案例(一)。 Copper nitride films with different Ti doping were prepared on Si (100) substrates by radio frequency magnetron sputtering. The conditions are the same as the implementation case (1).
选择了Ti含量为2.2at.%的掺杂Cu3N薄膜进行热稳定性的研究。在氮气的保护下,对样品退火20分钟,图2给出了样品不同温度退火后的XRD谱图,从图中可以看出薄膜在400℃退火之后就出现了Cu(111)衍射峰,但是直到500℃退火之后,薄膜中的Cu3N的(100)衍射峰仍然占主导地位。以上结果说明Ti掺杂的氮化亚铜薄膜的热稳定性提高了,薄膜的分解速度变慢了,Cu3N薄膜的分解温度,并被提高至~500。 The doped Cu 3 N film with a Ti content of 2.2at.% was selected for thermal stability research. Under the protection of nitrogen, the sample was annealed for 20 minutes. Figure 2 shows the XRD spectrum of the sample after annealing at different temperatures. It can be seen from the figure that the Cu (111) diffraction peak appeared after the film was annealed at 400 ° C, but The (100) diffraction peak of Cu 3 N in the film is still dominant until after annealing at 500℃. The above results show that the thermal stability of the Ti-doped cuprous nitride film is improved, the decomposition rate of the film is slowed down, and the decomposition temperature of the Cu 3 N film is increased to ~500.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013101868322A CN103276356A (en) | 2013-05-20 | 2013-05-20 | A Method of Improving Thermal Stability of Cu3N Thin Film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013101868322A CN103276356A (en) | 2013-05-20 | 2013-05-20 | A Method of Improving Thermal Stability of Cu3N Thin Film |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103276356A true CN103276356A (en) | 2013-09-04 |
Family
ID=49058968
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2013101868322A Pending CN103276356A (en) | 2013-05-20 | 2013-05-20 | A Method of Improving Thermal Stability of Cu3N Thin Film |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103276356A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113755794A (en) * | 2021-09-16 | 2021-12-07 | 桂林理工大学 | A kind of porous Cu-SiC composite membrane and preparation method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101413104A (en) * | 2008-11-28 | 2009-04-22 | 江苏工业学院 | Method for preparing copper nitride film by ion beam enhanced deposition |
CN101949006A (en) * | 2010-07-16 | 2011-01-19 | 常州大学 | Method for preparing copper nitride film, copper nitride/copper and copper two-dimensional ordered array |
CN102386326A (en) * | 2011-10-13 | 2012-03-21 | 复旦大学 | A preparation method of copper nitride resistive material for high-density resistive memory |
-
2013
- 2013-05-20 CN CN2013101868322A patent/CN103276356A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101413104A (en) * | 2008-11-28 | 2009-04-22 | 江苏工业学院 | Method for preparing copper nitride film by ion beam enhanced deposition |
CN101949006A (en) * | 2010-07-16 | 2011-01-19 | 常州大学 | Method for preparing copper nitride film, copper nitride/copper and copper two-dimensional ordered array |
CN102386326A (en) * | 2011-10-13 | 2012-03-21 | 复旦大学 | A preparation method of copper nitride resistive material for high-density resistive memory |
Non-Patent Citations (2)
Title |
---|
A. RAHMETI: "Reactive DC magnetron sputter deposited Ti-Cu-N nano-composite thin films at nitrogen ambient", 《VACUUM》, vol. 85, 31 December 2011 (2011-12-31) * |
杜允: "《Cu3N基半导体材料的热稳定性设计及物性研究》", 31 December 2009, article "Cu3N基半导体材料的热稳定性设计及物性研究" * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113755794A (en) * | 2021-09-16 | 2021-12-07 | 桂林理工大学 | A kind of porous Cu-SiC composite membrane and preparation method thereof |
CN113755794B (en) * | 2021-09-16 | 2023-08-11 | 桂林理工大学 | A kind of porous Cu-SiC composite film and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103173732B (en) | Preparation method of (doped amorphous) p-type transparent conductive oxide films | |
Chen et al. | Magnetron sputtering deposition of GeSe thin films for solar cells | |
CN100483626C (en) | P type doping method for cubic boron nitride thin film | |
CN101339906A (en) | Preparation process of novel environmental semi-conductor photoelectronic material beta-FeSi2 film | |
CN102925866B (en) | Preparation technology for single-phase Mg2Si semiconductor film | |
CN107858754A (en) | A kind of GaP nano wires and its production and use | |
CN105821379A (en) | Method for preparing single-phase transparent conductive cuprous oxide film | |
CN103031556B (en) | A kind of deposition preparation of ZnO/Al/ZnO photoelectricity transparent conductive film | |
CN102732847A (en) | Phase change vanadium dioxide film prepared by rapid thermal oxidation method | |
CN109082631A (en) | A kind of Ga2O3Base transparent conducting film and preparation method thereof | |
CN102277570A (en) | Method for preparing ZnO/Cu/ZnO transparent conductive thin film | |
CN113061837A (en) | A kind of preparation method of highly transparent p-type cuprous iodide conductive film | |
CN106567039B (en) | A kind of MoS2/Ag/MoS2Semiconductor film material and preparation method thereof | |
CN103276356A (en) | A Method of Improving Thermal Stability of Cu3N Thin Film | |
DING et al. | Optical and electrical properties of CH3NH3PbI3 perovskite thin films transformed from PbO-PbI2 hybrid films | |
CN102881563B (en) | Preparation method of polycrystalline silicon film component | |
CN102593282A (en) | Doping method for ZnO nanowire array | |
ZHENG | Structure and electronic properties of SiC thin-films deposited by RF magnetron sputtering | |
CN101781753B (en) | Process for preparing Cr-doped β-FeSi2 thin films | |
CN103325888B (en) | Transparent conductive thin film manufacturing method based on silicon-based thin film substrate | |
CN101281884A (en) | A kind of SiOx film preparation method that can be used in silicon-based optoelectronic integrated device | |
CN101798674A (en) | Process for preparing environment-friendly semiconductor material Mg2Si film by electron beam evaporation method | |
CN101820005A (en) | Method for preparing Mn-doped beta-FeSi2 film | |
Yuan et al. | Growth of well-aligned ZnO nanorod arrays and their application for photovoltaic devices | |
CN105304736A (en) | Method of fabricating Ge/Si quantum dots by magnetron sputtering in combination with rapid annealing technology |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20130904 |