CN103257577A - Inverter maximum fire angle control simulation device - Google Patents
Inverter maximum fire angle control simulation device Download PDFInfo
- Publication number
- CN103257577A CN103257577A CN2013101067983A CN201310106798A CN103257577A CN 103257577 A CN103257577 A CN 103257577A CN 2013101067983 A CN2013101067983 A CN 2013101067983A CN 201310106798 A CN201310106798 A CN 201310106798A CN 103257577 A CN103257577 A CN 103257577A
- Authority
- CN
- China
- Prior art keywords
- angle control
- trigonometric function
- inverter
- control
- operation element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004088 simulation Methods 0.000 title abstract description 37
- 230000005540 biological transmission Effects 0.000 claims abstract description 17
- 238000010304 firing Methods 0.000 abstract description 27
- 238000011160 research Methods 0.000 abstract description 8
- 238000013461 design Methods 0.000 abstract description 6
- 238000012360 testing method Methods 0.000 abstract description 5
- 238000005259 measurement Methods 0.000 abstract description 2
- 238000011084 recovery Methods 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000013475 authorization Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Landscapes
- Inverter Devices (AREA)
Abstract
一种逆变器最大触发角控制仿真装置,属于电气测量领域,尤其涉及一种用于高压直流输电设备的直流控制保护系统仿真研究的逆变器最大触发角控制仿真测试装置,包括第六惯性元件,第一三角函数元件,速率限制器,第三三角函数元件和第一至第三算术运算元件;第六惯性元件的输入端,通过第一算术运算元件连接到输入信号端,第六惯性元件和第一三角函数元件的输出端,通过第二算术运算元件合并后,连接到速率限制器的输入端;速率限制器的输出端,依次通过第三三角函数元件和第三算术运算元件,连接到逆变器最大触发角信号端。该装置可真实地模拟、反映直流控制保护装置的运行状态,为直流控制保护装置的研究或设计提供相应的仿真结果。
An inverter maximum firing angle control simulation device, which belongs to the field of electrical measurement, in particular relates to an inverter maximum firing angle control simulation test device for simulation research on DC control and protection systems of high-voltage direct current transmission equipment, including the sixth inertia Element, the first trigonometric function element, rate limiter, the third trigonometric function element and the first to the third arithmetic operation element; the input terminal of the sixth inertial element is connected to the input signal end through the first arithmetic operation element, the sixth inertial The output end of the element and the first trigonometric function element is connected to the input end of the rate limiter after being combined by the second arithmetic operation element; the output end of the rate limiter passes through the third trigonometric function element and the third arithmetic operation element in turn, Connect to the inverter maximum firing angle signal terminal. The device can truly simulate and reflect the operating state of the DC control and protection device, and provide corresponding simulation results for the research or design of the DC control and protection device.
Description
技术领域technical field
本发明属于电气测量领域,尤其涉及一种用于高压直流输电设备的直流控制保护系统仿真研究的逆变器最大触发角控制仿真测试装置。The invention belongs to the field of electrical measurement, and in particular relates to an inverter maximum firing angle control simulation test device used for simulation research of a DC control and protection system of high-voltage direct current transmission equipment.
背景技术Background technique
电力需求的不断增长导致了输电系统向长距离、大容量和高稳定性的方向发展。随着各电网区域内的特高压交流输电工程和高压直流输电工程的建设项目不断增加,用电量集中区域的电网呈现出明显的多直流馈入的特高压交直流混联受端电网特征,电网结构紧密,多条交直流线路之间电气距离更加紧密,特高压和超高压交流系统故障后,易引发包含高压直流在内的多条直流同时换相失败,而多回直流的换相失败其恢复过程又将对交流系统产生较大冲击,如果各直流系统的恢复策略配合不当,则还有可能导致多条直流同时发生连续的换相失败,甚至引发直流闭锁。多回直流同时发生双极闭锁,大量潮流大范围转移或将引发系统稳定问题。这种交直流系统间的交互作用给特高压交直流混联受端电网的安全运行带来巨大挑战。The ever-increasing demand for electricity has led to the development of power transmission systems in the direction of long distance, large capacity and high stability. As the construction projects of UHV AC transmission projects and HVDC transmission projects in various power grid regions continue to increase, the power grids in areas where power consumption is concentrated show obvious characteristics of UHV AC-DC hybrid receiving-end power grids with multi-DC feeds. The power grid structure is tight, and the electrical distance between multiple AC and DC lines is closer. After the UHV and EHV AC systems fail, it is easy to cause multiple DCs including high-voltage DCs to fail at the same time, and the commutation of multiple DCs fails. The recovery process will have a greater impact on the AC system. If the recovery strategies of the various DC systems are not properly coordinated, it may also cause continuous commutation failures on multiple DC systems at the same time, and even cause DC blocking. Simultaneous bipolar blocking of multiple DC circuits, large-scale transfer of a large number of power flows may cause system stability problems. This interaction between the AC and DC systems brings great challenges to the safe operation of the UHV AC-DC hybrid power grid.
