CN103257302B - 一种基于故障电阻非线性识别的高阻接地故障检测方法 - Google Patents

一种基于故障电阻非线性识别的高阻接地故障检测方法 Download PDF

Info

Publication number
CN103257302B
CN103257302B CN201310175572.9A CN201310175572A CN103257302B CN 103257302 B CN103257302 B CN 103257302B CN 201310175572 A CN201310175572 A CN 201310175572A CN 103257302 B CN103257302 B CN 103257302B
Authority
CN
China
Prior art keywords
sigma
fault
high resistance
high impedance
resistance earthing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310175572.9A
Other languages
English (en)
Other versions
CN103257302A (zh
Inventor
王宾
耿建昭
董新洲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201310175572.9A priority Critical patent/CN103257302B/zh
Publication of CN103257302A publication Critical patent/CN103257302A/zh
Application granted granted Critical
Publication of CN103257302B publication Critical patent/CN103257302B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

一种基于故障电阻非线性识别的高阻接地故障检测方法,采集被监测馈线的相电压和零序电流瞬时值,分别计算各相电压与零序电流的相关系数,如果某相电压与零序电流的相关系数大于阈值R,则用最小二乘法分段线性拟合该相电压与零序电流构成的伏安特性曲线,进而根据各段拟合直线的斜率计算得到有效表征高阻接地故障特征的系数——故障电阻非线性系数,通过比较故障电阻非线性系数与阈值即可判断是否发生疑似高阻接地故障;连续检测疑似高阻接地故障的持续时间,如果超过延时,则最终判断为发生了高阻接地故障,本发明比基于谐波的检测方法灵敏度更高,比单纯基于时域量的检测方法具有更好的抗噪声能力。

