CN103268489A - 基于滑窗搜索的机动车号牌识别方法 - Google Patents

基于滑窗搜索的机动车号牌识别方法 Download PDF

Info

Publication number
CN103268489A
CN103268489A CN2013102065699A CN201310206569A CN103268489A CN 103268489 A CN103268489 A CN 103268489A CN 2013102065699 A CN2013102065699 A CN 2013102065699A CN 201310206569 A CN201310206569 A CN 201310206569A CN 103268489 A CN103268489 A CN 103268489A
Authority
CN
China
Prior art keywords
character
sliding window
plate
license plate
recognition result
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013102065699A
Other languages
English (en)
Other versions
CN103268489B (zh
Inventor
解梅
朱伟
毛河
何磊
陈路
叶繁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Houpu Clean Energy Group Co ltd
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201310206569.9A priority Critical patent/CN103268489B/zh
Publication of CN103268489A publication Critical patent/CN103268489A/zh
Application granted granted Critical
Publication of CN103268489B publication Critical patent/CN103268489B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Character Discrimination (AREA)
  • Image Analysis (AREA)
  • Traffic Control Systems (AREA)

Abstract

本发明提供一种基于滑窗搜索的机动车号牌识别方法,包括步骤:1)对当前帧中出现在场景内的各车辆进行目标跟踪定位;2)对提取的单个待识别的车牌图像进行尺寸归一化处理与二值化处理,再根据先验信息确定车牌图像中各字符分割中心;3)用标准字符尺寸的窗口在各字符的分割中心以及分割中心左右滑窗搜索各m次得到滑窗识别结果;4)车牌中每个字符的滑窗识别结果并放入该位置字符对应投票池中,计算各字符投票池中识别结果比例最高且大于决策阈值的作为单个字符的最终识别结果。本发明通过跟踪目标车辆获得同一车牌的多次检测结果。最终的车牌字符识别结果是同一目标在多次识别下的投票,极大的提高了系统的鲁棒性和结果的稳定性。

