CN103268221A - Method and device for three-dimensional display of meteorological data volume based on WEB technology - Google Patents
Method and device for three-dimensional display of meteorological data volume based on WEB technology Download PDFInfo
- Publication number
- CN103268221A CN103268221A CN2012105257747A CN201210525774A CN103268221A CN 103268221 A CN103268221 A CN 103268221A CN 2012105257747 A CN2012105257747 A CN 2012105257747A CN 201210525774 A CN201210525774 A CN 201210525774A CN 103268221 A CN103268221 A CN 103268221A
- Authority
- CN
- China
- Prior art keywords
- data
- weather data
- scene
- web
- dimensional
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 122
- 238000005516 engineering process Methods 0.000 title claims description 47
- 238000012545 processing Methods 0.000 claims abstract description 34
- 230000005540 biological transmission Effects 0.000 claims abstract description 18
- 238000005457 optimization Methods 0.000 claims description 21
- 238000011068 loading method Methods 0.000 claims description 17
- 230000000750 progressive effect Effects 0.000 claims description 16
- 238000007726 management method Methods 0.000 claims description 12
- 241000027355 Ferocactus setispinus Species 0.000 claims description 11
- 238000007906 compression Methods 0.000 claims description 11
- 230000006835 compression Effects 0.000 claims description 11
- 230000008569 process Effects 0.000 claims description 10
- 238000012952 Resampling Methods 0.000 claims description 8
- 238000006243 chemical reaction Methods 0.000 claims description 6
- 230000009466 transformation Effects 0.000 claims description 6
- 238000004364 calculation method Methods 0.000 claims description 4
- 230000011218 segmentation Effects 0.000 claims description 4
- 238000005192 partition Methods 0.000 claims 3
- 230000003139 buffering effect Effects 0.000 claims 1
- 230000001747 exhibiting effect Effects 0.000 claims 1
- 238000007781 pre-processing Methods 0.000 abstract description 10
- 238000000638 solvent extraction Methods 0.000 abstract 1
- 238000009877 rendering Methods 0.000 description 20
- 230000008520 organization Effects 0.000 description 14
- 238000004422 calculation algorithm Methods 0.000 description 11
- 230000006870 function Effects 0.000 description 11
- 230000003044 adaptive effect Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000000007 visual effect Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 238000013144 data compression Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 238000007689 inspection Methods 0.000 description 3
- 238000012800 visualization Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000002354 daily effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000012732 spatial analysis Methods 0.000 description 1
- 238000013517 stratification Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Processing Or Creating Images (AREA)
- Information Transfer Between Computers (AREA)
Abstract
Description
技术领域technical field
本发明涉及气象数据处理领域,尤其涉及一种基于WEB技术的气象数据体三维显示方法及装置。The invention relates to the field of meteorological data processing, in particular to a method and device for three-dimensional display of meteorological data volume based on WEB technology.
背景技术Background technique
气象数据包括台站观测数据、卫星反演数据、数值预报数据等,其内容包括大气湿度、气压、气温、大气水温廓线、云量、降水、太阳辐射等多种气候要素。数据的表达方式、组织形式、时空分辨率各不相同,这就为气象数据的统一显示带来了困难。同时,随着对地观测技术的发展,通过卫星得到的气象观测数据越来越多,每天获取的数据达到TB级,人们迫切的需要通过日益发达的互联网技术来浏览和访问如此海量的气象数据,以期为自己的日常生活和出行服务。另外,在气象数据应用的各个方面,如科学研究、政府应急救灾决策、气象知识普及、公众用户体验等,过去那种色调单一、数据类型单一、平面展示的状况已经越来越难以满足需求,越来越需要高逼真、体剖分、现实性强的三维展示效果。Meteorological data includes station observation data, satellite retrieval data, numerical forecast data, etc., and its content includes atmospheric humidity, air pressure, air temperature, atmospheric water temperature profile, cloud cover, precipitation, solar radiation and other climatic elements. The expression methods, organization forms, and temporal and spatial resolutions of data are different, which brings difficulties to the unified display of meteorological data. At the same time, with the development of earth observation technology, more and more meteorological observation data are obtained through satellites, and the data obtained every day reaches TB level. People urgently need to browse and access such a large amount of meteorological data through increasingly developed Internet technology , in order to serve your daily life and travel. In addition, in all aspects of meteorological data application, such as scientific research, government emergency relief decision-making, meteorological knowledge popularization, public user experience, etc., the past situation of single color tone, single data type, and flat display has become increasingly difficult to meet the needs. There is an increasing need for high-fidelity, body subdivision, and realistic 3D display effects.
发明内容Contents of the invention
本发明提供了一种将海量气象数据通过互联网技术在WEB客户端上进行高逼真体剖分三维展示的方法和装置,改变了过去仅处理台站观测数据等少量数据、只在单一计算机上进行平面展示或假三维展示的状况。本专利对于气象部门行业应用、拓宽气象数据的服务领域具有重要意义。The present invention provides a method and a device for performing high-fidelity three-dimensional display of massive meteorological data on a WEB client through Internet technology, which changes the process of only processing a small amount of data such as station observation data in the past, and only performing on a single computer. The condition of flat presentation or false three-dimensional presentation. This patent is of great significance for the industry application of the meteorological department and the expansion of the service field of meteorological data.
为了实现上述目的,本发明采用的技术方案如下:In order to achieve the above object, the technical scheme adopted in the present invention is as follows:
一种基于WEB技术的气象数据体三维显示方法,包括以下步骤:A method for three-dimensional display of meteorological data volume based on WEB technology, comprising the following steps:
S1,将待展示气象数据进行预处理;S1, preprocessing the meteorological data to be displayed;
S2,将预处理后的气象数据进行优化,并将优化过的数据动态推送到WEB服务器端上;S2, optimizing the preprocessed meteorological data, and dynamically pushing the optimized data to the WEB server;
S3,将所述WEB服务器端上的三维气象数据输出到WEB客户端进行体三维展示。S3. Outputting the 3D meteorological data on the WEB server to the WEB client for volumetric 3D display.
优选的,S1中所述预处理包括:对原始气象数据进行格式转换处理、投影变换处理、数据一致性检验;S2中所述优化包括:对预处理过的气象数据进行重采样、分层、分块;S3中所述输出包括:运用渐进传输方法、数据组织与压缩方法、下载平衡方法、多级缓存方法、LOD多细节层次模型的渐进绘制方法和Hedgehog法的体三维表达方法,将优化后的气象数据展示于WEB客户端。Preferably, the preprocessing in S1 includes: performing format conversion processing, projection transformation processing, and data consistency check on the original meteorological data; the optimization in S2 includes: performing resampling, layering, Blocking; the output described in S3 includes: using progressive transmission method, data organization and compression method, download balance method, multi-level caching method, progressive rendering method of LOD multi-level of detail model and volume three-dimensional expression method of Hedgehog method, will optimize The final weather data is displayed on the WEB client.
优选的,S2具体为:Preferably, S2 is specifically:
S21,对所述结果数据进行多次重采样,形成针对于同一范围影像的多层不同分辨率的金字塔式结构;S21, resampling the result data multiple times to form a pyramid structure with multiple layers and different resolutions for images in the same range;
S22,采用动态自适应分块策略,对每一层所述影像进行分块处理;得到气候要素数据块;S22, adopting a dynamic self-adaptive block strategy, performing block processing on the image in each layer; obtaining climate element data blocks;
S23,将重采样、分层和分块处理过的数据推送并存储于WEB服务器上。S23, pushing and storing the resampled, stratified and block processed data on the WEB server.
优选的,所述动态自适应分块策略具体为:Preferably, the dynamic adaptive block strategy is specifically:
设V={v1,v2,...vn}为平面R2内某一平面区域D中的一组有限点集,按预设点数阈值对平面域D进行划分∑之后,得到一个平面子域的集合R={R1,R2,...,Rn},对每一平面子域Ri,记录该子域的离散点数据及点总数,同时记录每一子域的四个角点坐标,即得到每一子块的数据值。Let V={v 1 , v 2 ,...v n } be a group of finite point sets in a plane area D in the plane R 2 , and after dividing the plane domain D according to the preset point threshold, a The set R of plane sub-fields={R 1 , R 2 ,...,R n }, for each plane sub-field R i , record the discrete point data and the total number of points in this sub-field, and record the data of each sub-field at the same time The coordinates of the four corner points are to obtain the data value of each sub-block.
优选的,所述预设点数阈值为每一子块所允许的最小数据点数。Preferably, the preset point threshold is the minimum number of data points allowed for each sub-block.
优选的,所述四个角点坐标分别为:Preferably, the coordinates of the four corners are respectively:
LeftUpX,LeftUpY,RightBottomX,RightBottomY。LeftUpX, LeftUpY, RightBottomX, RightBottomY.
优选的,S3具体为:Preferably, S3 is specifically:
S31,运用渐进传输方法、数据组织与压缩方法、下载平衡方法、多级缓存方法把待显示气象数据缓存到WEB客户端并采用以下方法将其展示出来;S31, using progressive transmission method, data organization and compression method, download balance method, multi-level caching method to cache the meteorological data to be displayed to the WEB client and display it by the following method;
S32,采用基于节点和图层的场数据组织模型,简化场景管理;S32, using a field data organization model based on nodes and layers to simplify scene management;
S33,综合运用基于线性四叉树的金字塔数据压缩存储策略、多分辨率模型、基于LOD的场景简化方法和基于“骨架+皮肤”的匹配方法,简化、加快三维场景的绘制;S33, comprehensively use the pyramid data compression storage strategy based on linear quadtree, multi-resolution model, scene simplification method based on LOD and matching method based on "skeleton + skin" to simplify and speed up the rendering of 3D scenes;
S34,采用“基于可见性缓冲的场景加载管理”方法进行场景的绘制,同时应用动态载入方法优化载入速度,从而实现并行载入;S34, adopt the method of "scene loading management based on visibility buffer" to draw the scene, and apply the dynamic loading method to optimize the loading speed at the same time, so as to realize parallel loading;
S35,利用四叉树数据结构对场景中的气候要素进行表示,树中每一个节点都覆盖所述气候要素中相对应的区域,在满足预设误差阈值的基础上动态选择气候要素节点实现对气候要素模型的连续多分辨率表示;S35, using the quadtree data structure to represent the climatic elements in the scene, each node in the tree covers the corresponding area in the climatic elements, dynamically select the climatic element nodes on the basis of meeting the preset error threshold to realize the Continuous multiresolution representation of climate element models;
S36,运用Hedgehog法的体三维表达方法,将所述气象数据展示出来;S36, using a volumetric three-dimensional expression method of the Hedgehog method to display the meteorological data;
其中,S32-S36的执行顺序不分先后。Wherein, the execution order of S32-S36 is in no particular order.
优选的,S35具体为:Preferably, S35 is specifically:
对整个场景分块,根据场景中气候要素所处的位置计算气候要素所属位置并建立链表索引,形成位置查询表;Divide the entire scene into blocks, calculate the location of the climate elements according to the location of the climate elements in the scene, and establish a linked list index to form a location query table;
如果每块场景上气候要素数目超过预设阈值,则对气候要素细分,直到数目小于所述预设阈值或细分层次大于预设层次阈值为止;以使整个场景被组织成n叉树,整个场景为根节点,气候要素为中间节点;If the number of climate elements on each scene exceeds a preset threshold, the climate elements are subdivided until the number is less than the preset threshold or the subdivision level is greater than the preset level threshold; so that the entire scene is organized into an n-ary tree, The whole scene is the root node, and the climate element is the intermediate node;
当对场景动态漫游时,根据所述位置查询表直接定位到某个场景,然后根据目标点所属块的不同,链接到新的块节点中。When dynamically roaming the scene, directly locate a certain scene according to the location lookup table, and then link to a new block node according to the block to which the target point belongs.
优选的,S3中还包括以下步骤:Preferably, S3 also includes the following steps:
针对每一满足误差阈值的四叉树节点,以对角剖分方式作为从四角点指向父节点的中心;将四叉树的构网归结为直接进行对角剖分形式和保留中点形式;并且保留中点的方式分割为四种基本的表示方式。For each quadtree node that meets the error threshold, the diagonal division method is used as the center pointing from the four corner points to the parent node; the quadtree network construction is attributed to the direct diagonal division form and the midpoint form; And the way of retaining the midpoint is divided into four basic representations.
一种基于WEB技术的气象数据体三维显示装置,包括:A three-dimensional display device for meteorological data volume based on WEB technology, comprising:
气象数据预处理装置,用于将待展示气象数据进行预处理;所述预处理包括:对原始气象数据进行格式转换处理、投影变换处理、数据一致性检验;The meteorological data preprocessing device is used to preprocess the meteorological data to be displayed; the preprocessing includes: performing format conversion processing, projection transformation processing, and data consistency inspection on the original meteorological data;
气象数据优化装置,用于将预处理后的气象数据进行优化处理,并将优化过的数据动态推送到WEB服务器端上;所述优化包括:对预处理过的气象数据进行重采样、分层、分块;The meteorological data optimization device is used to optimize the preprocessed meteorological data and dynamically push the optimized data to the WEB server; the optimization includes: resampling and layering the preprocessed meteorological data ,Block;
气象数据输出展示装置,用于将所述WEB服务器端上的三维气象数据输出到WEB客户端展示,所述输出包括:运用渐进传输方法、数据组织与压缩方法、下载平衡方法、多级缓存方法、LOD多细节层次模型的渐进绘制方法和Hedgehog法的体三维表达方法将优化后的气象数据展示于WEB客户端。The meteorological data output display device is used to output the three-dimensional meteorological data on the WEB server to the WEB client for display, and the output includes: using progressive transmission methods, data organization and compression methods, download balance methods, and multi-level caching methods , LOD multi-level of detail model progressive rendering method and Hedgehog method of volumetric three-dimensional expression method to display the optimized meteorological data on the WEB client.
本发明的有益效果是:The beneficial effects of the present invention are:
通过本发明的技术方案,能够快速处理海量异源异构气象数据,其中包括台站观测数据、卫星反演数据、数值预报数据等,利用互联网传输等相关技术将优化后的气象数据在WEB客户端进行三维化处理并展示,可以使不同部门及公众非常方便地通过互联网访问和浏览气象数据,高逼真的体三维展示效果可以给用户良好的视觉体验,也大大拓展了气象数据的应用领域。同时,本发明的技术方案,在处理过程中大大缩短了处理时间,提高了处理效率。Through the technical solution of the present invention, it is possible to quickly process massive amounts of heterogeneous meteorological data, including station observation data, satellite inversion data, numerical forecast data, etc., and use Internet transmission and other related technologies to transfer the optimized meteorological data to the WEB client The three-dimensional processing and display on the terminal can make it very convenient for different departments and the public to access and browse meteorological data through the Internet. The high-fidelity three-dimensional display effect can give users a good visual experience and greatly expand the application field of meteorological data. At the same time, the technical solution of the present invention greatly shortens the processing time and improves the processing efficiency in the processing process.
附图说明Description of drawings
图1是分块后的影像金字塔模型示意图;Fig. 1 is a schematic diagram of the image pyramid model after segmentation;
图2是四叉树数据结构示意图;Fig. 2 is a schematic diagram of a quadtree data structure;
图3是“裂缝”现象示意图;Figure 3 is a schematic diagram of the "crack" phenomenon;
图4是对角剖分示意图;Fig. 4 is a schematic diagram of a diagonal section;
图5是对角剖分的一种形式:直接对角剖分;Figure 5 is a form of diagonal division: direct diagonal division;
图6是对角剖分的另一种形式:保留中点剖分;Figure 6 is another form of diagonal subdivision: keep the midpoint subdivision;
图7是本发明的基于WEB技术的气象数据体三维显示装置的结构示意图。Fig. 7 is a schematic structural diagram of a three-dimensional display device for meteorological data volume based on WEB technology of the present invention.
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施方式仅仅用以解释本发明,并不用于限定本发明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with the accompanying drawings. It should be understood that the specific embodiments described here are only used to explain the present invention, and are not intended to limit the present invention.
如图1-图6所示,本发明公开了一种基于WEB技术的气象数据体三维显示方法,其特征在于,包括以下步骤:As shown in Figures 1-6, the present invention discloses a method for three-dimensional display of meteorological data volume based on WEB technology, which is characterized in that it comprises the following steps:
S1,将待展示气象数据进行预处理;所述预处理包括:对原始气象数据进行格式转换处理、投影变换处理、数据一致性检验;S1, preprocessing the meteorological data to be displayed; the preprocessing includes: performing format conversion processing, projection transformation processing, and data consistency inspection on the original meteorological data;
S2,将预处理后的气象数据进行优化,并将优化过的数据动态推送到WEB服务器端上;所述优化包括:对预处理过的气象数据进行重采样、分层、分块;S2, optimizing the preprocessed meteorological data, and dynamically pushing the optimized data to the WEB server; the optimization includes: resampling, layering, and blocking the preprocessed meteorological data;
S2具体为:S2 is specifically:
S21,对所述结果数据进行多次重采样,形成针对于同一范围影像的多层不同分辨率的金字塔式结构;S21, resampling the result data multiple times to form a pyramid structure with multiple layers and different resolutions for images in the same range;
S22,采用动态自适应分块策略,对每一层所述影像进行分块处理;得到气候模式数据块;S22, adopting a dynamic self-adaptive block strategy, performing block processing on the image of each layer; obtaining climate model data blocks;
S23,将重采样、分层和分块处理过的数据推送并存储于WEB服务器上。S23, pushing and storing the resampled, stratified and block processed data on the WEB server.
所述动态自适应分块策略具体为:The dynamic adaptive block strategy is specifically:
设V={v1,v2,...vn}为平面R2内某一平面区域D中的一组有限点集,按预设点数阈值对平面域D进行划分∑之后,得到一个平面子域的集合R={R1,R2,...,Rn},对每一平面子域Ri,记录该子域的离散点数据及点总数,同时记录每一子域的四个角点坐标,即得到每一子块的数据值。Let V={v 1 , v 2 ,...v n } be a group of finite point sets in a plane area D in the plane R 2 , and after dividing the plane domain D according to the preset point threshold, a The set R of plane sub-fields={R 1 , R 2 ,...,R n }, for each plane sub-field R i , record the discrete point data and the total number of points in this sub-field, and record the data of each sub-field at the same time The coordinates of the four corner points are to obtain the data value of each sub-block.
所述预设点数阈值为每一子块所允许的最小数据点数。The preset point threshold is the minimum number of data points allowed for each sub-block.
所述四个角点坐标分别为:LeftUpX,LeftUpY,RightBottomX,RightBottomY。The coordinates of the four corner points are respectively: LeftUpX, LeftUpY, RightBottomX, RightBottomY.
S3,将所述WEB服务器端上的三维气象数据输出到WEB客户端进行体三维展示,所述输出包括:运用渐进传输方法、数据组织与压缩方法、下载平衡方法、多级缓存方法、LOD多细节层次模型的渐进绘制方法和Hedgehog法的体三维表达方法,将优化后的气象数据展示于WEB客户端。S3, output the three-dimensional meteorological data on the WEB server to the WEB client for three-dimensional display, the output includes: using progressive transmission method, data organization and compression method, download balance method, multi-level caching method, LOD multi-level The progressive rendering method of the level of detail model and the volumetric three-dimensional expression method of the Hedgehog method display the optimized meteorological data on the WEB client.
S3具体为:S3 is specifically:
S31,运用渐进传输方法、数据组织与压缩方法、下载平衡方法、多级缓存方法把待显示气象数据缓存到WEB客户端并采用以下方法将其展示出来;S31, using progressive transmission method, data organization and compression method, download balance method, multi-level caching method to cache the meteorological data to be displayed to the WEB client and display it by the following method;
S32,采用基于节点和图层的场数据组织模型,简化场景管理;S32, using a field data organization model based on nodes and layers to simplify scene management;
S33,综合运用基于线性四叉树的金字塔数据压缩存储策略、多分辨率模型、基于LOD的场景简化方法和基于“骨架+皮肤”的匹配方法,简化、加快三维场景的绘制;S33, comprehensively use the pyramid data compression storage strategy based on linear quadtree, multi-resolution model, scene simplification method based on LOD and matching method based on "skeleton + skin" to simplify and speed up the rendering of 3D scenes;
S34,采用“基于可见性缓冲的场景加载管理”方法进行场景的绘制,同时应用动态载入方法优化载入速度,从而实现并行载入;S34, adopt the method of "scene loading management based on visibility buffer" to draw the scene, and apply the dynamic loading method to optimize the loading speed at the same time, so as to realize parallel loading;
S35,利用四叉树数据结构对场景中的气候要素进行表示,树中每一个节点都覆盖所述气候要素中相对应的区域,在满足预设误差阈值的基础上动态选择气候要素节点实现对气候要素模型的连续多分辨率表示;S35, using the quadtree data structure to represent the climatic elements in the scene, each node in the tree covers the corresponding area in the climatic elements, dynamically select the climatic element nodes on the basis of meeting the preset error threshold to realize the Continuous multiresolution representation of climate element models;
S35具体为:S35 is specifically:
对整个场景分块,根据场景中气候要素所处的位置计算气候要素所属位置并建立链表索引,形成位置查询表;Divide the entire scene into blocks, calculate the location of the climate elements according to the location of the climate elements in the scene, and establish a linked list index to form a location query table;
如果每块场景上气候要素数目超过预设阈值,则对气候要素细分,直到数目小于所述预设阈值或细分层次大于预设层次阈值为止;以使整个场景被组织成n叉树,整个场景为根节点,气候要素为中间节点;If the number of climate elements on each scene exceeds a preset threshold, the climate elements are subdivided until the number is less than the preset threshold or the subdivision level is greater than the preset level threshold; so that the entire scene is organized into an n-ary tree, The whole scene is the root node, and the climate element is the intermediate node;
当对场景动态漫游时,根据所述位置查询表直接定位到某个场景,然后根据目标点所属块的不同,链接到新的块节点中。When dynamically roaming the scene, directly locate a certain scene according to the location lookup table, and then link to a new block node according to the block to which the target point belongs.
S36,运用Hedgehog法的体三维表达方法,将所述气象数据展示出来;S36, using a volumetric three-dimensional expression method of the Hedgehog method to display the meteorological data;
其中,S32-S36的执行顺序不分先后。Wherein, the execution order of S32-S36 is in no particular order.
S3中还包括以下步骤:The following steps are also included in S3:
针对每一满足误差阈值的四叉树节点,以对角剖分方式作为从四角点指向父节点的中心;将四叉树的构网归结为直接进行对角剖分形式和保留中点形式;并且保留中点的方式分割为四种基本的表示方式。For each quadtree node that meets the error threshold, the diagonal division method is used as the center pointing from the four corner points to the parent node; the quadtree network construction is attributed to the direct diagonal division form and the midpoint form; And the way of retaining the midpoint is divided into four basic representations.
本发明还公开了一种基于WEB技术的气象数据体三维显示装置,包括:The invention also discloses a three-dimensional display device for meteorological data volume based on WEB technology, including:
气象数据预处理装置,用于将待展示气象数据进行预处理;所述预处理包括:对原始气象数据进行格式转换处理、投影变换处理、数据一致性检验;The meteorological data preprocessing device is used to preprocess the meteorological data to be displayed; the preprocessing includes: performing format conversion processing, projection transformation processing, and data consistency inspection on the original meteorological data;
气象数据优化装置,用于将预处理后的气象数据进行优化处理,并将优化过的数据动态推送到WEB服务器端上;所述优化包括:对预处理过的气象数据进行重采样、分层、分块;The meteorological data optimization device is used to optimize the preprocessed meteorological data and dynamically push the optimized data to the WEB server; the optimization includes: resampling and layering the preprocessed meteorological data ,Block;
气象数据输出展示装置,用于将所述WEB服务器端上的三维气象数据输出到WEB客户端展示,所述输出包括:运用渐进传输方法、数据组织与压缩方法、下载平衡方法、多级缓存方法、LOD多细节层次模型的渐进绘制方法和Hedgehog法的体三维表达方法将优化后的气象数据展示于WEB客户端。The meteorological data output display device is used to output the three-dimensional meteorological data on the WEB server to the WEB client for display, and the output includes: using progressive transmission methods, data organization and compression methods, download balance methods, and multi-level caching methods , LOD multi-level of detail model progressive rendering method and Hedgehog method of volumetric three-dimensional expression method to display the optimized meteorological data on the WEB client.
为了实现针对海量气象数据(包括地基观测资料、卫星反演数据、模式模拟数据等),进行三维化显示,从而为气象有关科研部门和公众应用部门服务的目的。具体通过以下方式对气象数据进行处理:In order to realize the three-dimensional display of massive meteorological data (including ground-based observation data, satellite retrieval data, model simulation data, etc.), so as to serve the purpose of meteorological scientific research departments and public application departments. Specifically, the meteorological data are processed in the following ways:
1)气候要素的数据组织方式:1) Data organization of climate elements:
在数据处理时,通常是将所有数据一次性读入内存进行处理。当数据量比较小的情况下,这种处理方法简单有效,处理速度比较快。但是,当数据量很大,例如分辨率1KM的全球遥感数据,若一次性读入内存,往往会出现内存空间不够,计算机资源耗尽,甚至死机等现象。为了解决这一矛盾,对大数据量数据进行了一定的处理。在纵向上,采用金字塔的分层结构。在横向上,采用自动分块和快速查找技术。During data processing, all data is usually read into memory at one time for processing. When the amount of data is relatively small, this processing method is simple and effective, and the processing speed is relatively fast. However, when the amount of data is large, such as global remote sensing data with a resolution of 1KM, if it is read into the memory at one time, there will often be insufficient memory space, exhausted computer resources, or even crashes. In order to solve this contradiction, a certain amount of data processing has been carried out. Vertically, a hierarchical structure of pyramids is adopted. In the horizontal direction, automatic block and fast search technology are adopted.
(1)气候要素的数据分层方法(1) Data stratification method of climate elements
在纵向上,需要对气候要素结果数据生成图像金字塔,根据不同的显示要求调用不同分辨率的图像。金字塔的构成方法是把气候要素数据作为金字塔的最底层,通过对气候要素数据采用某种重采样方法,建立起一系列不同详尽程度的影像,其中原始影像分辨率最高,经重采样得到的影像分辨率随着金字塔层数的增加分辨率逐渐降低,但表示的范围不变。分块后的影像金字塔模型如图1所示。Vertically, it is necessary to generate an image pyramid for the result data of climate elements, and use images with different resolutions according to different display requirements. The method of constructing the pyramid is to take the climate element data as the bottom of the pyramid, and use a certain resampling method on the climate element data to create a series of images with different levels of detail, among which the original image has the highest resolution, and the resampled image The resolution gradually decreases with the increase of the number of pyramid layers, but the range of representation remains the same. The block image pyramid model is shown in Figure 1.
(2)气候要素结果数据的自适应分块策略(2) Adaptive block strategy for climate element result data
当数据量过大时,应该考虑自适应分块技术。将数据分成不同的数据块(DataBlock),其数据块的大小可以相同,也可以不同。根据块与块之间的邻接关系,可以分为结构化块、非结构化块和杂交块三大类。结构化块可以用计算机语言中多维数组存储,块与块之间的邻接关系可以通过相应的数组下标确定,在计算机上数据组织方便[11];非结构化块需要额外指定邻接关系,用于块与块之间的拼接。杂交块是结构化块与非结构化块的组合。When the amount of data is too large, adaptive block technology should be considered. The data is divided into different data blocks (DataBlock), and the size of the data blocks can be the same or different. According to the adjacency relationship between blocks, they can be divided into three categories: structured blocks, unstructured blocks and hybrid blocks. Structured blocks can be stored in multi-dimensional arrays in computer languages, and the adjacency between blocks can be determined by corresponding array subscripts, which is convenient for data organization on the computer [11] ; unstructured blocks need to specify additional adjacency, use Splicing between blocks. Hybrid blocks are a combination of structured and unstructured blocks.
当运用分块技术时,可能会遇到两个问题。即按照什么原则来对数据进行分块,每块的大小应为多少?第二,在显示或漫游时,应该采取什么策略将不同的块自动拼接起来,使用户看不到分块的痕迹?为了解决上述问题并且兼顾到速度,本专题从分块的原理出发,摒弃传统意义的静态分块方法,采取一种动态的自适应分块策略,即可扩展的动态窗口方法。在数据点较稀疏区域,适当扩大检索窗口,反之缩小检索窗口。数据检索窗口的大小用一规定的阈值(每块的最小数据点数)来确定的。When using chunking techniques, you may encounter two problems. That is, according to what principle should the data be divided into blocks, and what should be the size of each block? Second, when displaying or roaming, what strategy should be adopted to automatically splice different blocks so that the user cannot see the traces of the block? In order to solve the above problems and take into account the speed, this topic starts from the principle of block, abandons the traditional static block method, and adopts a dynamic adaptive block strategy, that is, the scalable dynamic window method. In the area where the data points are sparse, the retrieval window is appropriately enlarged, otherwise the retrieval window is reduced. The size of the data retrieval window is determined by a specified threshold (minimum number of data points per block).
拟采用的自适应分块策略表述如下:The adaptive block strategy to be adopted is expressed as follows:
设V={v1,v2,...vn}为平面R2内某一平面区域D中的一组有限点集,按规定的阈值(每块的最小数据点数)对平面域D进行划分∑之后,得到一个平面子域的集合R={R1,R2,...,Rn},对每一平面子域Ri,记录该子域的离散点数据及点总数,同时记录每一子域的四个角点坐标(LeftUpX,LeftUpY,RightBottomX,RightBottomY),即得到每一子块的数据值.Let V={v 1 , v 2 ,...v n } be a group of finite point sets in a certain plane area D in the plane R 2 , according to the specified threshold (minimum data points per block) for the plane domain D After dividing ∑, a set R={R 1 , R 2 ,...,R n } of a planar subfield is obtained. For each planar subfield R i , record the discrete point data and the total number of points in this subfield, At the same time, record the four corner coordinates (LeftUpX, LeftUpY, RightBottomX, RightBottomY) of each subfield, that is, get the data value of each subblock.
2)气候要素的动态显示及快速可视化:2) Dynamic display and quick visualization of climate elements:
根据上述自适应分块策略,利用Visual C++所提供的强大功能,其解决方案如下:编写GetBlock()函数来实现动态分块技术。此函数的功能是根据传入参数的不同,获取用户感兴趣的数据,调用该函数能够分别实现金字塔结构和自动获取技术。Get Block()函数设计有七个参数。其中dwX0、dwY0指明了获取数据的起始位置,dwWidth、dwHeight指定了数据块的大小。在调用时这四个参数由OnDraw()函数中ClipRect传入,这样就保证了获取数据的灵活性,数据的大小不是固定不变的,而是由重画的区域自动给出。而步长nStep实现了金字塔结构,它规定了层与层之间数据量的递减级别,nStep值越大,数据量递减的速率就越快。参数*pnBands代表将要获取数据的数据源。如果要实现金字塔结构,则*pnBands代表上一层金字塔结构的数据;如果要实现自动获取技术,则*pnBand s代表本层金字塔结构的数据。这样,在垂直层面上,每调用一次GetBlock()函数就形成一层金字塔数据,然后将其存放到某一个数组中(如自定义数组TowerArray);在水平层面上,每调用一次GetBlock()函数就表示将此层的金字塔数据根据需要进行了一次自动获取。nNumberOfBands代表一幅影像中波段的数目。According to the above adaptive block strategy, using the powerful functions provided by Visual C++, the solution is as follows: Write the GetBlock() function to realize the dynamic block technology. The function of this function is to obtain the data that the user is interested in according to the different parameters passed in. Calling this function can realize the pyramid structure and automatic acquisition technology respectively. The Get Block() function is designed with seven parameters. Among them, dwX0 and dwY0 indicate the starting position of the acquired data, and dwWidth and dwHeight specify the size of the data block. These four parameters are passed in by ClipRect in the OnDraw() function when calling, which ensures the flexibility of data acquisition. The size of the data is not fixed, but is automatically given by the redrawing area. The step size nStep implements the pyramid structure, which specifies the decreasing level of data volume between layers. The larger the value of nStep, the faster the rate of data volume decreasing. The parameter *pnBands represents the data source to get the data. If the pyramid structure is to be realized, *pnBands represents the data of the pyramid structure of the upper layer; if the automatic acquisition technology is to be realized, *pnBand s represents the data of the pyramid structure of the current layer. In this way, on the vertical level, every time the GetBlock() function is called, a layer of pyramid data is formed, and then stored in an array (such as a custom array TowerArray); on the horizontal level, every time the GetBlock() function is called It means that the pyramid data of this layer has been automatically acquired once as needed. nNumberOfBands represents the number of bands in an image.
部分代码说明如下:Part of the code is explained as follows:
3)网络快速传输技术3) Fast network transmission technology
对于基于网络的三维场影模型绘制系统而言,由于大量的几何数据需要经由网络传输到客户端,网络带宽常常成为此类系统的瓶颈,因此如何采用紧凑灵活的数据表示方式及高效的网络传输策略一直是三维快速显示的难点。For network-based 3D scene model rendering systems, since a large amount of geometric data needs to be transmitted to the client via the network, network bandwidth often becomes the bottleneck of such systems, so how to adopt compact and flexible data representation and efficient network transmission Strategies have always been a difficult point in 3D rapid display.
(1)Com组件技术:采用与Com组件技术有机结合的三层浏览器/服务器体系结构,即将系统数据集中存放在数据服务器端中,系统的应用服务器则主要负责实现相关GIS空间分析以及网络服务的功能,再通过Internet将分析处理后的结果传送给客户端的用户。(1) Com component technology: a three-tier browser/server architecture organically combined with Com component technology is adopted, that is, the system data is centrally stored in the data server, and the system application server is mainly responsible for realizing related GIS spatial analysis and network services function, and then transmit the analysis and processing results to the client users through the Internet.
(2)渐进传输:采用边下载,边显示模式,服务器持续发送对数据的优化信息,客户端的显示效果也逐渐精细,直到传输完毕或用户对模型精细度感到满意为止。(2) Progressive transmission: With the mode of downloading and displaying at the same time, the server continues to send optimization information for the data, and the display effect of the client is gradually refined until the transmission is completed or the user is satisfied with the fineness of the model.
(3)数据组织与压缩技术:对影像和纹理数据进行有效组织和高效压缩,使系统的数据量得到最大限度的减少。(3) Data organization and compression technology: effectively organize and efficiently compress image and texture data to minimize the amount of data in the system.
(4)下载平衡技术:在下载过程中,系统会维护多个下载队列,各个队列自动进行网络带宽平衡,保障下载效率最优化。(4) Download balance technology: During the download process, the system will maintain multiple download queues, and each queue will automatically balance the network bandwidth to ensure the optimization of download efficiency.
(5)多级缓存技术:建立了硬盘缓存、内存缓存和显存缓存三级优化,有效地提高客户端对数据的处理能力。(5) Multi-level cache technology: Three-level optimization of hard disk cache, memory cache and video memory cache has been established to effectively improve the client's ability to process data.
通过以上网络传输方式可以大大缩短气象数据在网络上的传输延迟,从而更快速的把气象数据输出到WEB客户端缓存。在缓存的同时进行展示从而提高整体效率。Through the above network transmission methods, the transmission delay of meteorological data on the network can be greatly shortened, so that the meteorological data can be output to the WEB client cache more quickly. Display while caching to improve overall efficiency.
4)三维数据优化4) 3D data optimization
对于气候模式,其场景主要包括高低起伏的地形以及不同地形所对应的气候要素,对它们的优化是场景优化中最重主要的内容。For the climate model, the scene mainly includes the undulating terrain and the climate elements corresponding to different terrains, and their optimization is the most important content in the scene optimization.
(1)“批”的优化(1) Optimization of "batch"
批是场景优化中的最重要的概念之一,它指的是一次渲染调用(DP),批的尺寸是这次渲染调用所能渲染的多边形(气候要素)数量。每个批的调用都会消耗一定的CPU时间,对于显卡来说,一个批里的多边形数量远达不到最大绘制数量。因此尽可能将更多的多边形放在一个批里渲染,以此来减少批的数目,最终降低CPU时间,是批的优化基本原则。然而事情往往不尽如人意,有些情况下原有的批会被打破,造成额外的开销,如纹理的改变或不同的矩阵状态。针对这些问题,我们可以采用一些方法来尽量避免它,已达到批尺寸的最大化。Batch is one of the most important concepts in scene optimization. It refers to a rendering call (DP), and the batch size is the number of polygons (climate elements) that can be rendered in this rendering call. Each batch call will consume a certain amount of CPU time. For graphics cards, the number of polygons in a batch is far from the maximum number of draws. Therefore, it is the basic principle of batch optimization to render as many polygons as possible in one batch to reduce the number of batches and ultimately reduce CPU time. However, things are often not as expected, and in some cases the original batch will be broken, causing additional overhead, such as texture changes or different matrix states. In response to these problems, we can use some methods to avoid it as much as possible, and to maximize the batch size.
合并多个小纹理为一张大纹理:在某个场景中,地面上有十多种不同的气候要素,它们除了纹理不同外,渲染状态都是一样。我们就可以把它们的纹理打包成一个大纹理,再为每个气候要素指定“批”,这样我们就可以用一个渲染调用来渲染所有的物体,批的数量就从十多个降为一个。这种方法比较适合对纹理精度要求不高,面数不会太多的物体。Merge multiple small textures into one large texture: In a certain scene, there are more than ten different climate elements on the ground, and their rendering states are the same except for their different textures. We can then pack their textures into one big texture, and then specify a "batch" for each weather element, so that we can render all objects with a single render call, reducing the number of batches from more than ten to one. This method is more suitable for objects that do not require high texture accuracy and do not have too many faces.
(2)渲染状态管理(2) Rendering state management
渲染状态是用来控制渲染器的渲染行为,我们可以设置纹理状态、深度写入等等。改变渲染状态对显卡来说,是个比较耗时的工作,因为显卡执行API必须严格按照渲染路径,当渲染状态变化时,显卡就必须执行浮点运算来改变渲染路径,因此给CPU和GPU带来时间消耗(CPU必须等待),渲染状态变化越大,所要进行的浮点运算越多。因此将渲染状态进行有效的管理,尽可能减少其变化,对渲染性能影响巨大。The rendering state is used to control the rendering behavior of the renderer, we can set the texture state, depth writing and so on. Changing the rendering state is a time-consuming task for the graphics card, because the graphics card must execute the API strictly according to the rendering path. Time consumption (CPU has to wait), the greater the rendering state changes, the more floating point operations are required. Therefore, effectively managing the rendering state and reducing its changes as much as possible has a huge impact on rendering performance.
(3)场景管理优化(3) Scene management optimization
场景管理的优化包括场景分割,可见性剔除等,当我们在性能评测时发现遍历树的过程比较慢时,可能有两个原因。一是树的深度设置的不合理,另一个原因是为数众多,体积很小的物体分配了结点,造成结点数量的冗余。解决方法是把这些小物体划分到他们所在的大的结点中。The optimization of scene management includes scene segmentation, visibility elimination, etc. When we find that the process of traversing the tree is slow during performance evaluation, there may be two reasons. One is that the depth setting of the tree is unreasonable, and the other reason is that a large number of small objects are allocated nodes, resulting in redundancy in the number of nodes. The solution is to divide these small objects into the larger nodes where they are located.
可见性剔除是最常见优化方法,遮挡裁减也是经常被用到的方法,常见的有地平线裁减。但是在有些情况下,遮挡裁减的效果并不明显,如当CPU使用率已经是100%时,CPU端是瓶颈,这时进行遮挡裁减计算消耗CPU时间,效果就不明显。但是有些情况下利用一些预生成信息的方法,降低遮挡裁减计算的复杂度,提高遮挡裁减计算的效率,对场景性能会有一定的改善。Visibility culling is the most common optimization method, and occlusion clipping is also a frequently used method. The common one is horizon clipping. But in some cases, the effect of occlusion and clipping is not obvious. For example, when the CPU usage is already 100%, the CPU side is the bottleneck. At this time, occlusion and clipping calculation consumes CPU time, and the effect is not obvious. However, in some cases, some pre-generated information methods are used to reduce the complexity of occlusion and clipping calculations, improve the efficiency of occlusion and clipping calculations, and improve scene performance to a certain extent.
5)基于“重要度”驱动的视相关快速显示技术及高分率的多层次表达方法5) Based on "importance"-driven visual correlation fast display technology and high-resolution multi-level expression method
在目前的硬件条件下,按照常规的可视化技术实现海量数据的实时可视化几乎是不可能的。因此必须采取一些针对场景数据本身的特殊处理策略。具体包括:Under the current hardware conditions, it is almost impossible to realize the real-time visualization of massive data according to the conventional visualization technology. Therefore, some special processing strategies must be adopted for the scene data itself. Specifically include:
(1)有效的场景管理:系统采用基于节点和图层的场景数据组织模型,大大简化了场景的管理。(1) Effective scene management: The system adopts a scene data organization model based on nodes and layers, which greatly simplifies scene management.
(2)高效的场景简化技术:系统综合运用基于线性四叉树的金字塔数据压缩存储策略、多分辨率模型技术、基于LOD的场景简化技术、基于“骨架+皮肤”的匹配技术,大大简化、加快了三维场景的绘制。(2) Efficient scene simplification technology: the system comprehensively uses the pyramid data compression storage strategy based on linear quadtree, multi-resolution model technology, scene simplification technology based on LOD, and matching technology based on "skeleton + skin", which greatly simplifies, Speeds up the drawing of 3D scenes.
(3)高效的可见性技术:系统采用“基于可见性缓冲的场景加载管理”技术加快场景的绘制,而高效的动态载入技术则在大幅提高了浏览速度的同时也提高了载入速度,实现了并行载入,即浏览和载入同时进行。并行载入使用户察觉不到载入所导致的任何停顿,因此也可称为“零时间载入”。(3) Efficient visibility technology: the system adopts the "visibility buffer-based scene loading management" technology to speed up the drawing of scenes, and the efficient dynamic loading technology not only greatly improves the browsing speed but also improves the loading speed, Parallel loading is realized, that is, browsing and loading are performed at the same time. Parallel loading makes the user not aware of any pauses caused by loading, so it can also be called "zero time loading".
(4)并行图形优化技术:三维图形技术发展的一个重要分支就是图形硬件技术的发展。为了支持和充分发挥图形硬件技术的优势,系统将对硬件提供的并行处理功能提供了最优化的支持。如下图,在普通PC机器上流畅显示的三维场景范围及精度。(4) Parallel graphics optimization technology: An important branch of the development of 3D graphics technology is the development of graphics hardware technology. In order to support and give full play to the advantages of graphics hardware technology, the system will provide optimized support for the parallel processing functions provided by the hardware. As shown in the figure below, the range and accuracy of the 3D scene displayed smoothly on an ordinary PC machine.
对真实感图形的实时绘制有很多种算法,这些算法各有其适用范围。如快速消隐类算法中,层次Z-buffer算法和层次遮挡图算法对高遮挡率场景非常有效,但对遮挡复杂性要求不高的场景却毫无优势;场景模型简化类算法能够达到降低场景复杂性的目的,但对高度复杂的场景虽经简化但仍无法达到实时;另外很多算法在静态场景下效率较高,它们一般在预处理阶段生成场景遮挡树,如BSP树、八叉树、K-D树等,但在动态场景较慢,实时性不高。There are many kinds of algorithms for real-time rendering of realistic graphics, and each of these algorithms has its scope of application. For example, in the fast blanking algorithm, the hierarchical Z-buffer algorithm and the hierarchical occlusion map algorithm are very effective for scenes with high occlusion rate, but they have no advantage for scenes with low occlusion complexity requirements; the scene model simplification algorithm can reduce the scene The purpose of complexity, but the highly complex scene is simplified but still can not achieve real-time; In addition, many algorithms are more efficient in static scenes, they generally generate scene occlusion trees in the preprocessing stage, such as BSP tree, octree, K-D tree, etc., but it is slow in dynamic scenes and the real-time performance is not high.
根据上述算法的局限性,引入“重要度”概念。“重要度”是根据地形上包含气候要素的种类以及分布疏密情况和三维的精度要求来确定的。它描述了空间地形数据快速绘制过程中,几何误差可以被忽略的视点与物点之间的最近距离。According to the limitations of the above algorithms, the concept of "importance" is introduced. "Importance" is determined according to the types of climate elements included in the terrain, their distribution density and the three-dimensional accuracy requirements. It describes the shortest distance between the viewpoint and the object point where the geometric error can be ignored during the rapid rendering of spatial terrain data.
具体做法是:应用合成算法,其具体数据组织是:首先对整个场景分块,根据气候要素所处的位置计算气候要素所属经纬度建立链表索引。然后根据“重要度”决定是否对下一步细分。如果每块场景上数据数目超过预先设定的阈值,则对数据细分,直到数目小于规定值或细分层次大于规定值为止。如果三维模型复杂,可以进一步细分,并保存细分后气候要素的包围盒数据。这样整个场景被组织成n叉树,形成树。整个场景是根节点,数据块为中间节点。这样对场景动态漫游时,可以根据查询表直接定位到某个场景,然后根据目标点所属数据块的不同,链接到新的数据块节点中。The specific method is: apply the synthesis algorithm, and the specific data organization is: first divide the whole scene into blocks, calculate the longitude and latitude of the climate elements according to the location of the climate elements, and establish a linked list index. Then decide whether to subdivide for the next step according to the "importance". If the number of data on each scene exceeds the preset threshold, the data is subdivided until the number is smaller than the specified value or the subdivision level is larger than the specified value. If the 3D model is complex, it can be further subdivided and the bounding box data of the subdivided climate elements can be saved. This way the entire scene is organized into an n-ary tree, forming a tree. The whole scene is the root node, and the data block is the intermediate node. In this way, when dynamically roaming the scene, you can directly locate a certain scene according to the lookup table, and then link to the new data block node according to the data block to which the target point belongs.
采用算法的基本方式:利用四叉树数据结构对气候要素进行表示,树中每一个节点都覆盖气候要素中的某块相应的区域。由于上层节点采样点较少,因而具有更高的绘制效率;但是,采样点越少,气候要素表示的误差就越大。在满足给定误差阈值的基础上动态地选择要素节点来实现对气候要素模型的连续多分辨率表示。为了提高简化的效率,要先对数据节点进行预处理,从而确定节点操作的执行顺序。其实现过程可由下图表示。其中,根节点C0覆盖了整个区域,下面依次是二级节点、三级节点...。(如图2所示)The basic way of using the algorithm: use the quadtree data structure to represent the climatic elements, and each node in the tree covers a corresponding area in the climatic elements. Because the upper node has fewer sampling points, it has higher drawing efficiency; however, the fewer sampling points, the greater the error of climate element representation. On the basis of satisfying a given error threshold, feature nodes are dynamically selected to achieve continuous multi-resolution representation of climate element models. In order to improve the efficiency of simplification, the data nodes should be preprocessed first, so as to determine the execution sequence of node operations. Its implementation process can be represented by the figure below. Among them, the root node C0 covers the entire area, followed by secondary nodes, tertiary nodes... . (as shown in picture 2)
对气候要素多分辨率表示时,通常会出现“裂缝”现象(如图3所示)。节点C1具有较低的分辨率,而与之相邻的节点C2、C3具有较高的分辨率。这使得对角化时出现了没被覆盖的区域,从而在绘制时就产生了裂缝。如图3所示(产生裂缝的边用加粗线表示)。When multi-resolution representation of climate elements, the phenomenon of "cracks" usually appears (as shown in Figure 3). Node C 1 has a lower resolution, while its adjacent nodes C 2 and C 3 have higher resolution. This leaves uncovered areas when diagonalizing, creating cracks when drawing. As shown in Figure 3 (the side where the crack is generated is indicated by a bold line).
拼接缝的消除方法:解决“裂缝”现象最常用的方法是构建限制四叉树,以往构建限制四叉树的算法,要么不能保持原始模型的拓扑结构,要么导致模型表面的不连续。Elimination of stitching seams: The most common method to solve the "crack" phenomenon is to construct a restricted quadtree. In the past, the algorithm for constructing a restricted quadtree either failed to maintain the topology of the original model, or caused discontinuity on the model surface.
本发明在以往构建限制四叉树的基础上,对四叉树的剖分作如下处理:The present invention, on the basis of constructing the restricted quadtree in the past, handles the subdivision of the quadtree as follows:
(1)对每一满足误差阈值的四叉树节点来说,其对角剖分方式为从四角点指向父节点的中心。(如图4所示)(1) For each quadtree node that satisfies the error threshold, its diagonal division method is from the four corner points to the center of the parent node. (As shown in Figure 4)
(2)将四叉树的构网主要归结为直接进行对角剖分(如图5所示)和保留中点(如图6所示)这两种形式。并且保留中点的方式可以分割为四种基本的表示方式(如图6所示)。(2) The network construction of the quadtree is mainly attributed to two forms of directly performing diagonal division (as shown in Figure 5) and retaining the midpoint (as shown in Figure 6). And the way of retaining the midpoint can be divided into four basic representation ways (as shown in FIG. 6 ).
6)基于Hedgehog法的体三维表达技术6) Volume 3D expression technology based on Hedgehog method
向量显示为一条三维的有向线段,线段的方向和大小由数据决定。Hedgehog投影到二维视平面上时,在观察者看来,线段长度缩短了,因此线段的长度不仅与数据有关,还与观察者的位置有关。A vector is displayed as a three-dimensional directed line whose direction and magnitude are determined by the data. When Hedgehog is projected onto the two-dimensional viewing plane, the length of the line segment is shortened in the view of the observer, so the length of the line segment is not only related to the data, but also related to the position of the observer.
通过采用本发明公开的上述技术方案,得到了如下有益的效果:By adopting the above-mentioned technical scheme disclosed by the present invention, the following beneficial effects are obtained:
通过本发明的技术方案,能够快速处理海量异源异构气象数据,其中包括台站观测数据、卫星反演数据、数值预报数据等,利用互联网传输等相关技术将优化后的气象数据在WEB客户端进行三维化处理并展示,可以使不同部门及公众非常方便地通过互联网访问和浏览气象数据,高逼真的体三维展示效果可以给用户良好的视觉体验,也大大拓展了气象数据的应用领域。同时,本发明的技术方案,在处理过程中大大缩短了处理时间,提高了处理效率。Through the technical solution of the present invention, it is possible to quickly process massive amounts of heterogeneous meteorological data, including station observation data, satellite inversion data, numerical forecast data, etc., and use Internet transmission and other related technologies to transfer the optimized meteorological data to the WEB client The three-dimensional processing and display on the terminal can make it very convenient for different departments and the public to access and browse meteorological data through the Internet. The high-fidelity three-dimensional display effect can give users a good visual experience and greatly expand the application field of meteorological data. At the same time, the technical solution of the present invention greatly shortens the processing time and improves the processing efficiency in the processing process.
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视本发明的保护范围。The above is only a preferred embodiment of the present invention, it should be pointed out that, for those of ordinary skill in the art, without departing from the principle of the present invention, some improvements and modifications can also be made, and these improvements and modifications can also be made. It should be regarded as the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210525774.7A CN103268221B (en) | 2012-12-07 | 2012-12-07 | A kind of meteorological data body 3 D displaying method based on WEB technology and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210525774.7A CN103268221B (en) | 2012-12-07 | 2012-12-07 | A kind of meteorological data body 3 D displaying method based on WEB technology and device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103268221A true CN103268221A (en) | 2013-08-28 |
CN103268221B CN103268221B (en) | 2016-12-21 |
Family
ID=49011854
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210525774.7A Expired - Fee Related CN103268221B (en) | 2012-12-07 | 2012-12-07 | A kind of meteorological data body 3 D displaying method based on WEB technology and device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103268221B (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105893972A (en) * | 2016-04-08 | 2016-08-24 | 深圳市智绘科技有限公司 | Automatic illegal building monitoring method based on image and realization system thereof |
CN106886523A (en) * | 2015-12-15 | 2017-06-23 | 北京京航计算通讯研究所 | Towards the optimization method of the spatial-temporal GIS model of underground utilities |
CN107655578A (en) * | 2017-09-01 | 2018-02-02 | 郑州云海信息技术有限公司 | A kind of temperature record methods of exhibiting, device and terminal |
CN108074279A (en) * | 2017-12-07 | 2018-05-25 | 零空间(北京)科技有限公司 | Meteorological data three-dimensional display method, apparatus and equipment |
CN108768503A (en) * | 2018-06-04 | 2018-11-06 | 中国气象局公共气象服务中心 | Information issuing system based on big-dipper satellite and dissemination method |
CN110287388A (en) * | 2019-06-05 | 2019-09-27 | 中国科学院计算机网络信息中心 | Data visualization method and device |
CN111652961A (en) * | 2020-07-10 | 2020-09-11 | 中国水利水电科学研究院 | A GPU-based method for volume rendering of meteorological data |
CN112667346A (en) * | 2021-03-16 | 2021-04-16 | 深圳市火乐科技发展有限公司 | Weather data display method and device, electronic equipment and storage medium |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6377993B1 (en) * | 1997-09-26 | 2002-04-23 | Mci Worldcom, Inc. | Integrated proxy interface for web based data management reports |
CN102043841A (en) * | 2010-12-10 | 2011-05-04 | 上海市城市建设设计研究院 | Multi-source information supplying method based on Web technology and integrated service system thereof |
-
2012
- 2012-12-07 CN CN201210525774.7A patent/CN103268221B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6377993B1 (en) * | 1997-09-26 | 2002-04-23 | Mci Worldcom, Inc. | Integrated proxy interface for web based data management reports |
CN102043841A (en) * | 2010-12-10 | 2011-05-04 | 上海市城市建设设计研究院 | Multi-source information supplying method based on Web technology and integrated service system thereof |
Non-Patent Citations (3)
Title |
---|
罗显刚: "《数字地球三维空间信息服务关键技术研究》", 《中国博士学位论文全文数据库基础科学辑》 * |
罗显刚: "《数字地球三维空间信息服务关键技术研究》", 《中国博士学位论文全文数据库基础科学辑》, no. 12, 15 December 2010 (2010-12-15) * |
谭兵: "《基于遥感影像的地形三维重建技术的研究》", 《中国优秀博硕士学位论文全文数据库(硕士)基础科学辑》 * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106886523A (en) * | 2015-12-15 | 2017-06-23 | 北京京航计算通讯研究所 | Towards the optimization method of the spatial-temporal GIS model of underground utilities |
CN105893972A (en) * | 2016-04-08 | 2016-08-24 | 深圳市智绘科技有限公司 | Automatic illegal building monitoring method based on image and realization system thereof |
CN105893972B (en) * | 2016-04-08 | 2022-03-11 | 深圳市智绘科技有限公司 | Automatic monitoring method for illegal building based on image and implementation system thereof |
CN107655578A (en) * | 2017-09-01 | 2018-02-02 | 郑州云海信息技术有限公司 | A kind of temperature record methods of exhibiting, device and terminal |
CN108074279A (en) * | 2017-12-07 | 2018-05-25 | 零空间(北京)科技有限公司 | Meteorological data three-dimensional display method, apparatus and equipment |
CN108074279B (en) * | 2017-12-07 | 2021-04-13 | 零空间(北京)科技有限公司 | Three-dimensional meteorological data display method, device and equipment |
CN108768503A (en) * | 2018-06-04 | 2018-11-06 | 中国气象局公共气象服务中心 | Information issuing system based on big-dipper satellite and dissemination method |
CN110287388A (en) * | 2019-06-05 | 2019-09-27 | 中国科学院计算机网络信息中心 | Data visualization method and device |
CN110287388B (en) * | 2019-06-05 | 2021-07-13 | 中国科学院计算机网络信息中心 | Data visualization method and device |
CN111652961A (en) * | 2020-07-10 | 2020-09-11 | 中国水利水电科学研究院 | A GPU-based method for volume rendering of meteorological data |
CN111652961B (en) * | 2020-07-10 | 2023-06-30 | 中国水利水电科学研究院 | A GPU-based Meteorological Data Volume Rendering Method |
CN112667346A (en) * | 2021-03-16 | 2021-04-16 | 深圳市火乐科技发展有限公司 | Weather data display method and device, electronic equipment and storage medium |
Also Published As
Publication number | Publication date |
---|---|
CN103268221B (en) | 2016-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103268221B (en) | A kind of meteorological data body 3 D displaying method based on WEB technology and device | |
Vanegas et al. | Modelling the appearance and behaviour of urban spaces | |
Nurminen | m-LOMA-a mobile 3D city map | |
KR100956416B1 (en) | 3D geographic information client device and server device and 3D geographic information system including the same | |
CN110675496B (en) | Grid subdivision and visualization method and system based on three-dimensional urban geological model | |
CN102117497B (en) | Method and system for three-dimensional terrain modeling | |
Li et al. | Visualizing dynamic geosciences phenomena using an octree-based view-dependent LOD strategy within virtual globes | |
CN111932668B (en) | Three-dimensional visualization method, system, medium and electronic equipment for urban landscape model | |
CN112102465B (en) | Computing platform based on 3D structure engine | |
CN105701851B (en) | A kind of 3 d rendering engine system based on geography information | |
Liang et al. | Visualizing 3D atmospheric data with spherical volume texture on virtual globes | |
CN101702245A (en) | A Scalable General 3D Landscape Simulation System | |
US20230298252A1 (en) | Image rendering method and related apparatus | |
CN101261743A (en) | A large-scale terrain roaming simulation method based on regular grid | |
Noguera et al. | A scalable architecture for 3D map navigation on mobile devices | |
Chen et al. | An improved texture-related vertex clustering algorithm for model simplification | |
Masood et al. | High‐performance virtual globe GPU terrain rendering using game engine | |
CN116993881A (en) | 3D map rendering method and system | |
CN106875480B (en) | Method for organizing urban three-dimensional data | |
Zhang et al. | Visualization of large spatial data in networking environments | |
CN116563453A (en) | Fine pollution diffusion visualization method for accelerating rendering | |
WO2023126984A1 (en) | Automatic and dynamic generation of modelling inputs based atleast upon a defined set of rendering variables, and rendering a reconstructed and optimized model in realtime | |
She et al. | A building label placement method for 3D visualizations based on candidate label evaluation and selection | |
Amiraghdam et al. | LOOPS: LOcally Optimized Polygon Simplification | |
CN112489210A (en) | Method for constructing autonomous controllable three-dimensional natural resource map system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20161221 Termination date: 20171207 |