CN103257992A - Method and system for retrieving similar videos - Google Patents
Method and system for retrieving similar videos Download PDFInfo
- Publication number
- CN103257992A CN103257992A CN2013100340117A CN201310034011A CN103257992A CN 103257992 A CN103257992 A CN 103257992A CN 2013100340117 A CN2013100340117 A CN 2013100340117A CN 201310034011 A CN201310034011 A CN 201310034011A CN 103257992 A CN103257992 A CN 103257992A
- Authority
- CN
- China
- Prior art keywords
- video
- frame
- eigenvector
- retrieved
- module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 25
- 239000013598 vector Substances 0.000 claims abstract description 81
- 238000004364 calculation method Methods 0.000 claims abstract description 28
- 239000000284 extract Substances 0.000 claims abstract description 21
- 238000013507 mapping Methods 0.000 claims abstract description 14
- 230000006870 function Effects 0.000 claims description 14
- 238000000605 extraction Methods 0.000 claims description 12
- 238000004422 calculation algorithm Methods 0.000 claims description 8
- 238000006243 chemical reaction Methods 0.000 claims description 4
- 239000003086 colorant Substances 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 238000013139 quantization Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 230000004456 color vision Effects 0.000 description 1
- 238000004883 computer application Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000003708 edge detection Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000016776 visual perception Effects 0.000 description 1
Images
Landscapes
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Image Analysis (AREA)
Abstract
本发明公开了一种相似视频检索的方法及系统,其中,该方法包括:利用颜色空间模型计算视频库中每一视频关键帧集合的特征矢量;通过哈希函数映射所述特征矢量,根据映射后的矢量值所在区间构建索引;根据待检索视频每一运动矢量映射后的各个矢量值所在区间确定对应索引的编号,提取对应索引下所有特征矢量对应的视频信息,根据待检索视频与对应索引下提取出的视频中相似关键帧的个数进行相似度的计算;将大于阈值的计算结果对应的视频作为检索结果输出。通过采用本发明公开的方法提高了相似视频检索的效率及准确度。
The present invention discloses a similar video retrieval method and system, wherein the method includes: using a color space model to calculate the feature vector of each video key frame set in a video library; mapping the feature vector through a hash function, according to the mapping Construct an index in the interval of the vector value after each motion vector mapping; determine the serial number of the corresponding index according to the interval of each vector value mapped by each motion vector of the video to be retrieved, extract the video information corresponding to all the feature vectors under the corresponding index, and according to the video to be retrieved and the corresponding index The number of similar key frames in the extracted video is used to calculate the similarity; the video corresponding to the calculation result greater than the threshold is output as the retrieval result. The efficiency and accuracy of similar video retrieval are improved by adopting the method disclosed in the invention.
Description
技术领域technical field
本发明涉及计算机应用技术领域,尤其涉及一种相似视频检索的方法及系统。The invention relates to the field of computer application technology, in particular to a method and system for similar video retrieval.
背景技术Background technique
随着网络流媒体技术的快速发展,互联网中出现了越来越多的视频及多媒体数据,这些视频以几何级数的方式增长,成为了互联网中信息发布和娱乐的主流。面对海量的多媒体数据,如何快速从海量视频中查找出相似甚至相同的视频成为了一个热点研究问题。With the rapid development of network streaming media technology, more and more videos and multimedia data appear on the Internet. These videos grow geometrically and become the mainstream of information release and entertainment on the Internet. In the face of massive multimedia data, how to quickly find similar or even identical videos from massive videos has become a hot research issue.
传统的基于文本的检索视频方法存在很多不足之处。其主要通过对视频周边文本进行索引来完成对视频来进行相似视频的检索,但视频内容不同于文本内容,视频数据与其语义信息之间存在很大差别,单纯依赖周边文本的方式不能准确描述视频内容也忽略了视频视觉感知等多媒体特征和信息。另一方面,采用单纯基于文本的方式需要对网络中海量视频数据进行手工标注,工作量巨大,同时标注视频存在一定主观性,对于同一段视频不同人可能有不同的理解。由此造成相似性检索的准确率很低,效果很难得到进一步的提高。Traditional text-based video retrieval methods have many shortcomings. It mainly completes the retrieval of similar videos by indexing the surrounding text of the video, but the video content is different from the text content, and there is a big difference between the video data and its semantic information, and the way of relying solely on the surrounding text cannot accurately describe the video Content also ignores multimedia features and information such as video visual perception. On the other hand, using a purely text-based method requires manual labeling of massive video data in the network, which is a huge workload. At the same time, labeling videos is somewhat subjective, and different people may have different understandings of the same video. As a result, the accuracy of similarity retrieval is very low, and the effect is difficult to be further improved.
发明内容Contents of the invention
本发明的目的是提供一种相似视频检索的方法及系统,提高了相似视频检索的效率及准确度。The purpose of the present invention is to provide a method and system for similar video retrieval, which improves the efficiency and accuracy of similar video retrieval.