因此,在高压直流输电工程的研究或设计阶段,必须对交直流系统间的交互作用给特高压交直流混联受端电网的稳定性进行试验和仿真,并参照试验和仿真结果,对研究或设计的结果进行验证,对系统的稳定性进行评估。中国实用新型专利“一种多馈入直流输电系统实时数字仿真模型”(实用新型专利号:ZL201210532559.X授权公告号:CN102945004A)公开了多馈入直流输电系统实时数字仿真模型,其包括多个并联的等值超高压直流输电系统,所述超高压直流输电系统包括一次系统实时数字仿真模型和二次系统实时数字仿真模型;所述一次系统实时数字仿真模型包括换流站和直流输电线路,所述换流站设置在直流输电线路的两端;所述二次系统实时数字仿真模型包括换流站控制系统和保护系统,所述换流站控制系统和保护系统与换流站连接,用于控制和保护换流站的运行。通过换流站控制系统和保护系统对换流站运行的控制和保护,避免交流系统故障后易引发多回直流同时故障和多回直流故障及其恢复过程对交流系统产生的冲击。但是,该仿真模型没有涉及逆变器最大触发角控制的仿真,无法真实地模拟高压直流输电直流控制保护系统的逆变器最大触发角控制运行状态。Therefore, in the research or design stage of HVDC transmission projects, it is necessary to conduct tests and simulations on the stability of the UHV AC-DC hybrid receiving end grid due to the interaction between the AC and DC systems, and refer to the test and simulation results for research or The design results are verified and the stability of the system is evaluated. Chinese utility model patent "a real-time digital simulation model of multi-infeed direct current transmission system" (utility model patent number: ZL201210532559.X authorization announcement number: CN102945004A) discloses a real-time digital simulation model of multi-infeed direct current A parallel equivalent ultra-high voltage direct current transmission system, the ultra-high voltage direct current transmission system includes a real-time digital simulation model of a primary system and a real-time digital simulation model of a secondary system; the real-time digital simulation model of the primary system includes a converter station and a direct current transmission line, The converter station is set at both ends of the direct current transmission line; the real-time digital simulation model of the secondary system includes a converter station control system and a protection system, and the converter station control system and protection system are connected to the converter station for use in It is used to control and protect the operation of the converter station. Through the control and protection of the operation of the converter station by the control system and protection system of the converter station, it is easy to avoid the impact of multiple DC simultaneous faults and multiple DC faults and the recovery process on the AC system after the AC system fails. However, the simulation model does not involve the simulation of the maximum firing angle control of the inverter, and cannot truly simulate the operating state of the maximum firing angle control of the inverter in the HVDC DC control protection system.
发明内容Contents of the invention
本发明的目的是要提供一种逆变器最大触发角控制仿真装置,其可真实地模拟反映高压直流输电直流控制保护系统的逆变器最大触发角控制状态,为直流控制保护装置的逆变器最大触发角控制研究或设计提供相应的仿真结果,解决为直流控制保护装置的逆变器最大触发角控制研究或设计提供验证平台的技术问题。The purpose of the present invention is to provide an inverter maximum trigger angle control simulation device, which can truly simulate and reflect the inverter maximum trigger angle control state of the high-voltage direct current transmission DC control and protection system, and is an inverter of the DC control and protection device. Provide corresponding simulation results for the research or design of the maximum firing angle control of the inverter, and solve the technical problem of providing a verification platform for the research or design of the inverter maximum firing angle control of the DC control protection device.
本发明解决上述技术问题所采用的技术方案是:The technical solution adopted by the present invention to solve the problems of the technologies described above is:
一种逆变器最大触发角控制仿真装置,设置在直流控制保护系统的换流器触发角控制装置中,用于高压直流输电设备的直流控制保护系统的仿真,其特征在于:An inverter maximum firing angle control simulation device, which is set in the converter firing angle control device of the DC control and protection system, and is used for the simulation of the DC control and protection system of the high-voltage direct current transmission equipment, is characterized in that:
所述的逆变器最大触发角控制仿真装置包括第六惯性元件,第一三角函数元件,速率限制器,第三三角函数元件和第一至第三算术运算元件;The inverter maximum firing angle control simulation device includes a sixth inertial element, a first trigonometric function element, a rate limiter, a third trigonometric function element and first to third arithmetic operation elements;
所述第六惯性元件的输入端,通过第一算术运算元件连接到输入信号端,所述第六惯性元件和第一三角函数元件的输出端,通过第二算术运算元件合并后,连接到所述速率限制器的输入端;所述速率限制器的输出端,依次通过所述的第三三角函数元件和第三算术运算元件,连接到逆变器最大触发角信号端。The input end of the sixth inertial element is connected to the input signal end through the first arithmetic operation element, and the output end of the sixth inertial element and the first trigonometric function element is connected to the The input end of the rate limiter; the output end of the rate limiter is connected to the maximum firing angle signal end of the inverter through the third trigonometric function element and the third arithmetic operation element in turn.
本发明的逆变器最大触发角控制仿真装置的一种较佳的技术方案,其特征在于所述的逆变器最大触发角控制仿真装置还包括第七惯性元件,第三极值选择器,第二三角函数元件和第四至第六算术运算元件;所述第七惯性元件的输入端连接到输入信号端,所述第七惯性元件和第三极值选择器的输出端,依次通过第四算术运算元件和第五算术运算元件,连接到所述第二算术运算元件和第六算术运算元件的输入端;所述第六算术运算元件的输出端,连接到所述速率限制器的下限值输入端。A preferred technical solution of the inverter maximum firing angle control simulation device of the present invention is characterized in that the inverter maximum firing angle control simulation device also includes a seventh inertial element, a third extreme value selector, The second trigonometric function element and the fourth to sixth arithmetic operation elements; the input end of the seventh inertial element is connected to the input signal end, and the output end of the seventh inertial element and the third extreme value selector is sequentially passed through the first The fourth arithmetic operation element and the fifth arithmetic operation element are connected to the input ends of the second arithmetic operation element and the sixth arithmetic operation element; the output end of the sixth arithmetic operation element is connected to the lower end of the rate limiter Limit input.
本发明的有益效果是:The beneficial effects of the present invention are:
1.本发明的逆变器最大触发角控制仿真装置可真实地模拟、反映直流控制保护装置的逆变器最大触发角控制运行状态,为直流控制保护装置的研究或设计提供相应的仿真结果;1. The inverter maximum firing angle control simulation device of the present invention can truly simulate and reflect the inverter maximum firing angle control operation state of the DC control protection device, and provide corresponding simulation results for the research or design of the DC control protection device;
2.本发明的逆变器最大触发角控制仿真装置具有跨平台仿真测试的优点,既可以在真实环境以实际元件实现,又可以在虚拟环境中以计算机软件来实现;2. The inverter maximum firing angle control simulation device of the present invention has the advantage of cross-platform simulation test, which can be realized with actual components in a real environment, and can be realized with computer software in a virtual environment;
附图说明Description of drawings
图1是用于直流控制保护系统的仿真装置的原理框图;Fig. 1 is a functional block diagram of a simulation device for a DC control and protection system;
图2是本发明的逆变器最大触发角控制仿真装置的电路原理图。Fig. 2 is a schematic circuit diagram of the inverter maximum firing angle control simulation device of the present invention.
以上图中各部件的标号:100-高压直流输电设备,110-交流滤波器投切装置,120-换流变压器,130-晶闸管换流器,200-控制单元,210-角度、电流电压基准值计算装置,220-换流器触发角控制装置,230-触发脉冲产生装置,240-换流变分接头控制装置,250-极功率控制装置,260-过负荷控制装置,270-无功功率控制装置,300-直流系统保护单元,900-运行控制工作站。2226-第六惯性元件,2227-第七惯性元件,2243-第三极值选择器,2251~2256-第一至第六算术运算元件,2262-速率限制器,2271~2273-第一至第三三角函数元件,ALPHA_MAX-逆变器最大触发角信号端。The labels of the components in the above figure: 100-HVDC transmission equipment, 110-AC filter switching device, 120-converter transformer, 130-thyristor converter, 200-control unit, 210-angle, current and voltage reference value Calculation device, 220-converter trigger angle control device, 230-trigger pulse generator, 240-converter tap control device, 250-pole power control device, 260-overload control device, 270-reactive power control device, 300-DC system protection unit, 900-operation control workstation. 2226-sixth inertial element, 2227-seventh inertial element, 2243-third extreme value selector, 2251-2256-first to sixth arithmetic operation element, 2262-speed limiter, 2271-2273-first to second Trigonometric function element, ALPHA_MAX- the signal terminal of the maximum firing angle of the inverter.