Description

一种基于故障电阻非线性识别的高阻接地故障检测方法
技术领域
本发明属于电力系统故障检测和保护领域,特别涉及一种基于故障电阻非线性识别的高阻接地故障检测方法,用于检测中性点有效接地系统的配电线路高阻接地故障。
技术背景
配电线路负荷率快速增加和电缆线路的广泛应用使得配电网中性点有效接地方式越来越多地得到应用。中性点有效接地配电线路受送电走廊、自然环境等因素影响,容易发生经树枝、砂石等非理想导体的单相高阻接地故障。故障电流受故障回路阻抗的限制,小于零序过流保护动作阈值,故障难于被切除而长期存在,容易造成火灾、触电等严重后果,因此高阻接地故障检测十分重要。
高阻接地故障通常伴随电弧放电现象,同时故障回路阻抗呈非线性,导致故障电流在过零点附近产生明显畸变,因此有多种基于谐波的故障检测算法被提出,主要包括:A.E.Emanuel等提出的基于二次和三次谐波相位的方法,Texas A&M University以D.B.Russell等为代表提出的基于频谱分析的方法(专利号US.5578931)、基于谐波电流和基波电压比较的方法(专利号US.5659453)、低频能量检测方法,W.H.Kwon提出的基于偶次谐波能量变化的方法,以及D.I.Jeerings在1990年提出的采用相电流三次谐波相对系统电压的相位变化作为故障检测判据的方法。
但是,以上基于谐波的方法完全忽略了故障电流的动态特性,因此故障检测的灵敏性都不高。
发明内容
为了克服上述现有技术的缺陷,本发明提出了一种基于故障电阻非线性识别的高阻接地故障检测方法,根据高阻接地故障的一个明显特征——故障点过渡电阻并不恒定,而是随故障点电压的改变而动态变化,伏安特性呈现非线性的特点,通过识别这种非线性特征,实现有效地检测高阻接地故障。
为了达到上述目的,本发明的技术方案是这样实现的:
一种基于故障电阻非线性识别的高阻接地故障检测方法,包括以下步骤:
步骤一、对被监测馈线的相电压和零序电流进行采样,获得一个工频周波的采样值序列ua(n)、ub(n)、uc(n)、i0(n),n=1,2,……60;
步骤二、分别计算各相电压与零序电流的相关系数rx0,x=a,b,c,表示三相,如果存在rx0>rset,rset为一整定常数,取值为0.966;则判断x相为疑似故障相,且令uf(n)=ux(n),n=1,2,……60;否则判断没有发生疑似高阻接地故障且重复步骤一,rx0的计算方法为:
r x 0 = Σ k = 1 60 i 0 ( k ) u x ( k ) Σ k = 1 60 i 0 2 ( k ) Σ k = 1 N u x 2 ( k )
步骤三、找到序列uf(n)的最大值点,记作uf(max),分别构建两组数据序列:
x0(i)=i0(mod(max+42+i,60)),y0(i)=uf(mod(max+42+i,60)),i=1,2,……6
x1(j)=i0(mod(max+55+j,60)),y1(j)=uf(mod(max+55+j,60)),j=1,2,……10其中mod(x,y)表示求x除以y的余数;
步骤四、用最小二乘法分别线性拟合序列x0(i),y0(i)以及序列x1(j),y1(j),计算拟合直线的斜率k1、k2,并计算故障电阻非线性系数R,具体计算方法为:
k 1 = 6 Σ i = 1 6 x 0 ( i ) y 0 ( i ) - Σ i = 1 6 x 0 ( i ) Σ i = 1 6 y 0 ( i ) 6 Σ i = 1 6 x 0 2 ( i ) - Σ i = 1 6 x 0 ( i ) Σ i = 1 6 x 0 ( i )
k 2 = 10 Σ j = 1 10 x 1 ( j ) y 1 ( j ) - Σ j = 1 10 x 1 ( j ) Σ j = 1 10 y 1 ( j ) 10 Σ j = 1 10 x 1 2 ( j ) - Σ j = 1 10 x 1 ( j ) Σ j = 1 10 x 1 ( j )
R = k 1 k 2
步骤五、如果R>Rset,则判断为发生了高阻接地故障,其中Rset为一整定常数,取值范围为1.2-1.5;
步骤六、每0.02秒重复一次步骤一至步骤五,得到每个工频周波是否发生高阻接地故障的结果;如果高阻接地故障持续时间超过阈值Tset,则确定为发生了稳态高阻接地故障;其中Tset取值为1秒。
本发明的特点及效果:
本发明方法关注高阻接地故障故障电阻的非线性特性,通过采用最小二乘法对故障相电压和零序电流的采样值进行分段线性拟合并计算故障电阻非线性系数,在放大故障特征的同时减小了噪声的干扰,基于本发明方法的高阻接地故障检测比基于谐波的检测方法灵敏度更高,比单纯基于时域量的检测方法有更好的抗噪声能力,能有效地提高高阻接地故障的检测成功率,降低高阻接地故障所造成的危害。
具体实施方式
下面结合实例对本发明做详细叙述。
一种基于故障电阻非线性识别的高阻接地故障检测方法,包括以下步骤:
步骤一、对被监测馈线的相电压和零序电流进行采样,采样频率3kHz,获得工频周波采样值序列ua(n)、ub(n)、uc(n)、i0(n),n=1,2,……60,如下;
ua(n)=[1074.0,590.9,107.4,-752.0,-1504.0,-2471.0,-3330.0,-3975.0,-4727.0,-5479.0,-6016.0,-6553.0,-6983.0,-7413.0,-7628.0,-7843.0,-7843.0,-7843.0,-7843.0,-7735.0,-7843.0,-7413.0,-7091.0,-6553.0,-5909.0,-5264.0,-4620.0,-3760.0,-2901.0,-1934.0,-966.9,-483.5,0,859.5,1719.0,2578.0,3330.0,4190.0,4835.0,5479.0,6124.0,6661.0,7091.0,7413.0,7628.0,7628.0,7682.0,7736.0,7735.0,7735.0,7628.0,7306.0,6876.0,6231.0,5694.0,4942.0,4297.0,3330.0,2578.0,1612.0]