一种相似视频检索的方法,该方法包括:A method for similar video retrieval, the method comprising:
利用颜色空间模型计算视频库中每一视频关键帧集合的特征矢量;Using the color space model to calculate the feature vector of each video key frame set in the video library;
通过哈希函数映射所述特征矢量,根据映射后的矢量值所在区间构建索引;Mapping the feature vector through a hash function, and constructing an index according to the interval where the mapped vector value is located;
根据待检索视频每一运动矢量映射后的各个矢量值所在区间确定对应索引的编号,提取对应索引下所有特征矢量对应的视频信息,根据待检索视频与对应索引下提取出的视频中相似关键帧的个数进行相似度的计算;Determine the serial number of the corresponding index according to the range of each vector value mapped by each motion vector of the video to be retrieved, extract the video information corresponding to all feature vectors under the corresponding index, and extract similar key frames from the video to be retrieved and the video extracted under the corresponding index The number of similarity calculations;
将大于阈值的计算结果对应的视频作为检索结果输出。Output the video corresponding to the calculation result greater than the threshold as the retrieval result.
一种相似视频检索的系统,该系统包括:A system for similar video retrieval, the system comprising:
特征矢量计算模块,用于利用颜色空间模型计算视频库中每一视频关键帧集合的特征矢量;Feature vector calculation module, for utilizing the color space model to calculate the feature vector of each video key frame set in the video storehouse;
索引构建模块,用于通过哈希函数映射所述特征矢量,根据映射后的矢量值所在区间构建索引;An index construction module, configured to map the feature vector through a hash function, and construct an index according to the interval of the mapped vector value;
相似度计算模块,用于根据待检索视频每一运动矢量映射后的各个矢量值所在区间确定对应索引的编号,提取对应索引下所有特征矢量对应的视频信息,根据待检索视频与对应索引下提取出的视频中相似关键帧的个数进行相似度的计算;The similarity calculation module is used to determine the serial number of the corresponding index according to the range of each vector value mapped by each motion vector of the video to be retrieved, extract the video information corresponding to all feature vectors under the corresponding index, and extract the corresponding index according to the video to be retrieved and the corresponding index. The number of similar key frames in the output video is used to calculate the similarity;
检索结果输出模块,用于将大于阈值的计算结果对应的视频作为检索结果输出。The retrieval result output module is configured to output the video corresponding to the calculation result greater than the threshold as the retrieval result.
由上述本发明提供的技术方案可以看出,通过视频的内容提取特征矢量,利用这些特征矢量建立索引,并以此为基础与待检索视频进行相似度的计算;可高效及准确的在海量视频库中实现相似视频的检索。It can be seen from the above-mentioned technical solution provided by the present invention that the feature vectors are extracted through the content of the video, and these feature vectors are used to establish indexes, and based on this, similarity calculations are performed with the videos to be retrieved; Retrieval of similar videos in the library.
附图说明Description of drawings
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图。In order to more clearly illustrate the technical solutions of the embodiments of the present invention, the following will briefly introduce the accompanying drawings that need to be used in the description of the embodiments. Obviously, the accompanying drawings in the following description are only some embodiments of the present invention. For Those of ordinary skill in the art can also obtain other drawings based on these drawings on the premise of not paying creative efforts.
图1为本发明实施例一提供的一种相似视频检索的方法的流程图;FIG. 1 is a flow chart of a method for similar video retrieval provided by Embodiment 1 of the present invention;
图2为本发明实施例一提供的一种聚类算法的流程图;FIG. 2 is a flowchart of a clustering algorithm provided by Embodiment 1 of the present invention;
图3为本发明实施例二提供的一种相似视频检索的系统的示意图;FIG. 3 is a schematic diagram of a similar video retrieval system provided by Embodiment 2 of the present invention;
具体实施方式Detailed ways
下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明的保护范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some of the embodiments of the present invention, not all of them. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
实施例一Embodiment one
图1为本发明实施例一提供的一种相似视频检索的方法的流程图。如图1所示,主要包括如下步骤:FIG. 1 is a flowchart of a similar video retrieval method provided by Embodiment 1 of the present invention. As shown in Figure 1, it mainly includes the following steps:
步骤11、提取视频库中每一视频的关键帧集合。
由于视频中相邻帧的差异性不大,如果采用等时间间隔提取关键帧的方法,提取频率过高会造成特征数据量巨大影响特征提取速度;且相邻帧的差异不大,相似性过高,造成特征冗余;但是,若提取频率过低,虽然可以减少特征数据量、加快特征提取速度但抽取的特征集合不能全面反应视频的总体特征从而降低了检索的准确率。Since the difference between adjacent frames in the video is not large, if the method of extracting key frames at equal time intervals is used, the extraction frequency is too high, which will cause a huge amount of feature data and affect the feature extraction speed; and the difference between adjacent frames is not large, and the similarity is too large. However, if the extraction frequency is too low, although the amount of feature data can be reduced and the feature extraction speed can be accelerated, the extracted feature set cannot fully reflect the overall features of the video, thereby reducing the accuracy of retrieval.