具体实施方式Detailed ways
为了能更好地理解本发明的上述技术方案,下面结合附图和实施例进行进一步详细描述。In order to better understand the above-mentioned technical solution of the present invention, a further detailed description will be given below in conjunction with the accompanying drawings and embodiments.
图2展示了本发明的逆变器最大触发角控制仿真装置的一个实施例,连接在直流控制保护系统的换流器触发角控制装置中,用于高压直流输电设备的直流控制保护系统的仿真。本发明的逆变器最大触发角控制仿真装置是直流控制保护系统的换流器触发角控制装置220的基本功能单元之一。高压直流输电设备的直流控制保护系统的仿真装置如图1所示。Figure 2 shows an embodiment of the inverter maximum firing angle control simulation device of the present invention, which is connected in the converter firing angle control device of the DC control and protection system, and is used for the simulation of the DC control and protection system of the high-voltage direct current transmission equipment . The inverter maximum firing angle control simulation device of the present invention is one of the basic functional units of the converter firing
如图2所示,本发明的逆变器最大触发角控制仿真装置包括第六惯性元件2226,第一三角函数元件2271,速率限制器2262,第三三角函数元件2273和第一至第三算术运算元件2251~2253;As shown in Figure 2, the inverter maximum firing angle control simulation device of the present invention includes a sixth
第六惯性元件2226的输入端,通过第一算术运算元件2251连接到输入信号端IORD_LIM,第六惯性元件2226和第一三角函数元件2271的输出端,通过第二算术运算元件2252合并后,连接到速率限制器2262的输入端;速率限制器2262的输出端,依次通过第三三角函数元件2273和第三算术运算元件2253,连接到逆变器最大触发角信号端ALPHMAX。The input end of the sixth
根据图2所示的实施例,本发明的逆变器最大触发角控制仿真装置还包括第七惯性元件2227,第三极值选择器2243,第二三角函数元件2272和第四至第六算术运算元件2254~2256;第七惯性元件2227的输入端连接到输入信号端,第七惯性元件2227和第三极值选择器2243的输出端,依次通过第四算术运算元件2254和第五算术运算元件2255,连接到第二算术运算元件2252和第六算术运算元件2256的输入端;第六算术运算元件2256的输出端,连接到速率限制器2262的下限值输入端。According to the embodiment shown in Figure 2, the inverter maximum firing angle control simulation device of the present invention also includes a seventh
本发明的逆变器最大触发角控制仿真装置的主要作用是保证换流器在暂态情况下,逆变侧具有正斜率特性,有利于系统在经受扰动情况下的稳定和恢复。The main function of the simulation device for controlling the maximum firing angle of the inverter of the present invention is to ensure that the inverter side of the converter has a positive slope characteristic in the transient state, which is beneficial to the stability and recovery of the system under the disturbance.
本技术领域中的普通技术人员应当认识到,以上的实施例仅是用来说明本发明的技术方案,而并非用作为对本发明的限定,任何基于本发明的实质精神对以上所述实施例所作的变化、变型,都将落在本发明的权利要求的保护范围内。Those of ordinary skill in the technical field should recognize that the above embodiments are only used to illustrate the technical solutions of the present invention, and are not used as limitations to the present invention. All changes and modifications will fall within the protection scope of the claims of the present invention.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013101067983A CN103257577A (en) | 2013-03-29 | 2013-03-29 | Inverter maximum fire angle control simulation device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013101067983A CN103257577A (en) | 2013-03-29 | 2013-03-29 | Inverter maximum fire angle control simulation device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103257577A true CN103257577A (en) | 2013-08-21 |
Family
ID=48961555
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2013101067983A Pending CN103257577A (en) | 2013-03-29 | 2013-03-29 | Inverter maximum fire angle control simulation device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103257577A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106549389A (en) * | 2016-11-10 | 2017-03-29 | 中国电力科学研究院 | A Method for Optimizing Limiting Parameters of DC Minimum Firing Angle Limiter |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1473031A1 (en) * | 1987-01-28 | 1989-04-15 | Каунасский Политехнический Институт Им.Антанаса Снечкуса | Method of measuring the switching angle in thyratron converters |
GB2295506A (en) * | 1994-11-24 | 1996-05-29 | Gec Alsthom Ltd | HVDC converter control |
CN1881202A (en) * | 2005-06-16 | 2006-12-20 | 许继集团有限公司 | Simulation system and simulation method for high voltage AC and DC power transmission training |
