CN103259166B - 基于射频调制长周期光栅调q脉冲和连续两用光纤激光器 - Google Patents

基于射频调制长周期光栅调q脉冲和连续两用光纤激光器 Download PDF

Info

Publication number
CN103259166B
CN103259166B CN201310140514.2A CN201310140514A CN103259166B CN 103259166 B CN103259166 B CN 103259166B CN 201310140514 A CN201310140514 A CN 201310140514A CN 103259166 B CN103259166 B CN 103259166B
Authority
CN
China
Prior art keywords
fiber
optical fiber
laser
modulations
grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310140514.2A
Other languages
English (en)
Other versions
CN103259166A (zh
Inventor
冯选旗
冯晓强
齐新元
张尧
白晋涛
贺庆丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwest University
Original Assignee
Northwest University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwest University filed Critical Northwest University
Priority to CN201310140514.2A priority Critical patent/CN103259166B/zh
Publication of CN103259166A publication Critical patent/CN103259166A/zh
Application granted granted Critical
Publication of CN103259166B publication Critical patent/CN103259166B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开了一种基于射频调制长周期光栅调Q脉冲和连续两用光纤激光器,包括泵浦源、全反射光纤光栅、双包层掺杂光纤、射频调制长周期光纤光栅、输出光纤光栅和输出尾纤,上述各部件首尾相连依次熔接;射频调制长周期光纤光栅包括双包层非掺杂光纤、光纤固定牵拉支架、三角柱支架、压电陶瓷和射频电源;光纤固定牵拉支架包括左瓣、右瓣;双包层非掺杂光纤盘绕在光纤固定牵拉支架上,压电陶瓷连接射频电源。本发明采用射频调制方式形成的长周期光纤光栅调Q光纤激光器,光纤激光器没有插入分立元件的全光纤结构,无插入损耗,同时该激光器可实现连续与脉冲双运转,具有光束质量好、输出功率高、结构紧凑、性能稳定可靠的优点。