ub(n)=[6768.0,6983.0,7198.0,7628.0,7950.0,8058.0,8165.0,8165.0,8165.0,8165.0,7950.0,7520.0,7091.0,6339.0,5694.0,4942.0,4459.0,3975.0,3116.0,2149.0,1289.0,429.7,-429.7,-1289.0,-2149.0,-3116.0,-4082.0,-4835.0,-5587.0,-6231.0,-6768.0,-7037.0,-7306.0,-7628.0,-7950.0,-8058.0,-8058.0,-8058.0,-8058.0,-8058.0,-7843.0,-7306.0,-6768.0,-6124.0,-5372.0,-4620.0,-4136.0,-3653.0,-2686.0,-1719.0,-859.5,0,859.5,1612.0,2578.0,3438.0,4405.0,5157.0,5909.0,6446.0]
uc(n)=[-7520.0,-7359.0,-7198.0,-6768.0,-6016.0,-5264.0,-4620.0,-3653.0,-2793.0,-1826.0,-966.9,-107.4,644.6,1397.0,2256.0,3223.0,3653.0,4082.0,4727.0,5587.0,6124.0,6661.0,7091.0,7413.0,7628.0,7735.0,7735.0,7735.0,7628.0,7628.0,7413.0,7252.0,7091.0,6446.0,5801.0,5157.0,4405.0,3545.0,2686.0,1826.0,859.5,0,-752.0,-1504.0,-2364.0,-3330.0,-3760.0,-4190.0,-4942.0,-5587.0,-6231.0,-6768.0,-7198.0,-7520.0,-7735.0,-7735.0,-7843.0,-7843.0,-7735.0,-7735.0]
i0(n)=[0.5,0,-0.5,-0.75,-1.0,-1.5,-2.0,-3.25,-4.25,-5.5,-6.0,-6.75,-7.5,-8.25,-8.5,-8.75,-8.75,-8.75,-8.75,-8.75,-8.5,-8.5,-8.0,-7.25,-6.25,-5.25,-4.25,-3.25,-2.25,-1.0,-0.5,-0.125,0.25,0.5,0.75,1.25,2.25,3.0,3.75,5.0,5.75,6.5,7.5,7.75,8.5,8.5,8.625,8.75,8.75,8.5,8.5,8.0,7.75,6.5,5.75,4.75,3.75,2.75,1.25,0.5]
步骤二、为了确定疑似故障相,分别计算各相电压与零序电流的相关系数ra0,rb0,rc0如下:
r a 0 = Σ k = 1 60 i 0 ( k ) u a ( k ) Σ k = 1 60 i 0 2 ( k ) Σ k = 1 N u a 2 ( k ) = 0.993
r b 0 = Σ k = 1 60 i 0 ( k ) u b ( k ) Σ k = 1 60 i 0 2 ( k ) Σ k = 1 N u b 2 ( k ) = - 0.438
r c 0 = Σ k = 1 60 i 0 ( k ) u c ( k ) Σ k = 1 60 i 0 2 ( k ) Σ k = 1 N u c 2 ( k ) = - 0.532
由于ra0>0.966,因此判断A相为疑似故障相,令uf(n)=ua(n),n=1,2,……60;
步骤三、找到序列uf(n)的最大值点,为uf(48),由此计算x0(i)=i0(30+i)y0(i)=uf(30+i),i=1,2,……6,x1(j)=i0(43+j),y1(j)=uf(43+j),j=1,2,……10,得到
x0(i)=[-0.5,-0.125,0.25,0.5,0.75,1.25]
y0(i)=[-966.9,-483.5,0,859.5,1719.0,2578.0]
x1(i)=[7.75,8.5,8.5,8.625,8.75,8.75,8.5,8.5,8.0,7.75]
y1(i)=[7413.0,7628.0,7628.0,7682.0,7736.0,7735.0,7735.0,7628.0,7306.0,6876.0]
步骤四、分别用最小二乘法线性拟合序列x0(i),y0(i)以及序列x1(j),y1(j),计算拟合直线的斜率k1、k2,并计算故障电阻非线性系数R,具体计算方法为:
k 1 = 6 Σ i = 1 6 x 0 ( i ) y 0 ( i ) - Σ i = 1 6 x 0 ( i ) Σ i = 1 6 y 0 ( i ) 6 Σ i = 1 6 x 0 2 ( i ) - Σ i = 1 6 x 0 ( i ) Σ i = 1 6 x 0 ( i ) = 2139.5
k 2 = 10 Σ j = 1 10 x 1 ( j ) y 1 ( j ) - Σ j = 1 10 x 1 ( j ) Σ j = 1 10 y 1 ( j ) 10 Σ j = 1 10 x 1 2 ( j ) - Σ j = 1 10 x 1 ( j ) Σ j = 1 10 x 1 ( j ) = 619.1
R = k 1 k 2 = 3.46
步骤五、设定Rset=1.5,R>Rset,因此判断发生了高阻接地故障;
步骤六、每0.02秒重复一次步骤一至步骤五,得到每个工频周波是否发生高阻接地故障的结果,如果高阻接地故障持续时间超过1秒,则判断发生了稳态高阻接地故障。