Description

基于滑窗搜索的机动车号牌识别方法
技术领域
本发明属于数字图像处理技术领域,涉及机器学习、计算机视觉、模式识别等相关理论知识。
背景技术
随着智能交通系统的发展,机动车号牌识别系统(简称车牌识别系统)广泛的应用在各个领域。前端采集设备获取车辆图像或者视频序列,然后分析得到每辆汽车唯一的车牌号码,利用现代技术完成识别过程。通过后续处理,可以实现停车场收费管理、交通流量控制指标测量、高速公路超速自动化监管、公路收费站等功能。
通常,车牌识别系统可分为三个部分:车牌定位、车牌字符分割、车牌字符识别。整个系统在前两部分的基础上如何进行精确的字符识别,就成为最终影响系统识别率的重要难题。车牌字符识别存在以下难题:
1、小字符集(数字、字母、语义字符)。具体到中国现行的机动车号牌标准(GA36—2007,GA804),中国车牌含有中文汉字,汉字字符结构复杂,实际获得字符存在粘连,污损等情况。
2、测试环境复杂多变。车牌识别系统在应用雨雪天、雾等自然环境恶劣情况,可能会导致车牌受污损,同时影响获得车牌图像质量。
3、获取图像质量差异性大。前端采集设备获取车辆图像,可能存在干扰和几何形变,且车牌可能分布在图像序列的任意位置,实时处理相对较大的数据给车牌识别系统增加了复杂性。
当前的车牌识别算法主要有以下几种方法:
一、基于SVM的车牌识别算法。根据车牌字符特征,建立子分类器,对子分类器建立各字符的样本库,通过SVM方法训练得到各字符的判别函数。然后根据字符相应位置,归一化送到对应分类器组,通过判别函数得到分类结果。但是由于现场环境的复杂,车牌字符也很难准确分割,字符差异性大。详见:Liu Yongchun,Yu Xiaohong,Yang Jing.Study of licenseplate location system based on SVM.Proceedings-2nd IEEE International Conference onAdvanced Computer Control,ICACC2010,v5,p195-198.
二、基于模板匹配的车牌识别算法。利用车牌字符轮廓、骨干、网络或者峰谷投影等特征,特征点识别字符是先对待识别字符进行关键点提取,即对字符进行拓扑分析以得到字符边缘的关键点,再确定字符的分类提取车牌字符特征,与标准车牌字符进行匹配。但是,由于实际测试环境中车牌图像存在的干扰和变形,车牌字符正确识别率不高。详见:Jin Quan,Quan Shuhai,Shi Ying,Xue Zhihua.A fast license plate segmentation and recognition methodbased on the modified template matching.Proceedings of the20092nd International Congress onImage and Signal Processing,CISP'09,2009.
三、基于神经网络的车牌识别算法。通过归一化处理图像,然后根据神经网络算法建立网络,分别是汉字网络和字母数字网络,输入特征值的网络,利用网格的特征向量,建立汉字网络字母数字网络找出相似字符之间的差异进行识别。但是存在输入数据选择和网络结构设计等问题。详见:Shan Baoming.License plate character segmentation and recognition based onRBF neural network.2nd International Workshop on Education Technology and Computer Science,ETCS2010,v2,p86-89.
发明内容
本发明所要解决的技术方案是,提供一种能适应复杂环境的机动车号牌识别方法。
本发明为解决上述技术问题所采用的技术方案是,基于滑窗搜索的机动车号牌识别方法,包括以下步骤:
1)车牌定位步骤:对当前帧中出现在场景内的各车辆进行目标跟踪,再对各车辆车牌进行定位;
2)车牌字符预分割步骤:对提取的单个待识别的车牌图像进行尺寸归一化处理与二值化处理,再根据先验信息确定车牌图像中各字符分割中心,所述先验信息为字符间隔的宽高比以及字符宽高比;
3)滑窗搜索步骤:用标准字符尺寸的窗口在当前待识别车牌图像的各字符的分割中心以及分割中心左右滑窗搜索各m次,得到2m+1个滑窗识别结果;
4)滑窗识别步骤:车牌中每个字符的滑窗识别结果并放入该位置字符对应投票池中,计算各字符投票池中识别结果比例最高且大于决策阈值的作为单个字符的最终识别结果。
本发明通过跟踪目标车辆获得同一车牌的多次检测结果。最终的车牌字符识别结果是同一目标在多次识别下的投票,极大的提高了系统的鲁棒性和结果的稳定性。
为了进一步提高复杂的环境中鲁棒性,在执行步骤四之前,循环执行步骤1至步骤3N次,得到从连续N帧图像中检测到N1个当前待识别车牌图像中每个字符的滑窗识别结果(2m+1)×N1,N1≤N。
本发明的有益效果是,具有很高识别准确率,且在复杂的环境中鲁棒性强。
附图说明
图1为实施例流程图;
图2为车牌字符分割示意图;
图3为单个字符滑窗搜索示意图。
具体实施方式
基于滑窗寻优搜索的机动车号牌识别方法,如图1所示,包含下述步骤:
步骤1、车牌定位步骤:
步骤1-1:系统接收前端设备采集的图片流,采用基于混合高斯模型进行背景建模,获得运动场景中背景,将当前图像帧与背景图像相减便可以获得运动目标区域Z。
步骤1-2:对于步骤1-1中待跟踪的目标区域Z,选取出能代表车辆的特征,在待跟踪车辆附近取一系列区域,分布计算得到这一系列区域的低维特征。将这一系列低维特征送入贝叶斯分类器,实现场景内各个车辆跟踪。
步骤1-3:根据场景内跟踪的各个车辆情况,首先对单帧目标图像求灰度二值化图像和边缘检测,对边缘图像进行隔行检测,首先构造矩阵mask,将mask中的元素初始化为0,根据车牌的长宽比设定一个滑动窗口W,W为长、高为w×h全1矩阵,设定阀值T以判断车牌区内的边缘点,用窗W遍历边缘图像,然后提取连通域,经过形态学闭操作,对各个连通域进行标定并求其最小的外接矩形。最后,利用车牌的正负样本训练二分类器去掉伪车牌,从而得到候选车牌。
步骤1-4:精确定位车牌:首先,求候选车牌水平方向上的差分和投影,精确定位其上下边界,再根据竖直方向投影,选择阀值U,根据阀值U判断候选车牌区域大于、小于维度作为车牌左右边缘的精确位置。
步骤1中个子步骤均为成熟的现有技术,本实施例仅给出一个较优的,具体的实施组合,本领域技术人员可以根据现有其他的实施手段来实现车牌定位。
步骤2、车牌字符预分割步骤:
在跟踪的目标区域中获得单个车辆的车牌区域后,可按如下步骤实现对单个车辆的车牌字符预分割,如图2所示。
步骤2-1:首先对步骤1中精确定位的单个车牌图像归一化,将车牌高度缩放到统一尺寸h。对归一化后图像进行二值化,白色表示车牌字符,黑色表示背景。根据现行的机动车号牌标准知,车牌中字符的宽高比为t1,车牌2、3字符的间隔最大,2、3字符间间隔的宽高比为t2,其他字符间间隔的宽高比为t3,则可得到车牌图像中,字符宽度w1=h×t1,2、3字符间间隔宽度w2=h×t2,其他字符间间隔宽度w3=h×t3
步骤2-2:根据归一化后的车牌二值图像,字符与字符间,黑色部分最宽区域的左右边界为2、3字符的分割线。用宽度为w2,高度为h的窗,在车牌前面的二分之一区域进行滑窗搜索,当窗口内黑色像素点最多时,此位置的左右边界就是2、3字符间隔左右边界,记左边界为ls2,3,右边界为le2,3
步骤2-3:定位车牌前2位字符和后5位字符预分割中心位置。根据步骤2-2中确定的2、3字符分割位置右边界le2,3,将分割位置右边界le2,3向右移动w1,得到3、4字符的初分割位置左边界le2,3+w1,将分割位置右边界le2,3向右移动w1+w3,得到3、4字符的初分割位置右边界le2,3+w1+w3,根据3,4字符初分割位置左右边界,得到3、4字符的分割中心位置loc3,4。取宽度为w3,高度为h的窗,在初分割中心位置loc3,4左右搜索,找到窗内黑色像素点最多的位置,确定为3、4字符的分割位置左边界为ls3,4,右边界为le3,4。由字符的分割位置边界le2,3和ls3,4可以得到第3个字符的中心位置
Figure BDA00003268314600041
以此规则,找到所有字符预分割的中心位置。
本实施例提出了一种新的优选的车牌字符分割方法,该方法利用字符与车牌背景的亮度差异,结合字符宽度的先验信息来搜索相邻字符的间隔,从而达到分割的目的,简单,快速,且每步搜素较独立,不过分依赖上一步结果,具有很强的鲁棒性。本领域技术人员也可以根据需求使用其它现有的字符分割方式。
步骤3、滑窗搜索识别步骤:
根据步骤1、2,跟踪到场景内的单个车辆,实现单个车辆的车牌定位、字符预分割,结合获得的图像序列,在时间和空间上进行滑窗字符识别,如图3所示,详细过程如下步骤:
步骤3-1:滑窗字符搜索。根据目标跟踪和字符预分割中心,实现滑窗搜索,详细的实现过程如下:
1、对步骤1-2中跟踪的目标车辆A,精确定位车牌后,采用步骤2进行车牌字符预分割确定各个字符分隔中心,用标准字符尺寸高度h,宽度w1的窗口在每个字符的中心位置进行滑动,从每个字符的中心位置,对每个字符左右滑窗各m次,得到2m+1个窗。
2、窗口特征描述:本实施例中采用经典的方向梯度直方图HOG方法对每个窗口进行特征描述,根据训练的分类器,对滑窗搜索得到的窗口进行分类,分类结果可能有汉字,英文字母,数字和非字符,将单帧目标车牌字符得到的识别结果放入该车辆A的每个字符对应的投票池。
3、对连续N帧图像中跟踪的目标车辆A,反复执行上面的过程1、2,将每一帧得到的识别结果放入目标车辆A的每个字符投票池中,最终目标车辆A每个字符的投票池中包含(2m+1)×N1个识别结果。其中N1表示N帧图像中有N1帧检测到目标车辆A。
步骤3-2:最优投票决策。根据滑窗搜索得到的结果,对跟踪目标区域内各个车辆的车牌字符所对应投票池中的识别结果投票,投票决策过程如下:
1、设定决策阀值T,时间窗更新帧数N2
2、根据步骤3-1中,对目标区域内跟踪的车辆A的车牌字符图像进行滑窗,当m=3,N1=3时,可得单个字符滑窗搜索识别结果21个,分别计算各个字符投票池中识别结果所占比例,比例最高,且大于决策阈值T的识别结果,作为对应车辆A的单个字符识别结果。
投票池的更新:对于同一目标跟踪车辆A车牌的滑窗识别,在第一次得出字符的最终识别结果之后,如有新的一帧各字符滑窗搜索识别结果进入投票池,则判断当前字符投票池中已装满(2m+1)×M个滑窗识别结果,M为待识别车牌输出结果的限定帧数,如是,则将对应各字符投票池中第一帧识别结果去除,加入对应新的一帧的各字符的滑窗识别结果,如否,则直接加入新的一帧的各字符的滑窗识别结果进入对应各字符投票池。若时间窗连续更新N2帧,跟踪目标车辆A没有新的数据输入,则目标车辆A车牌识别终止,输出各字符滑窗识别最终结果。
通过跟踪目标车辆获得同一车牌的多次检测结果,并结合每个车牌字符预分割在空间和时间上进行滑窗搜索识别,最终的车牌字符识别结果是同一目标在多次识别下的投票。也可以不在时间上滑窗搜索识别,仅在空间上滑窗搜索识别,即每个字符投票池中仅有2m+1个识别结果。
在硬件平台Intel i32120+2G DDR RAM,软件平台C/C++上实施本实施例方法,采用5680张实地拍摄图片,包括雨天、雾天、晴天等不同天气和车牌水平、车牌倾斜、车辆运动、车辆静止等不同状态下的彩色车辆图像作为源实验数据,经实验验证,本实施例对汉字字符识别率达到98.56%,对英文字母字符识别率达到99.12%,对数字字符识别率达到99.37%,各字符统计平均识别率98.92%。与传统的算法相比较,本发明的方法在应用复杂的环境中鲁棒性好,通用性强。