WO2009110648A1 (en) * | 2008-03-06 | 2009-09-11 | Jun Sung Electronics Co., Ltd | Converter for hvdc |
CN101752873A (en) * | 2010-01-25 | 2010-06-23 | 株洲变流技术国家工程研究中心有限公司 | Protection method of DC electricity transmission high-voltage convertor station |
CN102549872A (en) * | 2009-06-18 | 2012-07-04 | Abb技术有限公司 | Controlling an inverter device of a high voltage DC system for supporting an AC system |
CN203133500U (en) * | 2013-03-29 | 2013-08-14 | 国家电网公司 | Inverter maximum firing angle control simulation device |
-
2013
- 2013-03-29 CN CN2013101067983A patent/CN103257577A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1473031A1 (en) * | 1987-01-28 | 1989-04-15 | Каунасский Политехнический Институт Им.Антанаса Снечкуса | Method of measuring the switching angle in thyratron converters |
GB2295506A (en) * | 1994-11-24 | 1996-05-29 | Gec Alsthom Ltd | HVDC converter control |
CN1881202A (en) * | 2005-06-16 | 2006-12-20 | 许继集团有限公司 | Simulation system and simulation method for high voltage AC and DC power transmission training |
WO2009110648A1 (en) * | 2008-03-06 | 2009-09-11 | Jun Sung Electronics Co., Ltd | Converter for hvdc |
CN102549872A (en) * | 2009-06-18 | 2012-07-04 | Abb技术有限公司 | Controlling an inverter device of a high voltage DC system for supporting an AC system |
CN101752873A (en) * | 2010-01-25 | 2010-06-23 | 株洲变流技术国家工程研究中心有限公司 | Protection method of DC electricity transmission high-voltage convertor station |
CN203133500U (en) * | 2013-03-29 | 2013-08-14 | 国家电网公司 | Inverter maximum firing angle control simulation device |
Non-Patent Citations (2)
Title |
---|
熊凌飞: "HVDC换流阀触发控制模型研究", 《中国优秀硕士学位论文全文数据库工程科技Ⅱ辑》 * |
马聪: "高压直流输电控制仿真研究", 《中国优秀硕士学位论文全文数据库工程科技Ⅱ辑》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106549389A (en) * | 2016-11-10 | 2017-03-29 | 中国电力科学研究院 | A Method for Optimizing Limiting Parameters of DC Minimum Firing Angle Limiter |
CN106549389B (en) * | 2016-11-10 | 2022-04-29 | 中国电力科学研究院 | A method for optimizing the limiting parameters of the DC minimum firing angle limiter |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103257578B (en) | A kind of current limiting low-voltage control imitation device | |
CN203133511U (en) | Trigger-pulse closed-loop current control simulator | |
CN203133503U (en) | Overvoltage control simulation device | |
CN103257288B (en) | A kind of DC low-voltage protection simulation device | |
CN103257576B (en) | A kind of extinction angle start control simulation device | |
CN203133502U (en) | Low-voltage current-limiting control simulation device | |
CN203101861U (en) | Arc extinction angle start control simulating device | |
CN103258076B (en) | A kind of simulator for minimum trigger angle limiter of rectifier | |
CN103257577A (en) | Inverter maximum fire angle control simulation device | |
CN203133210U (en) | DC low-voltage protection simulator | |
CN203133506U (en) | Phase-commutation failure protection simulator | |
CN103257575B (en) | A kind of pole power control simulation device | |
CN203133508U (en) | Reactive power control simulator | |
CN203133859U (en) | Simulation device of minimum triggering angle limiter of rectifier | |
CN203133500U (en) | Inverter maximum firing angle control simulation device | |
CN103257581B (en) | A kind of commutation failure protection simulation device | |
CN203204335U (en) | Tap joint rising and falling instruction simulation apparatus | |
CN203133501U (en) | Polar power control simulation device | |
CN203133505U (en) | Tap position simulator | |
CN103257583B (en) | A kind of overvoltage control simulation device | |
CN103257589B (en) | A kind of voltage regulator simulator | |
CN203133509U (en) | DC overvoltage protection simulator | |
CN103257580B (en) | Overload limit simulation device | |
CN203133512U (en) | Simulation device for voltage regulator | |
CN103257592B (en) | A kind of no-load direct current voltage control simulation device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20130821 |