因此,对于视频库中的每一视频数据均先提取关键帧,例如,采用聚类算法,其通过判断相邻图像帧之间的特征是否发生剧烈变化,来完成视频镜头的边缘检测任务,即用最精简的特征集合全面反映视频总体特征。Therefore, for each video data in the video library, the key frame is first extracted, for example, a clustering algorithm is used to complete the edge detection task of the video shot by judging whether the features between adjacent image frames change drastically, namely Use the most streamlined feature set to fully reflect the overall characteristics of the video.
如图2所示,聚类算法主要包括如下步骤:As shown in Figure 2, the clustering algorithm mainly includes the following steps:
步骤111、从第n帧开始提取视频帧,并以该帧为中心计算后续各帧与其帧间距离。
本步骤基于帧间距离的算法,来判定相邻帧之间内容是否存在突变,考虑到视频开头的若干帧存在噪声信息,故将其过滤,从第n帧开始提取视频帧,并以该帧为中心计算后续各帧与第n帧的距离。This step is based on the algorithm of the distance between frames to determine whether there is a sudden change in the content between adjacent frames. Considering that there is noise information in the first few frames of the video, it is filtered, and the video frame is extracted from the nth frame, and the frame Calculate the distance between each subsequent frame and the nth frame as the center.
步骤112、判断第n+i(i>0)帧与第n帧的帧间距离是否大于阈值,若是,则转入步骤113;否则转入步骤114。
步骤113、将第n帧作为关键帧,并转入步骤114。
若第n+i帧与第n帧的帧间距离大于阈值,则第n+i帧相对于第n帧为一突变帧,将第n帧至第n+i的前一帧(n+i-1)作为同一个类别,并选择第n帧作为关键帧提取。If the interframe distance between the n+i frame and the n frame is greater than the threshold, the n+i frame is a sudden change frame relative to the n frame, and the n frame to the n+i frame (n+i -1) As the same category, and select the nth frame as keyframe extraction.
步骤114、判断剩余帧数是否小于S。
若当前视频剩余帧数是小于S(例如,2),则结束关键帧的提取操作,否则,可按照重复上述步骤直至剩余帧数小于S。If the number of remaining frames of the current video is less than S (for example, 2), the key frame extraction operation is ended; otherwise, the above steps can be repeated until the number of remaining frames is less than S.
从上述步骤可以看出聚类中选取得到的关键帧能较好地反映出该段视频镜头的内容且计算复杂度低。需要说明的是,上面介绍的聚类算法仅为举例,用户在实际工作中还可使用其他方法从视频中选择具有代表性的关键帧。It can be seen from the above steps that the key frames selected in the clustering can better reflect the content of the video footage and have low computational complexity. It should be noted that the clustering algorithm described above is only an example, and users can also use other methods to select representative key frames from the video in actual work.
步骤12、利用颜色空间模型计算视频库中每一视频关键帧集合的特征矢量。
示例性的,可通过HSV(色调饱和度亮度)颜色空间模型计算特征矢量,以充分反映色彩空间分布和信息变化状况的能力,增强图片之间的区别能力,提高检索性能。Exemplarily, the feature vector can be calculated through the HSV (hue-saturation-luminance) color space model, so as to fully reflect the ability of color space distribution and information changes, enhance the ability to distinguish between pictures, and improve retrieval performance.
当通过HSV颜色空间模型将关键帧的图像转换后,其每一个像素的颜色用色调h,饱和度s,亮度v值表示。After the image of the key frame is converted through the HSV color space model, the color of each pixel is represented by the value of hue h, saturation s, and brightness v.
为提高颜色模型的准确性,可将图像中与黑色、白色相近的颜色分别作为同一种颜色对待,即(1)黑色区域:所有v<15%的颜色均归入黑色,令h=0,s=0,v=0;(2)白色区域:所有s<10%且v>80%的颜色归入白色,令h=0,s=0,v=1;(3)彩色区域:位于黑色区域和白色区域以外的颜色,其h,s,v值保持不变。In order to improve the accuracy of the color model, the colors similar to black and white in the image can be treated as the same color respectively, that is (1) black area: all colors with v<15% are classified as black, let h=0, s=0, v=0; (2) White area: all s<10% and v>80% colors are classified as white, let h=0, s=0, v=1; (3) Color area: located in The h, s, and v values of colors outside the black and white areas remain unchanged.