Claims (5)

1.基于滑窗搜索的机动车号牌识别方法,其特征在于,包括以下步骤:
1)车牌定位步骤:对当前帧中出现在场景内的各车辆进行目标跟踪,再对各车辆车牌进行定位;
2)车牌字符预分割步骤:对提取的单个待识别的车牌图像进行尺寸归一化处理与二值化处理,再根据先验信息确定车牌图像中各字符分割中心,所述先验信息为字符间隔的宽高比以及字符宽高比;
3)滑窗搜索步骤:用标准字符尺寸的窗口在当前待识别车牌图像的各字符的分割中心以及分割中心左右滑窗搜索各m次,得到2m+1个滑窗识别结果;
4)滑窗识别步骤:将车牌中每个字符的滑窗识别结果放入该位置字符对应投票池中,计算各字符投票池中比例最高且大于决策阈值的识别结果作为单个字符的最终识别结果。
2.如权利要求1所述基于滑窗搜索的机动车号牌识别方法,其特征在于,在执行步骤4)之前,循环执行步骤1)至步骤3)N次,得到从连续N帧图像中检测到N1个当前待识别车牌图像中每个字符的滑窗识别结果(2m+1)×N1,N1≤N。
3.如权利要求2所述基于滑窗搜索的机动车号牌识别方法,其特征在于,对于同一目标跟踪车辆车牌的滑窗识别,在第一次得出字符的最终识别结果之后,如有新的一帧各字符滑窗搜索识别结果进入投票池,则判断当前字符投票池中是否已装满(2m+1)×M个滑窗识别结果,M为待识别车牌输出结果的限定帧数,如是,则将对应各字符投票池中第一帧识别结果去除,加入对应新的一帧的各字符的滑窗识别结果,如否,则直接加入新的一帧的各字符的滑窗识别结果进入对应各字符投票池。
4.如权利要求2或3所述基于滑窗搜索的机动车号牌识别方法,其特征在于,对于同一目标跟踪车辆车牌的滑窗识别,若连续更新N2帧,跟踪目标车辆没有新的数据输入,则终止该目标车辆车牌识别,输出各字符滑窗识别最终结果。
5.如权利要求1所述基于滑窗搜索的机动车号牌识别方法,其特征在于,二值化处理后车牌图像,白色表示车牌字符,黑色表示背景;尺寸归一化处理后车牌高度缩放到统一尺寸h;先验信息包括:车牌中字符的宽高比为t1,车牌2、3字符的间隔最大,2、3字符间间隔的宽高比为t2,其他字符间间隔的宽高比为t3,字符宽度w1=h×t1,2、3字符间间隔宽度w2=h×t2,其他字符间间隔宽度w3=h×t3
根据先验信息确定车牌图像中各字符分割中心的具体方法是:
2-1)通过宽为高为h宽为w2的滑窗搜素找出黑色像素点最多的区域,该区域的左右边界为车牌中第2、3字符间隔左右边界,左边界为ls2,3,右边界为le2,3
2-2)根据第2、3字符间隔左右边界、字符宽度w1、其他字符间间隔宽度w3计算得到各两相邻字符间间隔的分割中心,再在各两相邻字符间间隔的分割中心用高为h宽为w3的滑窗左右搜素找出黑色像素点最多的区域,该区域的左右边界为这两相邻字符间隔左右边界,最终确定各字符分割中心。
CN201310206569.9A 2013-05-29 2013-05-29 基于滑窗搜索的机动车号牌识别方法 Active CN103268489B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310206569.9A CN103268489B (zh) 2013-05-29 2013-05-29 基于滑窗搜索的机动车号牌识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310206569.9A CN103268489B (zh) 2013-05-29 2013-05-29 基于滑窗搜索的机动车号牌识别方法