Description

基于射频调制长周期光栅调Q脉冲和连续两用光纤激光器
技术领域
本发明属于激光技术领域,具体涉及一种光纤激光器,特别是一种基于射频调制长周期光栅调Q脉冲和连续两用光纤激光器。
背景技术
在目前的激光技术领域中,光纤激光器以其体积小、效率高、稳定性好、光束质量好等优点,发展十分迅速。现有的调Q光纤激光器和普通的调Q激光器一样,都是在激光谐振腔内插入调Q器件,通过周期性的改变腔损耗,实现调Q激光脉冲输出。
目前常用调Q技术的有声光调Q、电光调Q、可饱和吸收体调Q、光纤迈克尔逊干涉仪调Q、光纤马赫—曾德尔干涉仪调Q、光纤受激布里渊散射(SBS)调Q、主被动混合调Q等。无论插入何种调Q器件,都会引入一定的插入损耗,从而影响峰值功率,特别是使用最广泛的声光调Q、电光调Q由于插入了分立元件会使得其有较大的插入损耗,即便是常用的带有尾纤的光纤化的调Q器件依然有较大的插入损耗。
发明内容
针对目前现有调Q技术中均不同程度的引入一定的损耗,本发明的目的在于,提供一种基于射频调制长周期光栅调Q脉冲和连续两用光纤激光器,该光纤激光器是在连续运转的全光纤结构的光纤激光器中增加一个光纤结构的基于射频调制长周期光栅,其相当于一个可控吸收器件。
为了达到上述目的,本发明采用如下的技术解决方案:
一种基于射频调制长周期光栅调Q脉冲和连续两用光纤激光器,包括光纤激光器主体和射频调制长周期光纤光栅两部分,其中:所述光纤激光器主体包括泵浦源、全反射光纤光栅、双包层掺杂光纤、输出光纤光栅和输出尾纤,上述各部件首尾相连依次熔接;所述射频调制长周期光纤光栅包括双包层非掺杂光纤、光纤固定牵拉支架、三角柱支架、压电陶瓷和射频电源;所述光纤固定牵拉支架包括左瓣、右瓣,左瓣、右瓣之间通过刚性支撑架连接;左瓣、右瓣均为外弧内平的柱体且左瓣、右瓣外弧上刻多个平行的槽;所述双包层非掺杂光纤盘绕在光纤固定牵拉支架外部的槽中并拉紧,三角柱支架置于压电陶瓷之上,使三角柱支架顶部的棱接触双包层非掺杂光纤,所述压电陶瓷连接射频电源。
本发明还包括如下其他技术特征:
所述压电陶瓷通入射频电源时引起双包层非掺杂光纤的振动,使得双包层非掺杂光纤纤芯折射率发生周期变化形成长周期光纤光栅,使纤芯中模式与包层模式耦合,使光纤内损耗增大,提高激光器振荡阈值,增加纤芯内储能,当射频电源无输出时,光纤回归到低损耗状态,激光器振荡阈值降低,形成巨脉冲输出,因此可通过控制射频电源输出的时间间隔获得不同重复频率的脉冲激光输出;当射频电源停止工作时,其又相当于一台连续激光器。
所述左瓣和右瓣之间的距离为8cm~30cm。
所述左瓣和右瓣均为半圆柱、半椭圆柱或矩形带半圆柱。
所述左瓣和右瓣上相邻的槽间距均为2mm~5mm,槽深为双包层非掺杂光纤外包层半径。
所述左瓣、右瓣顶部均设有压条。
所述三角柱支架的顶角为30°~60°。
所述双包层掺杂光纤选择6/125μm的双包层掺镱光纤,在975nm处包层吸收率为2.5dB,长度取6米。
所述光纤固定牵拉支架的左瓣、右瓣之间距离为13cm,相邻的槽间距为3mm,双包层非掺杂光纤在光纤固定牵拉支架上盘绕4圈。
本发明采用射频调制方式形成的长周期光纤光栅调Q光纤激光器,光纤激光器没有插入分立元件的全光纤结构,插入损耗很小,基本上可以忽略。同时该激光器可实现连续与脉冲双运转,具有光束质量好、输出功率高、结构紧凑、性能稳定可靠的优点。
附图说明
图1为本发明的结构示意图。
图2为吸收光谱测试结构示意图。
图3为光纤固定牵拉支架的结构示意图。
图4为图3的俯视图。
图5为射频输出与激光脉冲序列。
以下结合附图和具体实施方式对本发明进一步解释说明。
具体实施方式
参见图1-图3,本发明的基于射频调制长周期光栅调Q脉冲和连续两用光纤激光器,包括光纤激光器主体和射频调制长周期光纤光栅两部分,其中:
所述光纤激光器主体包括泵浦源1、全反射光纤光栅2、双包层掺杂光纤3、输出光纤光栅9和输出尾纤10,上述各部件首尾相连依次熔接;
所述射频调制长周期光纤光栅相当于一个可控吸收器件,其包括双包层非掺杂光纤4、光纤固定牵拉支架5、三角柱支架6、压电陶瓷7和射频电源8。
本发明根据以下步骤选择并装配相关部件:
第一步、确定双包层掺杂光纤3:首先根据需求的输出波长选择掺杂哪种稀土元素的双包层光纤,然后根据功率及模式需求选择选用哪种规格的双包层光纤以及所选光纤的长度;双包层掺杂光纤3作为增益光纤。
第二步、确定泵浦源1:当双包层掺杂光纤3确定后,所需的泵浦源1的输出波长及所需尾纤的规格也就相应的确定了,二者要求尺寸和数值孔径匹配,然后根据功率需求选择相应的泵浦功率;
第三步、选择光纤光栅:光纤光栅均采用布拉格关系光栅,中心反射波长是根据输出波长所确定的,光纤光栅所带尾纤的规格是根据所选双包层光纤的规格尺寸所决定的,二者要求尺寸和数值孔径要匹配,全反射光纤光栅2选择中心反射率大于99%的全反射光纤光栅,输出光纤光栅9选择反射率在5%-80%的光纤光栅。
第四步、选择双包层非掺杂光纤4:双包层非掺杂光纤4的结构参数需要与双包层掺杂光纤3完全匹配。
第五步、光纤固定牵拉支架5的制作及双包层非掺杂光纤4的盘绕:如图3、图4所示,所述光纤固定牵拉支架5包括左瓣51、右瓣52,左瓣51、右瓣52之间通过刚性支撑架53连接且两者距离(即刚性支撑架53的长度)为8cm~30cm;左瓣51、右瓣52均为外弧内平的柱体,具体可以是半圆柱、半椭圆柱或矩形带半圆柱,左瓣51、右瓣52的柱长以能满足光纤盘绕为原则,左瓣51、右瓣52外弧上刻多个平行的槽55,相邻的槽55间距为2mm~5mm,槽深为双包层非掺杂光纤4外包层半径,即保证双包层非掺杂光纤4放于其中可露出一半,在左瓣51、右瓣52顶部均设有用于压紧固定双包层非掺杂光纤4的压条54。
将双包层非掺杂光纤4沿光纤固定牵拉支架5的刻槽盘绕并拉紧,盘绕圈数为1~8圈,盘绕时尽量保证各圈的拉力均匀,然后在左瓣51、右瓣52的顶部用压条54压紧。
在上述结构中,模耦合效果与射频振动的强度和光纤直径有关,振动能量越多,耦合效率越高,光纤越细耦合效果越明显,特别是当取掉非掺杂双包层光纤4的外包层后,耦合效果明显加强,究其原因在于外包层为树脂材料,将其去掉后留下的纤芯和内包层材料均为石英玻璃,易于形成振动。因此,为了获得更好的弦振效果,可采用热剥除或者化学腐蚀的方法将光纤固定牵拉支架5的左瓣、右瓣之间的光纤的外包层剥除,这样振动效果明显加强,吸收深度也增强很多,这样可减小对射频电源输出功率的要求,以其获得较强的模式的耦合效果和较大的吸收深度。
在上述结构中,吸收中心波长与射频频率变化量呈线性关系,其满足
λ=λ0+kΔf
式中λ为吸收中心波长,Δf为射频频率变化量,λ0为测量基准波长,也就是Δf=0所对应的吸收中心波长,k为吸收中心波长随射频频率变化的斜率,其除了与光纤纤芯和内包层结构参数有关外,还和光纤的力学特性有关,k取值范围-0.1~-1nm/KHz,随着射频频率的增加,吸收中心波长会发生蓝移。故而可以依此计算或估算所需的射频频率,实际使用中常依此估算为前提,进行实验测量获得射频输出频率,具体参见第七步。
第六步、三角柱支架6与压电陶瓷7的加工与安装:压电陶瓷(PZT)7为长方形片,其长度与光纤固定牵拉支架5两瓣的柱长相同或接近,宽度无特殊要求,亦稍大些便于固定于装配,厚度亦选择尽量大些以获得更大的振动幅度;三角柱支架6长度与压电陶瓷7长度相同,其底宽与压电陶瓷7宽度相同,其高度大于自身底宽以保证上棱角度较小,使光纤弦有较好的振动效果,顶角选择范围以30°~60°为佳。双包层非掺杂光纤4在光纤固定牵拉支架5外盘绕后,将三角柱支架6置于压电陶瓷7之上,使三角柱支架3顶部的棱接触双包层非掺杂光纤4,形成类似于古琴的琴弦及支架的结构。三角柱支架6的顶角以30°~60°为佳。三角柱支架6、压电陶瓷7构成振动产生及振动能量传递部分。压电陶瓷7连接射频电源8。
第七步、射频电源8振动频率的测量:其测量方法如图2所示,从双包层非掺杂光纤4一端经由透镜12注入由宽谱光源11的宽谱光信号——该光源光谱范围应该包含双包层掺杂光纤3中掺杂元素的荧光谱,在双包层非掺杂光纤4的另一端放置光谱仪13,调节射频电源8的输出频率,使得双包层非掺杂光纤4所产生的吸收波长与激光器输出波长一致时,固定射频输出频率,这便是射频电源需要输出的频率值。
第八步、装配:完成上述部件的选择与加工之后,对光纤激光器主体部分进行熔接,也即将泵浦源1、全反射光纤光栅2、双包层掺杂光纤3、双包层非掺杂光纤4、输出光纤光栅9和输出尾纤10首尾相连依次熔接,熔接时要求纤芯对准。
当压电陶瓷7连接射频电源8时,在射频电源8的驱动下产生振动,振动能量通过三角柱支架6传递给双包层非掺杂光纤4,在该光纤中形成周期性振荡,当纤芯模式与内包层中的模式满足相位匹配条件时,将会发生纤芯模式与内包层模式间耦合效应,其作用相当于一个长周期光纤光栅,长周期光纤光栅的中心吸收谱与光栅周期相关,而光栅周期又与射频振动的频率、振动幅度有关。当振动幅度一定,且该长周期光纤光栅的吸收谱与增益光纤的增益谱发生交叠时,通过调节射频电源8的输出频率就可以改变净增益谱的中心波长。当调节射频电源8的输出频率使其吸收峰与激光输出相同时,就会对激光产生较大损耗,使激光器的阈值升高,品质因数Q值降低,光纤内储能增大,反转粒子数大量积累。当射频电源8无输出时,长周期光栅消失,激光器恢复到高Q值,储能就以非常短的光脉冲释放出来,形成激光巨脉冲,因此可通过控制射频电源输出的时间间隔获得不同重复频率的脉冲激光输出。当射频电源8输出图5上半部分所示的波形时,将会得到图5下半部分所示的激光脉冲序列。当射频电源8不启动时,本发明的激光器又可作连续激光器使用。
实施例
如图1所示,遵循本发明的上述方案,本实施例的基于射频调制长周期光纤光栅调Q脉冲和连续两用光纤激光器,包括光纤激光器主体和射频调制长周期光纤光栅两部分。
光纤激光器主体部分的各部件分别为:泵浦源1采用带100μm尾纤输出的输出波长为975nm输出功率为30W的半导体激光器;全反射光纤光栅2采用1080nm全反射布拉格光纤光栅,在1080nm处反射率>99.8%;双包层掺杂光纤3选择6/125μm的双包层掺镱光纤,在975nm处包层吸收率为2.5dB,长度取6米;输出光纤光栅9采用1080nm波长处反射率=10%的布拉格光纤光栅;输出尾纤10直接用输出光纤光栅9的尾纤替代,故而省略。
射频调长周期光纤光栅的部件选择:压电陶瓷7采用尺寸为45*8*5mm长方片状;双包层非掺杂光纤4选择双包层掺杂光纤3配套被动双包层光纤,也即选择选择配套型号的6/125μm双包层掺杂光纤。光纤固定牵拉支架5两瓣间距取13cm,刻槽间距取3mm,光纤盘绕4圈,将双包层非掺杂光纤4模拟盘绕,并标出各段位置,将振弦部分光纤用特殊颜色标识,取下光纤,用化学腐蚀法将用特殊颜色标识部分光纤的外包层去掉,然后再将双包层非掺杂光纤4按照之前所标位置重新盘绕,盘绕时尽量保证各根光纤所受拉力均匀,最后用压条54固定。
按图2所示结构进行射频电源8的输出频率测量,调节中心吸收波长为1080nm,此时对应的射频输出为射频电源选择的最佳输出频率,固定该输出频率,本实例中1080nm吸收峰对应的射频输出频率为2.53MHz。
将光纤激光器主体部分各部件首尾相连依次熔接,当开启泵浦源1时,会在光纤激光器输出端获得连续1080nm的激光输出,当射频电源8输出图5上半部分所示的波形时,光纤激光器将会得到图5下半部分所示的激光脉冲序列。