进一步的,为了减少直方图矢量的维数,对HSV空间进行适当的量化后再计算直方图,减少计算量。例如,可将h,s,v这3个分量按照人的颜色感知进行非等间隔的量化,制作出量化标准表,再分别提取图像中的每个像素颜色的h,s,v值,根据量化表得到各像素点量化后的颜色h,s,v值,统计出整个图片HSV颜色直方图矢量,即该关键帧的特征矢量。Further, in order to reduce the dimensionality of the histogram vector, the HSV space is properly quantized before the histogram is calculated to reduce the amount of calculation. For example, the three components of h, s, and v can be quantized at non-equal intervals according to human color perception, and a quantization standard table can be produced, and then the h, s, and v values of each pixel color in the image can be extracted separately, according to The quantization table obtains the quantized color h, s, and v values of each pixel, and calculates the HSV color histogram vector of the entire picture, that is, the feature vector of the key frame.
步骤13、构建索引。
数据库中的视频文件较多,即使通过上面两个步骤过滤掉了较多冗余数据,但计算量依旧较大。因此,需要构建索引,来进一步减少计算量。There are many video files in the database. Even if more redundant data is filtered out through the above two steps, the amount of calculation is still relatively large. Therefore, it is necessary to build an index to further reduce the amount of computation.
示例性的,可采用基于内存约束的分布式LSH(局部敏感哈希)结构进行索引的构建。Exemplarily, a distributed LSH (Locality Sensitive Hash) structure based on memory constraints may be used for index construction.
分布式LSH结构采用Master-Slaver(主-从)架构。Master负责维护LSH表的划分策略,Slaver(可作为存储节点)负责维护LSH表中的数据。The distributed LSH structure adopts the Master-Slaver (master-slave) architecture. The Master is responsible for maintaining the division strategy of the LSH table, and the Slaver (which can be used as a storage node) is responsible for maintaining the data in the LSH table.
通过哈希映射函数,将特征矢量映射为一维矢量,存放到对应的slaver维护的哈希表中。以特征矢量b为例,master首先划分各个slaver维护的哈希表数值范围,将特征矢量b经过哈希函数变换,映射到一维空间其值为C,根据各个slaver节点维护的哈希表数据范围检索C所属区间,由master将该矢量及映射后的值分配到所属slaver下的哈希桶中。每一哈希桶均有独立的编号,并且每一哈希桶中均包含每一特征矢量对应的视频及帧的编号。Through the hash mapping function, the feature vector is mapped into a one-dimensional vector and stored in the hash table maintained by the corresponding slaver. Taking the feature vector b as an example, the master first divides the value range of the hash table maintained by each slaver, transforms the feature vector b through a hash function, and maps it to a one-dimensional space whose value is C, according to the hash table data maintained by each slaver node The range searches for the range to which C belongs, and the master assigns the vector and the mapped value to the hash bucket under the slaver to which it belongs. Each hash bucket has an independent number, and each hash bucket includes the video and frame numbers corresponding to each feature vector.
当每一特征矢量均通过上述操作后,则完成分布式LSH结构索引的构建。After each feature vector has passed the above operations, the construction of the distributed LSH structure index is completed.
另外,可由多台数据服务器维护哈希桶中的数据信息并保存在内存中,较好地克服了维数灾难,降低了检索的复杂性,快速可靠。In addition, the data information in the hash bucket can be maintained by multiple data servers and stored in memory, which overcomes the curse of dimensionality, reduces the complexity of retrieval, and is fast and reliable.
步骤14、检索相似视频。
检索过程主要包括如下步骤:1)将待检索的视频按照步骤11-步骤12的方式处理获得对应的特征矢量。2)将待检索视频的每一特征矢量经过哈希函数映射,根据映射后的值由master定位其所属slaver及哈希桶编号。3)提取确定编号的哈希桶中所有特征矢量对应的视频信息,并分别统计每一视频包含的关键帧的个数。4)根据待检索视频与对应索引下提取出的视频中相似关键帧的个数并结合下述公式计算待检索视频与哈希桶中提取出的特征矢量所属视频的相似度:The retrieval process mainly includes the following steps: 1) Process the video to be retrieved in the manner of step 11-
其中,sim(Vi,Vj)∈[0,1];|KFi|为待检索视频Vi的关键帧的数量;|KFj|为哈希桶中提取出的特征矢量所属视频Vj的关键帧的数量;|KFi∩KFj|表示Vi和Vj相似的关键帧的个数。Among them, sim(V i ,V j )∈[0,1]; |KF i | is the number of key frames of the video V i to be retrieved; |KF j | is the video V to which the feature vector extracted from the hash bucket belongs The number of key frames of j ; |KF i ∩KF j | indicates the number of key frames where V i and V j are similar.
以上可知,基于分布式LSH索引结构将非相似、不可能成为结果的数据对象过滤掉,可进一步减少计算量。It can be seen from the above that based on the distributed LSH index structure, data objects that are not similar and cannot become results can be filtered out, which can further reduce the amount of calculation.