Publications (2)

Publication Number Publication Date
CN103268489A true CN103268489A (zh) 2013-08-28
CN103268489B CN103268489B (zh) 2016-12-28

Family

ID=49012116

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310206569.9A Active CN103268489B (zh) 2013-05-29 2013-05-29 基于滑窗搜索的机动车号牌识别方法

Country Status (1)

Country Link
CN (1) CN103268489B (zh)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103714316A (zh) * 2013-12-10 2014-04-09 小米科技有限责任公司 图像识别方法、装置及电子设备
CN104200207A (zh) * 2014-09-16 2014-12-10 宁波熵联信息技术有限公司 一种基于隐马尔可夫模型的车牌识别方法
CN104298966A (zh) * 2014-09-17 2015-01-21 电子科技大学 一种车牌定位方法
CN104715252A (zh) * 2015-03-12 2015-06-17 电子科技大学 一种动态模板结合像素点的车牌字符分割方法
CN105260735A (zh) * 2015-10-10 2016-01-20 安徽清新互联信息科技有限公司 一种基于典型位置的车牌字符分割方法
CN105426890A (zh) * 2015-11-09 2016-03-23 成都数之联科技有限公司 一种字符扭曲粘连的图形验证码识别方法
CN106485246A (zh) * 2016-09-19 2017-03-08 北京小米移动软件有限公司 字符识别方法及装置
CN107103320A (zh) * 2017-04-28 2017-08-29 常熟理工学院 嵌入式医疗数据图像识别及集成方法
CN103605953B (zh) * 2013-10-31 2018-06-19 电子科技大学 基于滑窗搜索的车辆兴趣目标检测方法
CN109993171A (zh) * 2019-03-12 2019-07-09 电子科技大学 一种基于多模板和多比例的车牌字符分割方法
CN110851640A (zh) * 2018-07-24 2020-02-28 杭州海康威视数字技术股份有限公司 一种图像搜索方法、装置及系统
CN110933318A (zh) * 2019-12-12 2020-03-27 天地伟业技术有限公司 一种运动目标的抓拍方法
CN111461111A (zh) * 2020-03-03 2020-07-28 华南理工大学 一种基于随机森林的多帧车牌识别优化方法
CN111599208A (zh) * 2020-05-15 2020-08-28 深圳市捷顺科技实业股份有限公司 一种停车场出入管理方法、装置和设备及可读存储介质
CN111832337A (zh) * 2019-04-16 2020-10-27 高新兴科技集团股份有限公司 一种车牌识别方法及装置
CN112434700A (zh) * 2020-11-25 2021-03-02 创新奇智(上海)科技有限公司 车牌识别方法、装置、设备及存储介质
CN112907832A (zh) * 2021-01-19 2021-06-04 浙江大华技术股份有限公司 加油事件的处理方法、视频处理装置及存储介质
CN113326836A (zh) * 2020-02-28 2021-08-31 深圳市丰驰顺行信息技术有限公司 车牌识别方法、装置、服务器及存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101246551A (zh) * 2008-03-07 2008-08-20 北京航空航天大学 一种快速的车牌定位方法
CN101754151A (zh) * 2009-12-08 2010-06-23 武汉虹信通信技术有限责任公司 一种基于滑动窗口的双向循环查找、显示装置及方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101246551A (zh) * 2008-03-07 2008-08-20 北京航空航天大学 一种快速的车牌定位方法
CN101754151A (zh) * 2009-12-08 2010-06-23 武汉虹信通信技术有限责任公司 一种基于滑动窗口的双向循环查找、显示装置及方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIN QUAN ETC.: "A fast plate", 《PROCEEDINGS OF THE 2009 2ND INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING CISP’09》 *
张伟伟等: "基于DPM的自然场景下汉字识别方法", 《计算机应用研究》 *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103605953B (zh) * 2013-10-31 2018-06-19 电子科技大学 基于滑窗搜索的车辆兴趣目标检测方法
CN103714316A (zh) * 2013-12-10 2014-04-09 小米科技有限责任公司 图像识别方法、装置及电子设备
CN104200207A (zh) * 2014-09-16 2014-12-10 宁波熵联信息技术有限公司 一种基于隐马尔可夫模型的车牌识别方法
CN104298966B (zh) * 2014-09-17 2018-02-13 电子科技大学 一种车牌定位方法
CN104298966A (zh) * 2014-09-17 2015-01-21 电子科技大学 一种车牌定位方法
CN104715252B (zh) * 2015-03-12 2018-05-18 电子科技大学 一种动态模板结合像素点的车牌字符分割方法
CN104715252A (zh) * 2015-03-12 2015-06-17 电子科技大学 一种动态模板结合像素点的车牌字符分割方法
CN105260735A (zh) * 2015-10-10 2016-01-20 安徽清新互联信息科技有限公司 一种基于典型位置的车牌字符分割方法
CN105426890A (zh) * 2015-11-09 2016-03-23 成都数之联科技有限公司 一种字符扭曲粘连的图形验证码识别方法
CN105426890B (zh) * 2015-11-09 2018-12-18 成都数之联科技有限公司 一种字符扭曲粘连的图形验证码识别方法
CN106485246A (zh) * 2016-09-19 2017-03-08 北京小米移动软件有限公司 字符识别方法及装置
CN106485246B (zh) * 2016-09-19 2019-07-16 北京小米移动软件有限公司 字符识别方法及装置
CN107103320A (zh) * 2017-04-28 2017-08-29 常熟理工学院 嵌入式医疗数据图像识别及集成方法
CN107103320B (zh) * 2017-04-28 2020-05-15 常熟理工学院 嵌入式医疗数据图像识别及集成方法
CN110851640A (zh) * 2018-07-24 2020-02-28 杭州海康威视数字技术股份有限公司 一种图像搜索方法、装置及系统
CN110851640B (zh) * 2018-07-24 2023-08-04 杭州海康威视数字技术股份有限公司 一种图像搜索方法、装置及系统
CN109993171A (zh) * 2019-03-12 2019-07-09 电子科技大学 一种基于多模板和多比例的车牌字符分割方法
CN109993171B (zh) * 2019-03-12 2022-05-03 电子科技大学 一种基于多模板和多比例的车牌字符分割方法
CN111832337A (zh) * 2019-04-16 2020-10-27 高新兴科技集团股份有限公司 一种车牌识别方法及装置
CN110933318A (zh) * 2019-12-12 2020-03-27 天地伟业技术有限公司 一种运动目标的抓拍方法
CN113326836A (zh) * 2020-02-28 2021-08-31 深圳市丰驰顺行信息技术有限公司 车牌识别方法、装置、服务器及存储介质
CN111461111A (zh) * 2020-03-03 2020-07-28 华南理工大学 一种基于随机森林的多帧车牌识别优化方法
CN111461111B (zh) * 2020-03-03 2024-01-05 华南理工大学 一种基于随机森林的多帧车牌识别优化方法
CN111599208A (zh) * 2020-05-15 2020-08-28 深圳市捷顺科技实业股份有限公司 一种停车场出入管理方法、装置和设备及可读存储介质
CN112434700A (zh) * 2020-11-25 2021-03-02 创新奇智(上海)科技有限公司 车牌识别方法、装置、设备及存储介质
CN112907832A (zh) * 2021-01-19 2021-06-04 浙江大华技术股份有限公司 加油事件的处理方法、视频处理装置及存储介质

Also Published As

Publication number Publication date
CN103268489B (zh) 2016-12-28

Similar Documents

Publication Publication Date Title
CN103268489A (zh) 基于滑窗搜索的机动车号牌识别方法
CN103324930B (zh) 一种基于灰度直方图二值化的车牌字符分割方法
CN105373794B (zh) 一种车牌识别方法
WO2017156772A1 (zh) 一种乘客拥挤度的计算方法及其系统
CN103077407B (zh) 车标定位识别方法及系统
CN102289686B (zh) 一种基于迁移学习的运动目标分类识别方法
CN105335702B (zh) 一种基于统计学习的卡口车型识别方法
CN103136528B (zh) 一种基于双边缘检测的车牌识别方法
Li et al. Robust people counting in video surveillance: Dataset and system
CN105160691A (zh) 基于颜色直方图的车身颜色识别方法
CN102880863B (zh) 一种基于可变形部件模型的车牌及驾驶员人脸定位方法
CN103065138A (zh) 一种机动车牌号的识别方法
Zhang et al. A multi-feature fusion based traffic light recognition algorithm for intelligent vehicles
CN104978567A (zh) 基于场景分类的车辆检测方法
CN103310194A (zh) 视频中基于头顶像素点梯度方向的行人头肩部检测方法
CN105303153A (zh) 一种车辆车牌识别方法及装置
CN103871077A (zh) 一种道路车辆监控视频中的关键帧提取方法
CN104715252A (zh) 一种动态模板结合像素点的车牌字符分割方法
CN104657724A (zh) 一种交通视频行人检测方法
CN103927548A (zh) 一种新的避免车辆碰撞的刹车行为检测方法
Ingole et al. Characters feature based Indian vehicle license plate detection and recognition
CN104599291A (zh) 基于结构相似度和显著性分析的红外运动目标检测方法
CN108734170B (zh) 基于机器学习和模板的车牌字符分割方法
CN117523521B (zh) 一种基于Haar特征和改进HOG特征的车辆检测方法
CN104517127A (zh) 一种基于Bag-of-features模型的自学习行人计数方法及装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20210520

Address after: No.3, 11th floor, building 6, no.599, shijicheng South Road, Chengdu hi tech Zone, China (Sichuan) pilot Free Trade Zone, Chengdu, Sichuan 610041

Patentee after: Houpu clean energy Co.,Ltd.

Address before: 611731, No. 2006, West Avenue, Chengdu hi tech Zone (West District, Sichuan)

Patentee before: University of Electronic Science and Technology of China

TR01 Transfer of patent right
CP01 Change in the name or title of a patent holder

Address after: No.3, 11th floor, building 6, no.599, shijicheng South Road, Chengdu hi tech Zone, China (Sichuan) pilot Free Trade Zone, Chengdu, Sichuan 610041

Patentee after: Houpu clean energy (Group) Co.,Ltd.

Address before: No.3, 11th floor, building 6, no.599, shijicheng South Road, Chengdu hi tech Zone, China (Sichuan) pilot Free Trade Zone, Chengdu, Sichuan 610041

Patentee before: Houpu clean energy Co.,Ltd.

CP01 Change in the name or title of a patent holder