Claims (1)

1.一种基于故障电阻非线性识别的高阻接地故障检测方法,其特征在于,包括以下步骤:
步骤一、对被监测馈线的相电压和零序电流进行采样,获得一个工频周波的采样值序列ua(n)、ub(n)、uc(n)、i0(n),n=1,2,……60;
步骤二、分别计算各相电压与零序电流的相关系数rx0,x=a,b,c,表示三相,如果存在rx0>rset,rset为一整定常数,取值为0.966;则判断x相为疑似故障相,且令uf(n)=ux(n),n=1,2,……60;否则判断没有发生疑似高阻接地故障且重复步骤一,rx0的计算方法为:
r x 0 = Σ k = 1 60 i 0 ( k ) u x ( k ) Σ k = 1 60 i 0 2 ( k ) Σ k = 1 N u x 2 ( k )
步骤三、找到序列uf(n)的最大值点,记作uf(max),分别构建两组数据序列:
x0(i)=i0(mod(max+42+i,60)),y0(i)=uf(mod(max+42+i,60)),i=1,2,……6
x1(j)=i0(mod(max+55+j,60)),y1(j)=uf(mod(max+55+j,60)),j=1,2,……10其中mod(x,y)表示求x除以y的余数;
步骤四、用最小二乘法分别线性拟合序列x0(i),y0(i)以及序列x1(j),y1(j),计算拟合直线的斜率k1、k2,并计算故障电阻非线性系数R,具体计算方法为:
k 1 = 6 Σ i = 1 6 x 0 ( i ) y 0 ( i ) - Σ i = 1 6 x 0 ( i ) Σ i = 1 6 y 0 ( i ) 6 Σ i = 1 6 x 0 2 ( i ) - Σ i = 1 6 x 0 ( i ) Σ i = 1 6 x 0 ( i )
k 2 = 10 Σ i = 1 10 x 1 ( j ) y 1 ( j ) - Σ j = 1 10 x 1 ( j ) Σ j = 1 10 y 1 ( j ) 10 Σ i = 1 10 x 1 2 ( j ) - Σ i = 1 10 x 1 ( j ) Σ i = 1 10 x 1 ( j )
R = k 1 k 2
步骤五、如果R>Rset,则判断为发生了高阻接地故障,其中Rset为一整定常数,取值范围为1.2-1.5;
步骤六、每0.02秒重复一次步骤一至步骤五,得到每个工频周波是否发生高阻接地故障的结果;如果高阻接地故障持续时间超过阈值Tset,则确定为发生了稳态高阻接地故障;其中Tset取值为1秒。
CN201310175572.9A 2013-05-13 2013-05-13 一种基于故障电阻非线性识别的高阻接地故障检测方法 Active CN103257302B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310175572.9A CN103257302B (zh) 2013-05-13 2013-05-13 一种基于故障电阻非线性识别的高阻接地故障检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310175572.9A CN103257302B (zh) 2013-05-13 2013-05-13 一种基于故障电阻非线性识别的高阻接地故障检测方法

Publications (2)

Publication Number Publication Date
CN103257302A CN103257302A (zh) 2013-08-21
CN103257302B true CN103257302B (zh) 2015-04-15

Family

ID=48961332

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310175572.9A Active CN103257302B (zh) 2013-05-13 2013-05-13 一种基于故障电阻非线性识别的高阻接地故障检测方法

Country Status (1)