步骤15、输出检索结果。
按照上述公式可计算待检索视频与当前哈希桶中各个视频的相关度,结果越大表明相关度越高,因此,将大于阈值的计算结果对应的视频作为检索结果输出。According to the above formula, the correlation between the video to be retrieved and each video in the current hash bucket can be calculated. The larger the result, the higher the correlation. Therefore, the video corresponding to the calculation result greater than the threshold is output as the retrieval result.
本发明实施例通过使用视觉特征提取技术,并基于内存约束的分布式哈希结构对高维特征矢量建立索引,根据返回的相似关键帧集合对待检索的视频进行相似度计算,实现了海量相似视频的快速检索。The embodiment of the present invention uses the visual feature extraction technology, and based on the memory-constrained distributed hash structure to index the high-dimensional feature vector, and calculates the similarity of the video to be retrieved according to the returned similar key frame set, and realizes a large number of similar videos. quick search.
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例可以通过软件实现,也可以借助软件加必要的通用硬件平台的方式来实现。基于这样的理解,上述实施例的技术方案可以以软件产品的形式体现出来,该软件产品可以存储在一个非易失性存储介质(可以是CD-ROM,U盘,移动硬盘等)中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。Through the above description of the implementation manners, those skilled in the art can clearly understand that the above embodiments can be implemented by software, or by means of software plus a necessary general hardware platform. Based on this understanding, the technical solutions of the above embodiments can be embodied in the form of software products, which can be stored in a non-volatile storage medium (which can be CD-ROM, U disk, mobile hard disk, etc.), including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute the methods described in various embodiments of the present invention.
实施例二Embodiment two
图4为本发明实施例二提供的一种相似视频检索的系统的示意图,如图4所示,主要包括:Fig. 4 is a schematic diagram of a similar video retrieval system provided in Embodiment 2 of the present invention, as shown in Fig. 4, mainly including:
特征矢量计算模块41,用于利用颜色空间模型计算视频库中每一视频关键帧集合的特征矢量;Feature vector calculation module 41, for utilizing the color space model to calculate the feature vector of each video key frame set in the video storehouse;
索引构建模块42,用于通过哈希函数映射所述特征矢量,根据映射后的矢量值所在区间构建索引;An index construction module 42, configured to map the feature vector through a hash function, and construct an index according to the interval where the mapped vector value is located;
相似度计算模块43,根据待检索视频每一运动矢量映射后的各个矢量值所在区间确定对应索引的编号,提取对应索引下所有特征矢量对应的视频信息,根据待检索视频与对应索引下提取出的视频中相似关键帧的个数进行相似度的计算;The similarity calculation module 43 determines the serial number of the corresponding index according to the interval of each vector value after each motion vector mapping of the video to be retrieved, extracts the video information corresponding to all feature vectors under the corresponding index, and extracts the corresponding index according to the video to be retrieved and the corresponding index. The number of similar key frames in the video is used to calculate the similarity;
检索结果输出模块44,用于将大于阈值的计算结果对应的视频作为检索结果输出。The retrieval result output module 44 is configured to output the video corresponding to the calculation result greater than the threshold as the retrieval result.
所述特征矢量计算模块41包括:The feature vector calculation module 41 includes:
关键帧集合提取模块411,用于通过聚类算法提取所述视频库中每一视频关键帧集合,且该模块包括:聚类模块412,用于从第n帧开始提取视频帧,并以该帧为中心计算后续各帧与其帧间距离;当第n+i帧与第n帧的帧间距离大于阈值时,则第n帧至第n+i-1帧构成一聚类,将第n帧作为关键帧。The key frame set extraction module 411 is used to extract each video key frame set in the video library by a clustering algorithm, and this module includes: a clustering module 412, which is used to extract video frames from the nth frame, and use the The frame is the center to calculate the distance between subsequent frames and their frames; when the distance between the n+i frame and the n frame is greater than the threshold, the nth frame to the n+i-1th frame form a cluster, and the nth frame frame as a keyframe.
所述特征矢量计算模块41包括:The feature vector calculation module 41 includes:
图像颜色转换模块412,用于利用色调饱和度亮度HSV颜色模型对关键帧中的图像颜色进行转换;The image color conversion module 412 is used to convert the image color in the key frame by using the hue-saturation-brightness HSV color model;
图像特征矢量计算模块413,用于利用HSV空间对颜色转换后的图像进行非等间隔量化,并进行直方图计算获得图像的特征矢量。The image feature vector calculation module 413 is used to use the HSV space to perform non-equal interval quantization on the image after color conversion, and perform histogram calculation to obtain the feature vector of the image.
所述索引构建模块42包括:The index building module 42 includes:
矢量值获取模块421,用于将特征矢量通过哈希函数映射到一维空间,获得对应的矢量值;The vector value acquisition module 421 is used to map the feature vector to a one-dimensional space through a hash function to obtain a corresponding vector value;
特征矢量分配模块422,用于按照矢量值所在的区间确定所属的存储节点编号,并将特征矢量分配到该存储节点对应的哈希桶中;所述哈希桶中包含每一特征矢量对应的视频及帧的信息。The feature vector distribution module 422 is used to determine the number of the storage node according to the interval where the vector value is located, and distribute the feature vector to the hash bucket corresponding to the storage node; the hash bucket contains each feature vector corresponding to Video and frame information.
所述相似度计算模块43包括:Described similarity calculating module 43 comprises:
信息提取模块431,用于根据待检索视频每一运动矢量映射后的各个矢量值所在区间确定所属的存储节点及对应哈希桶的编号,并提取对应编号哈希桶中所有特征矢量对应视频的信息;The information extraction module 431 is used to determine the corresponding storage node and the number of the corresponding hash bucket according to the interval of each vector value after each motion vector mapping of the video to be retrieved, and extract the corresponding video of all the feature vectors in the hash bucket of the corresponding number information;
视频相似度计算模块432,用于计算待检索视频与从哈希桶中提取出的特征矢量所属视频的相似度,其公式为:The video similarity calculation module 432 is used to calculate the similarity between the video to be retrieved and the video to which the feature vector extracted from the hash bucket belongs, and its formula is:
其中,|KFi|为待检索视频Vi的关键帧的数量;|KFj|为哈希桶中提取出的特征矢量所属视频Vj的关键帧的数量;|KFi∩KFj|表示Vi和Vj相似的关键帧的个数。Among them, |KF i | is the number of key frames of the video V i to be retrieved; |KF j | is the number of key frames of the video V j to which the feature vector extracted from the hash bucket belongs; |KF i ∩KF j | means The number of keyframes where V i and V j are similar.
需要说明的是,上述装置中包含的各个处理单元所实现的功能的具体实现方式在前面的各个实施例中已经有详细描述,故在这里不再赘述。It should be noted that, the specific implementation manners of the functions implemented by each processing unit included in the above apparatus have been described in detail in the foregoing embodiments, so details will not be repeated here.
本发明实施例通过使用视觉特征提取技术,并基于内存约束的分布式哈希结构对高维特征矢量分类及建立索引,根据返回的相似关键帧集合对待检索的视频进行相似度计算,实现了海量相似视频的快速检索。The embodiment of the present invention uses the visual feature extraction technology, and classifies and indexes the high-dimensional feature vectors based on the memory-constrained distributed hash structure, and calculates the similarity of the videos to be retrieved according to the returned similar key frame set, realizing massive Quick retrieval of similar videos.
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。Those skilled in the art can clearly understand that for the convenience and brevity of description, only the division of the above-mentioned functional modules is used as an example for illustration. In practical applications, the above-mentioned function allocation can be completed by different functional modules according to needs. The internal structure of the device is divided into different functional modules to complete all or part of the functions described above.
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。The above is only a preferred embodiment of the present invention, but the scope of protection of the present invention is not limited thereto. Any person familiar with the technical field can easily conceive of changes or changes within the technical scope disclosed in the present invention. Replacement should be covered within the protection scope of the present invention. Therefore, the protection scope of the present invention should be determined by the protection scope of the claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013100340117A CN103257992A (en) | 2013-01-29 | 2013-01-29 | Method and system for retrieving similar videos |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013100340117A CN103257992A (en) | 2013-01-29 | 2013-01-29 | Method and system for retrieving similar videos |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103257992A true CN103257992A (en) | 2013-08-21 |
Family
ID=48961917
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2013100340117A Pending CN103257992A (en) | 2013-01-29 | 2013-01-29 | Method and system for retrieving similar videos |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103257992A (en) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103984778A (en) * | 2014-06-06 | 2014-08-13 | 北京金山网络科技有限公司 | Video retrieval method and video retrieval system |
GB2518876A (en) * | 2013-10-04 | 2015-04-08 | Nokia Corp | Method, apparatus and computer program product for similarity determination in multimedia content |
CN104504101A (en) * | 2014-12-30 | 2015-04-08 | 北京奇艺世纪科技有限公司 | Determination method and device of similarity videos |
WO2016000509A1 (en) * | 2014-06-30 | 2016-01-07 | 华为技术有限公司 | Data filtering method, and data filter construction method and apparatus |
CN105681898A (en) * | 2015-12-31 | 2016-06-15 | 北京奇艺世纪科技有限公司 | Similar video and pirated video detection method and device |
CN106156284A (en) * | 2016-06-24 | 2016-11-23 | 合肥工业大学 | Video retrieval method is closely repeated based on random the extensive of various visual angles Hash |
CN106372092A (en) * | 2015-07-23 | 2017-02-01 | 无锡天脉聚源传媒科技有限公司 | Method and device for generating template, and video update method and device |
CN106375847A (en) * | 2015-07-23 | 2017-02-01 | 无锡天脉聚源传媒科技有限公司 | Template generation method, template generation device, video updating method and video updating device |
CN106557545A (en) * | 2016-10-19 | 2017-04-05 | 北京小度互娱科技有限公司 | Video retrieval method and device |
CN106982389A (en) * | 2017-03-17 | 2017-07-25 | 腾讯科技(深圳)有限公司 | Video type recognition methods and device |
CN110222594A (en) * | 2019-05-20 | 2019-09-10 | 厦门能见易判信息科技有限公司 | Pirate video recognition methods and system |
CN110427895A (en) * | 2019-08-06 | 2019-11-08 | 李震 | A kind of video content similarity method of discrimination based on computer vision and system |
CN110502664A (en) * | 2019-08-27 | 2019-11-26 | 腾讯科技(深圳)有限公司 | Video tab indexes base establishing method, video tab generation method and device |
CN110955800A (en) * | 2018-09-26 | 2020-04-03 | 传线网络科技(上海)有限公司 | Video retrieval method and device |
CN111064865A (en) * | 2019-12-31 | 2020-04-24 | 中国人民解放军国防科技大学 | A dynamic vision sensor background activity noise filter and processor |
CN111507260A (en) * | 2020-04-17 | 2020-08-07 | 重庆邮电大学 | Video similarity rapid detection method and detection device |
CN113254701A (en) * | 2021-06-21 | 2021-08-13 | 北京电信易通信息技术股份有限公司 | Video data index construction method and system based on FOV model |
CN113536031A (en) * | 2021-06-17 | 2021-10-22 | 北京百度网讯科技有限公司 | Video searching method and device, electronic equipment and storage medium |
CN114041165A (en) * | 2019-07-18 | 2022-02-11 | 华为技术有限公司 | Video similarity detection method, device and equipment |
CN114676278A (en) * | 2022-03-22 | 2022-06-28 | 鲸灵云(杭州)智能有限公司 | User picture identification processing method and system based on private domain e-commerce platform and storage medium |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5805746A (en) * | 1993-10-20 | 1998-09-08 | Hitachi, Ltd. | Video retrieval method and apparatus |
JP2006060796A (en) * | 2004-07-21 | 2006-03-02 | Nippon Telegr & Teleph Corp <Ntt> | Video search apparatus, method and program, and recording medium recording program |
-
2013
- 2013-01-29 CN CN2013100340117A patent/CN103257992A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5805746A (en) * | 1993-10-20 | 1998-09-08 | Hitachi, Ltd. | Video retrieval method and apparatus |
JP2006060796A (en) * | 2004-07-21 | 2006-03-02 | Nippon Telegr & Teleph Corp <Ntt> | Video search apparatus, method and program, and recording medium recording program |
Non-Patent Citations (4)
Title |
---|
姜兰池,沈国强,张国煊: "基于HSV分块颜色直方图的图像检索方法", 《机电工程》 * |
曹海傧,朱明,冯伟国: "一种基于分布式LSH的海量视频快速检索方法", 《中国科学院研究生院学报》 * |
朱映映,周洞汝: "一种基于视频聚类的关键帧提取方法", 《计算机工程》 * |
潘晓英: "一种基于核聚类的关键帧提取方法", 《微机发展》 * |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2518876A (en) * | 2013-10-04 | 2015-04-08 | Nokia Corp | Method, apparatus and computer program product for similarity determination in multimedia content |
CN103984778A (en) * | 2014-06-06 | 2014-08-13 | 北京金山网络科技有限公司 | Video retrieval method and video retrieval system |
US9755616B2 (en) | 2014-06-30 | 2017-09-05 | Huawei Technologies Co., Ltd. | Method and apparatus for data filtering, and method and apparatus for constructing data filter |
WO2016000509A1 (en) * | 2014-06-30 | 2016-01-07 | 华为技术有限公司 | Data filtering method, and data filter construction method and apparatus |
CN104504101A (en) * | 2014-12-30 | 2015-04-08 | 北京奇艺世纪科技有限公司 | Determination method and device of similarity videos |
CN104504101B (en) * | 2014-12-30 | 2018-10-30 | 北京奇艺世纪科技有限公司 | A kind of determination method and device of similar video |
CN106372092A (en) * | 2015-07-23 | 2017-02-01 | 无锡天脉聚源传媒科技有限公司 | Method and device for generating template, and video update method and device |
CN106375847A (en) * | 2015-07-23 | 2017-02-01 | 无锡天脉聚源传媒科技有限公司 | Template generation method, template generation device, video updating method and video updating device |
CN105681898A (en) * | 2015-12-31 | 2016-06-15 | 北京奇艺世纪科技有限公司 | Similar video and pirated video detection method and device |
CN105681898B (en) * | 2015-12-31 | 2018-10-30 | 北京奇艺世纪科技有限公司 | A kind of detection method and device of similar video and pirate video |
CN106156284A (en) * | 2016-06-24 | 2016-11-23 | 合肥工业大学 | Video retrieval method is closely repeated based on random the extensive of various visual angles Hash |
CN106557545A (en) * | 2016-10-19 | 2017-04-05 | 北京小度互娱科技有限公司 | Video retrieval method and device |
CN106557545B (en) * | 2016-10-19 | 2020-08-07 | 北京小度互娱科技有限公司 | Video retrieval method and device |
CN106982389A (en) * | 2017-03-17 | 2017-07-25 | 腾讯科技(深圳)有限公司 | Video type recognition methods and device |
CN110955800A (en) * | 2018-09-26 | 2020-04-03 | 传线网络科技(上海)有限公司 | Video retrieval method and device |
CN110222594A (en) * | 2019-05-20 | 2019-09-10 | 厦门能见易判信息科技有限公司 | Pirate video recognition methods and system |
CN110222594B (en) * | 2019-05-20 | 2021-11-16 | 厦门能见易判信息科技有限公司 | Pirated video identification method and system |
CN114041165A (en) * | 2019-07-18 | 2022-02-11 | 华为技术有限公司 | Video similarity detection method, device and equipment |
CN110427895A (en) * | 2019-08-06 | 2019-11-08 | 李震 | A kind of video content similarity method of discrimination based on computer vision and system |
CN110502664A (en) * | 2019-08-27 | 2019-11-26 | 腾讯科技(深圳)有限公司 | Video tab indexes base establishing method, video tab generation method and device |
CN111064865B (en) * | 2019-12-31 | 2021-08-31 | 中国人民解放军国防科技大学 | A dynamic vision sensor background activity noise filter and processor |
CN111064865A (en) * | 2019-12-31 | 2020-04-24 | 中国人民解放军国防科技大学 | A dynamic vision sensor background activity noise filter and processor |
CN111507260A (en) * | 2020-04-17 | 2020-08-07 | 重庆邮电大学 | Video similarity rapid detection method and detection device |
CN111507260B (en) * | 2020-04-17 | 2022-08-05 | 重庆邮电大学 | Video similarity rapid detection method and detection device |
CN113536031A (en) * | 2021-06-17 | 2021-10-22 | 北京百度网讯科技有限公司 | Video searching method and device, electronic equipment and storage medium |
CN113254701A (en) * | 2021-06-21 | 2021-08-13 | 北京电信易通信息技术股份有限公司 | Video data index construction method and system based on FOV model |
CN114676278A (en) * | 2022-03-22 | 2022-06-28 | 鲸灵云(杭州)智能有限公司 | User picture identification processing method and system based on private domain e-commerce platform and storage medium |
CN114676278B (en) * | 2022-03-22 | 2024-12-20 | 鲸灵云(杭州)智能有限公司 | A method, system and storage medium for identifying and processing user images in a private domain e-commerce platform |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103257992A (en) | Method and system for retrieving similar videos | |
Ashraf et al. | Content based image retrieval by using color descriptor and discrete wavelet transform | |
CN111723220B (en) | Image retrieval method, device and storage medium based on attention mechanism and hash | |
CN104376105B (en) | The Fusion Features system and method for image low-level visual feature and text description information in a kind of Social Media | |
CN102880873B (en) | Personnel behavior identification implementation system and method based on image segmentation and semantic extraction | |
CN110263659A (en) | A kind of finger vein identification method and system based on triple loss and lightweight network | |
CN104778224B (en) | A kind of destination object social networks recognition methods based on video semanteme | |
CN112487886A (en) | Method and device for identifying face with shielding, storage medium and terminal | |
CN101394522A (en) | Method and system for detecting video copy | |
CN108629783A (en) | Image partition method, system and medium based on the search of characteristics of image density peaks | |
WO2021208601A1 (en) | Artificial-intelligence-based image processing method and apparatus, and device and storage medium | |
CN103714181A (en) | Stratification specific figure search method | |
WO2023159765A1 (en) | Video search method and apparatus, electronic device and storage medium | |
CN103336835B (en) | Image retrieval method based on weight color-sift characteristic dictionary | |
WO2023108995A1 (en) | Vector similarity calculation method and apparatus, device and storage medium | |
Pradhan et al. | Principal texture direction based block level image reordering and use of color edge features for application of object based image retrieval | |
CN111242019A (en) | Video content detection method and device, electronic equipment and storage medium | |
CN105678244A (en) | Approximate video retrieval method based on improvement of editing distance | |
Liu et al. | Learning directional co-occurrence for human action classification | |
CN116049434A (en) | Construction method and device of power construction safety knowledge graph and electronic equipment | |
CN110110120A (en) | A kind of image search method and device based on deep learning | |
Chandrakala et al. | Application of artificial bee colony optimization algorithm for image classification using color and texture feature similarity fusion | |
CN109145140A (en) | One kind being based on the matched image search method of hand-drawn outline figure and system | |
Sunny et al. | Map-Reduce based framework for instrument detection in large-scale surgical videos | |
CN104156423B (en) | Multiple dimensioned video key frame extracting method based on integer programming |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20130821 |