Claims (9)

1.一种基于射频调制长周期光栅调Q脉冲和连续两用光纤激光器,包括光纤激光器主体和射频调制长周期光纤光栅两部分,其中:所述光纤激光器主体包括泵浦源(1)、全反射光纤光栅(2)、双包层掺杂光纤(3)、输出光纤光栅(9)和输出尾纤(10),上述各部件首尾相连依次熔接;其特征在于,所述射频调制长周期光纤光栅包括双包层非掺杂光纤(4)、光纤固定牵拉支架(5)、三角柱支架(6)、压电陶瓷(7)和射频电源(8);所述光纤固定牵拉支架(5)包括左瓣(51)、右瓣(52),左瓣(51)、右瓣(52)之间通过刚性支撑架(53)连接;左瓣(51)、右瓣(52)均为外弧内平的柱体且左瓣(51)、右瓣(52)外弧上刻多个平行的槽(55);所述双包层非掺杂光纤(4)盘绕在光纤固定牵拉支架(5)外部的槽(55)中并拉紧,三角柱支架(6)置于压电陶瓷(7)之上,使三角柱支架(3)顶部的棱接触双包层非掺杂光纤(4),所述压电陶瓷(7)连接射频电源(8)。
2.如权利要求1所述的一种基于射频调制长周期光栅调Q脉冲和连续两用光纤激光器,其特征在于,所述压电陶瓷(7)通入射频电源(8)时引起双包层非掺杂光纤(4)的振动,使得双包层非掺杂光纤(4)纤芯折射率发生周期变化形成长周期光纤光栅,使纤芯中模式与包层模式耦合,使光纤内损耗增大,提高激光器振荡阈值,增加纤芯内储能,当射频电源(8)无输出时,光纤回归到低损耗状态,激光器振荡阈值降低,形成巨脉冲输出,因此可通过控制射频电源输出的时间间隔获得不同重复频率的脉冲激光输出;当射频电源(8)停止工作时,其又相当于一台连续激光器。
3.如权利要求1所述的一种基于射频调制长周期光栅调Q脉冲和连续两用光纤激光器,其特征在于,所述左瓣(51)和右瓣(52)之间的距离为8cm~30cm。
4.如权利要求1所述的一种基于射频调制长周期光栅调Q脉冲和连续两用光纤激光器,其特征在于,所述左瓣(51)和右瓣(52)均为半圆柱、半椭圆柱或矩形带半圆柱。
5.如权利要求1所述的一种基于射频调制长周期光栅调Q脉冲和连续两用光纤激光器,其特征在于,所述左瓣(51)和右瓣(52)上相邻的槽(55)间距均为2mm~5mm,槽深为双包层非掺杂光纤(4)外包层半径。
6.如权利要求1所述的一种基于射频调制长周期光栅调Q脉冲和连续两用光纤激光器,其特征在于,所述左瓣(51)、右瓣(52)顶部均设有压条(54)。
7.如权利要求1所述的一种基于射频调制长周期光栅调Q脉冲和连续两用光纤激光器,其特征在于,所述三角柱支架(6)的顶角为30°~60°。
8.如权利要求1所述的一种基于射频调制长周期光栅调Q脉冲和连续两用光纤激光器,其特征在于,所述双包层掺杂光纤(3)选择6/125μm的双包层掺镱光纤,在975nm处包层吸收率为2.5dB,长度取6米。
9.如权利要求1所述的一种基于射频调制长周期光栅调Q脉冲和连续两用光纤激光器,其特征在于,所述光纤固定牵拉支架(5)的左瓣(51)、右瓣(52)之间距离为13cm,相邻的槽(55)间距为3mm,双包层非掺杂光纤(4)在光纤固定牵拉支架(5)上盘绕4圈。
CN201310140514.2A 2013-04-22 2013-04-22 基于射频调制长周期光栅调q脉冲和连续两用光纤激光器 Expired - Fee Related CN103259166B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310140514.2A CN103259166B (zh) 2013-04-22 2013-04-22 基于射频调制长周期光栅调q脉冲和连续两用光纤激光器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310140514.2A CN103259166B (zh) 2013-04-22 2013-04-22 基于射频调制长周期光栅调q脉冲和连续两用光纤激光器

Publications (2)

Publication Number Publication Date
CN103259166A CN103259166A (zh) 2013-08-21
CN103259166B true CN103259166B (zh) 2015-04-22

Family

ID=48962946

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310140514.2A Expired - Fee Related CN103259166B (zh) 2013-04-22 2013-04-22 基于射频调制长周期光栅调q脉冲和连续两用光纤激光器

Country Status (1)

Country Link
CN (1) CN103259166B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105071207B (zh) * 2015-08-31 2018-09-14 华南理工大学 基于自注入锁定的频率调制单频光纤激光器
CN106684683B (zh) * 2016-12-15 2018-12-21 西北大学 连续和脉冲叠加式单光束固体激光器
CN110797739A (zh) * 2019-12-06 2020-02-14 瑞尔通(苏州)医疗科技有限公司 一种一体化光纤激光引擎

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5647039A (en) * 1995-12-14 1997-07-08 Lucent Technologies Inc. Optical switching system and devices using a long period grating
EP1506443A1 (en) * 2002-05-17 2005-02-16 The Board of Trustees of The Leland Stanford Junior University Double-clad fiber lasers and amplifiers having long-period fiber gratings
US7184206B2 (en) * 2003-04-29 2007-02-27 National Chiao Tung University Evanescent-field optical amplifiers and lasers
CN101291037A (zh) * 2007-02-13 2008-10-22 骆飞 调q的全光纤化光纤激光器
CN101854025A (zh) * 2010-05-11 2010-10-06 浩光光电科技(浙江)有限公司 一种全光纤型的q开关

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5647039A (en) * 1995-12-14 1997-07-08 Lucent Technologies Inc. Optical switching system and devices using a long period grating
EP1506443A1 (en) * 2002-05-17 2005-02-16 The Board of Trustees of The Leland Stanford Junior University Double-clad fiber lasers and amplifiers having long-period fiber gratings
US7184206B2 (en) * 2003-04-29 2007-02-27 National Chiao Tung University Evanescent-field optical amplifiers and lasers
CN101291037A (zh) * 2007-02-13 2008-10-22 骆飞 调q的全光纤化光纤激光器
CN101854025A (zh) * 2010-05-11 2010-10-06 浩光光电科技(浙江)有限公司 一种全光纤型的q开关

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LPFG modulator for fiber laser Q switching;fei luo等;《Proc. SPIE》;20090219;第7195卷;全文 *
用非线性光纤连接的长周期光栅对的光开关特性;李淳飞 等;《中国激光》;20081231;第35卷(第12期);全文 *

Also Published As

Publication number Publication date
CN103259166A (zh) 2013-08-21

Similar Documents

Publication Publication Date Title
CN103259166B (zh) 基于射频调制长周期光栅调q脉冲和连续两用光纤激光器
CN102157889A (zh) 波长可调谐l波段光纤激光器
CN103259170B (zh) 超声诱导长周期光纤光栅调q脉冲和连续两用光纤激光器
Bello-Jiménez et al. Experimental study of an actively mode-locked fiber ring laser based on in-fiber amplitude modulation
Chen et al. Development of all-fiber nanosecond oscillator using actively Q-switched technologies and modulators
CN109143468B (zh) 一种在线可调谐的光纤内集成超声光栅
Wu et al. All-fiber laser with agile mode-switching capability through intra-cavity conversion
CN102361211A (zh) 基于微腔控制反馈效应的光纤激光器
CN107248692A (zh) 一种超窄线宽波长可调的复合腔光纤激光器
CN103259172B (zh) 基于光纤环形镜的射频调制可调谐全光纤激光器
CN103259171B (zh) 磁力诱导长周期光纤光栅调q脉冲和连续两用光纤激光器
CN103259173B (zh) 具有功率稳定控制的射频调制可调谐全光纤激光器
CN201985422U (zh) 波长可调谐l波段光纤激光器
CN203288929U (zh) 频率调制单频光纤激光器
Ramírez-Meléndez et al. Q-switching of an all-fiber ring laser based on in-fiber acousto-optic bandpass modulator
CN103259169B (zh) 差频太赫兹波光纤激光器
CN103259168B (zh) 全光纤环形可调谐光纤激光器
US6788834B2 (en) Optoacoustic frequency filter
CN202268598U (zh) 基于微腔控制反馈效应的光纤激光器
CN109755850A (zh) 一种基于微腔的中红外拉曼超快光纤激光振荡器
CN103441414A (zh) 基于相移取样光栅的双波长光纤激光器
CN103326219B (zh) 可调谐小波长间隔等功率双波长光纤激光器
CN203250981U (zh) 基于声波的光纤激光器
CN105742948A (zh) 一种基于光纤重叠光栅的可调谐光纤激光器
CN103259167B (zh) 小波长间隔的等功率双波长光纤激光器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150422

Termination date: 20160422

CF01 Termination of patent right due to non-payment of annual fee