Country Link
CN (1) CN103257302B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104062555B (zh) * 2014-07-16 2016-11-16 哈尔滨理工大学 配电线路高阻接地故障特征谐波的辨识方法
CN107064677A (zh) * 2017-04-05 2017-08-18 昆明理工大学 一种判别输电线路雷击闪络与未闪络的方法
CN109406923B (zh) * 2017-08-17 2021-06-25 株洲中车时代电气股份有限公司 一种列车供电系统接地漏电故障预测方法及装置
CN110320434B (zh) * 2019-07-03 2020-09-25 山东大学 基于零序电流波形区间斜率曲线的高阻故障辨识方法及系统
CN111308278A (zh) * 2020-05-11 2020-06-19 国网江西省电力有限公司电力科学研究院 一种谐振接地系统高阻故障方向检测方法
CN111948569A (zh) * 2020-06-08 2020-11-17 清华大学 一种基于类伏安特性的间歇性弧光接地故障检测方法
CN111884180B (zh) * 2020-07-15 2021-05-18 华北电力大学 一种基于最小二乘拟合的直流系统保护方法及装置
CN111896842A (zh) * 2020-07-27 2020-11-06 国网上海市电力公司 基于区间斜率的配电网弧光高阻故障区段定位方法
CN113567806A (zh) * 2021-07-02 2021-10-29 上海思源光电有限公司 小电流故障选线方法、系统、终端及介质
CN114578186B (zh) * 2022-02-28 2023-03-31 四川大学 一种基于伏安特性分析的电缆早期故障严重程度评价方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4151460A (en) * 1977-09-30 1979-04-24 Westinghouse Electric Corp. High resistance ground fault detector and locator for polyphase electrical systems
JPH11355955A (ja) * 1998-06-05 1999-12-24 Toko Electric Co Ltd 多分岐配電線における地絡検出装置
CN1180272C (zh) * 2001-11-28 2004-12-15 淄博科汇电气有限公司 电力系统小电流接地故障选线、分段方法
JP2008241668A (ja) * 2007-03-29 2008-10-09 Daihen Corp 地絡検出装置
CN101187687B (zh) * 2007-12-21 2010-09-08 清华大学 基于暂态行波的高阻接地故障检测方法
CN101363880B (zh) * 2008-08-01 2010-12-01 武汉大学 一种利用工频干扰源带电测量输电线路零序导纳的方法
CN101387682A (zh) * 2008-10-27 2009-03-18 清华大学 基于剩余电流谐波分量的单相接地故障检测方法

Also Published As

Publication number Publication date
CN103257302A (zh) 2013-08-21

Similar Documents

Publication Publication Date Title
CN103257302B (zh) 一种基于故障电阻非线性识别的高阻接地故障检测方法
Wang et al. High-impedance fault detection based on nonlinear voltage–current characteristic profile identification
Lima et al. High impedance fault detection based on Stockwell transform and third harmonic current phase angle
CN102928728B (zh) 基于零序电流波形畸变凹凸性的高阻接地故障检测方法
US9025287B2 (en) Arc fault detection equipment and method using low frequency harmonic current analysis
Xu et al. A distance protection relay for a 1000-kV UHV transmission line
CN107727990B (zh) 一种配网弧光接地故障辨识方法
CN102928729B (zh) 基于零序电流过零点间断判别的高阻接地故障检测方法
CN103809070A (zh) 基于三相电流变化进行的方向接地故障检测方法和装置
Ferraz et al. Arc fault location: A nonlinear time varying fault model and frequency domain parameter estimation approach
CN110350493B (zh) 基于线路电流二阶导数的中压柔性直流系统故障检测方法
Cheng et al. Application of Gabor–Wigner transform to inspect high-impedance fault-generated signals
Zubić et al. Speed and security improvements of distance protection based on Discrete Wavelet and Hilbert transform
EP2483986B1 (en) Phase angle drift detection method for loss of mains/grid protection
Eissa et al. New high-voltage directional and phase selection protection technique based on real power system data
Sahebi et al. Evaluation of power transformer inrush currents and internal faults discrimination methods in presence of fault current limiter
Ahmadi et al. Kalman filter–based approach for detection of series arc fault in photovoltaic systems
Seo et al. Series arc fault detection method based on statistical analysis for dc microgrids
CN105738762A (zh) 一种基于汤逊理论电弧模型的故障单端测距方法
Sahoo et al. Fast adaptive autoreclosing technique for series compensated transmission lines
Hamidi et al. Adaptive single-phase auto-reclosing method using power line carrier signals
Abdul-Malek A new method to extract the resistive component of the metal oxide surge arrester leakage current
Strack et al. Three-phase voltage events classification algorithm based on an adaptive threshold
CN103135034B (zh) 一种高阻接地故障波形畸变特征抽取方法
Sarlak et al. Design and implementation of a systematically tunable high impedance fault relay

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant