CN103245359A - Method for calibrating fixed errors of inertial sensor in inertial navigation system in real time - Google Patents
Method for calibrating fixed errors of inertial sensor in inertial navigation system in real time Download PDFInfo
- Publication number
- CN103245359A CN103245359A CN2013101427014A CN201310142701A CN103245359A CN 103245359 A CN103245359 A CN 103245359A CN 2013101427014 A CN2013101427014 A CN 2013101427014A CN 201310142701 A CN201310142701 A CN 201310142701A CN 103245359 A CN103245359 A CN 103245359A
- Authority
- CN
- China
- Prior art keywords
- error
- matrix
- axis
- delta
- state
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 29
- 238000005259 measurement Methods 0.000 claims abstract description 30
- 238000012937 correction Methods 0.000 claims abstract description 11
- 239000011159 matrix material Substances 0.000 claims description 85
- 230000001133 acceleration Effects 0.000 claims description 6
- 238000004422 calculation algorithm Methods 0.000 claims description 3
- 238000004364 calculation method Methods 0.000 claims description 3
- 239000013598 vector Substances 0.000 claims description 3
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 claims description 2
- 238000005530 etching Methods 0.000 claims 5
- 238000001514 detection method Methods 0.000 claims 1
- 238000001914 filtration Methods 0.000 claims 1
- 239000007787 solid Substances 0.000 claims 1
- 238000009434 installation Methods 0.000 abstract description 44
- 238000012795 verification Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Landscapes
- Navigation (AREA)
Abstract
本发明公开了一种惯性导航系统中惯性传感器固定误差实时标定方法,该方法包括以下步骤:首先建立惯性传感器在飞行器动态飞行过程中的固定性误差模型,固定误差包括安装误差和标度因数误差;在传统的IMU随机误差模型及所建立的固定性误差模型的基础上,随后建立包含惯性传感器固定误差在内的滤波状态方程及位置、速度和姿态线性量测方程;最后在飞行器动态飞行过程中对惯性传感器固定性误差进行实时动态标定与校正,获得惯性传感器固定性误差补偿校正后的惯性导航系统导航结果。本方法能够在飞行器的动态飞行过程中实现对惯性导航系统中惯性传感器安装误差和标度因数误差的标定及校正,有效提高惯性导航系统性能,适合于工程应用。
The invention discloses a real-time calibration method for the fixed error of an inertial sensor in an inertial navigation system. The method includes the following steps: firstly, a fixed error model of the inertial sensor in the dynamic flight process of an aircraft is established, and the fixed error includes an installation error and a scale factor error ; On the basis of the traditional IMU random error model and the established fixed error model, the filter state equation including the inertial sensor fixed error and the linear measurement equation of position, velocity and attitude are established; finally, in the dynamic flight process of the aircraft In the process, real-time dynamic calibration and correction are performed on the fixed error of the inertial sensor, and the navigation result of the inertial navigation system after compensation and correction of the fixed error of the inertial sensor is obtained. The method can realize the calibration and correction of the inertial sensor installation error and the scale factor error in the inertial navigation system during the dynamic flight process of the aircraft, effectively improves the performance of the inertial navigation system, and is suitable for engineering applications.
Description
技术领域technical field
本发明公开了一种惯性导航系统中惯性传感器固定误差实时标定方法,属于惯性导航惯性传感器误差标定技术领域。The invention discloses a real-time calibration method for fixed errors of inertial sensors in an inertial navigation system, belonging to the technical field of calibration of inertial sensor errors for inertial navigation.
背景技术Background technique
近年来,随着新型飞行器的研制,对导航系统性能的要求日益提高。惯性导航系统具有短时精度高、输出连续以及完全自主等突出优点必是未来新型飞行器的核心导航信息单元。In recent years, with the development of new aircraft, the requirements for the performance of the navigation system are increasing. The inertial navigation system has the outstanding advantages of high short-term accuracy, continuous output and complete autonomy, and it must be the core navigation information unit of future new aircraft.
惯性传感器(IMU-陀螺仪和加速度计)的测量误差是影响惯性导航系统精度的主要因素。传统IMU误差模型中,往往认为其固定性误差—安装误差和标度因数误差在静态标定后完全补偿,IMU误差中仅包含随机漂移误差。而在飞行器动态飞行过程中,由振动冲击、气流扰动等影响导致的机体变形将引起IMU的轴线不能与机体轴线完全重合,进而导致安装误差及标度因数误差显著增大。这些误差如果在飞行器动态飞行过程中不能进行标定补偿将在很大程度上影响导航精度。The measurement error of the inertial sensors (IMU - gyroscope and accelerometer) is the main factor affecting the accuracy of the inertial navigation system. In the traditional IMU error model, it is often considered that its fixed errors—installation errors and scale factor errors are fully compensated after static calibration, and the IMU errors only include random drift errors. During the dynamic flight of the aircraft, the deformation of the airframe caused by vibration shock, airflow disturbance, etc. will cause the axis of the IMU to not completely coincide with the axis of the airframe, which will lead to a significant increase in installation errors and scale factor errors. If these errors cannot be calibrated and compensated during the dynamic flight of the aircraft, it will greatly affect the navigation accuracy.
传统的IMU误差标定方法多利用转台在室内进行位置试验及速率试验实现对安装误差和标度因数误差的标定。但在飞行器动态飞行过程中,由于环境影响,传统利用转台的标定方法将不再适用。飞行器动态飞行过程中,传统对惯性传感器的误差修正仅针对其随机性误差,不考虑其安装误差和标度因数误差等固定性误差的影响。而由于飞行振动等影响引起的安装误差和标度因数误差将会很大程度上影响惯性导航系统精度,必须对其进行标定和补偿修正。因此,研究一种在飞行器动态飞行过程中对惯性传感器固定性误差的标定方法,能够有效提高飞行器动态飞行过程中的惯性导航系统精度,将具有突出的应用价值。The traditional IMU error calibration methods mostly use the turntable to perform position test and speed test indoors to calibrate the installation error and scale factor error. However, during the dynamic flight of the aircraft, due to the influence of the environment, the traditional calibration method using the turntable will no longer be applicable. During the dynamic flight of the aircraft, the traditional error correction of the inertial sensor is only aimed at its random error, and does not consider the influence of fixed errors such as its installation error and scale factor error. However, the installation error and scale factor error caused by flight vibration and other influences will greatly affect the accuracy of the inertial navigation system, which must be calibrated and compensated. Therefore, it will be of great application value to study a calibration method for the fixed error of the inertial sensor during the dynamic flight of the aircraft, which can effectively improve the accuracy of the inertial navigation system during the dynamic flight of the aircraft.
发明内容Contents of the invention
本发明的目的在于提出一种惯性导航系统惯性传感器的固定性误差建模及实时标定方法,以满足飞行器动态飞行过程中的对导航系统的高精度要求。The object of the present invention is to propose a fixed error modeling and real-time calibration method of an inertial sensor of an inertial navigation system, so as to meet the high-precision requirements of the navigation system during the dynamic flight of an aircraft.
本发明为解决上述技术问题采用以下技术方案,一种惯性导航系统中惯性传感器固定误差实时标定方法,所述方法具体步骤如下:In order to solve the above technical problems, the present invention adopts the following technical solutions, a real-time calibration method for inertial sensor fixed errors in an inertial navigation system, the specific steps of the method are as follows:
步骤1、建立惯性传感器的固定性误差模型,包括加速度计标度因数误差矩阵和陀螺仪的标度因数误差矩阵:
加速度计标度因数误差矩阵为δKA=diag[δKAx δKAy δKAz],其中,δKAx、δKAy、δKAz分别为X轴、Y轴及Z轴加速度计的标度因数误差;加速度计安装误差矩阵为
上式中,为标度因数误差矩阵δKA的一阶导数,为安装误差矩阵δA的一阶导数;In the above formula, is the first derivative of the scale factor error matrix δK A , is the first derivative of the installation error matrix δA;
陀螺仪的标度因数误差矩阵为δKG=diag[δKGx δKGy δKGz],δKGx、δKGy、δKGz分别为X轴、Y轴及Z轴陀螺的标度因数误差;陀螺安装误差矩阵为
上式中,为标度因数误差矩阵δKG的一阶导数,为安装误差矩阵δG的一阶导数;In the above formula, is the first derivative of the scale factor error matrix δK G , is the first derivative of the installation error matrix δG;
步骤2、在步骤1对IMU的安装误差和标度因数误差建模的基础上,将IMU的安装误差和标度因数误差作为系统状态变量,构建基于惯性传感器全状态误差模型的滤波器状态方程和位置、速度及姿态线性化量测方程:
基于惯性传感器全状态误差建模的系统状态变量X为:The system state variable X based on the inertial sensor full state error modeling is:
X=[φE φN φU δVE δVN δVU δL δλ δh εbx εby εbz εrx εry εrz ▽x ▽y ▽zδAx δAy δAz δKAx δKAy δKAz δGx δGy δGz δKGx δKGy δKGz]T X=[φ E φ N φ U δV E δV N δV U δL δλ δh ε bx ε by ε bz ε rx ε ry ε rz ▽ x ▽ y ▽ z δA x δA y δA z δK Ax δK Ay δK Az δG x δG y δG z δK Gx δK Gy δK Gz ] T
上式中,φE,φN,φU分别为惯性导航系统中的东向、北向及天向平台误差角状态量;δVE,δVN,δVU分别为惯性导航系统误差中的东向、北向及天向速度误差状态量;δL,δλ,δh分别为惯性导航系统中的纬度误差状态量、经度误差状态量及高度误差状态量;εbx,εby,εbz分别为惯性导航系统中的X轴、Y轴、Z轴方向陀螺的常值漂移误差状态量;εrx,εry,εrz分别为X轴、Y轴和Z轴方向的陀螺一阶马尔科夫漂移误差状态量;▽x,▽y,▽z分别为X轴、Y轴及Z轴方向的加速度计一阶马尔科夫零偏误差状态量;δAx,δAy,δAz分别为惯性导航系统中X轴、Y轴及Z轴方向上加速度计的安装误差状态量;δKAx,δKAy,δKAz分别为惯性导航系统中X轴、Y轴及Z轴方向上加速度计的标度因数误差状态量;δGx,δGy,δGz分别为惯性导航系统中X轴、Y轴及Z轴三个方向上陀螺的安装误差状态量;δKGx,δKGy,δKGz为惯性导航系统中X轴、Y轴及Z轴方向上陀螺的标度因数误差状态量;In the above formula, φ E , φ N , φ U are the eastward, northward and skyward platform error angle state variables in the inertial navigation system respectively; δV E , δV N , δV U are the eastward direction in the inertial navigation system , north and sky direction speed error state quantities; δL, δλ, δh are the latitude error state quantities, longitude error state quantities and altitude error state quantities in the inertial navigation system respectively; ε bx , ε by , ε bz are the inertial navigation system The constant value drift error state quantity of the gyroscope in the X - axis , Y- axis , and Z-axis directions in ; ▽ x , ▽ y , ▽ z are the first-order Markov zero-bias error state variables of the accelerometer in the X-axis, Y-axis and Z-axis directions respectively; δA x , δA y , δA z are the X-axis in the inertial navigation system , the installation error state quantity of the accelerometer on the Y-axis and the Z-axis direction; δK Ax , δK Ay , and δK Az are the scale factor error state quantities of the accelerometer on the X-axis, Y-axis and Z-axis directions in the inertial navigation system, respectively; δG x , δG y , δG z are the installation error state quantities of the gyroscope in the X-axis, Y-axis and Z-axis directions of the inertial navigation system respectively; δK Gx , δK Gy , δK Gz are the X-axis, Y-axis The scale factor error state quantity of the gyroscope on the axis and the Z axis direction;
建立惯性导航系统的误差状态方程,如式(4)所示:Establish the error state equation of the inertial navigation system, as shown in formula (4):
上式中,X(t)为系统状态变量;为状态变量X(t)的一阶导数;F(t)为系统矩阵;G(t)为噪声系数矩阵;W(t)为噪声矩阵;In the above formula, X(t) is the system state variable; is the first derivative of the state variable X(t); F(t) is the system matrix; G(t) is the noise coefficient matrix; W(t) is the noise matrix;
采用地理系下位置、速度和姿态线性化观测原理,建立地理系下卫星导航位置观测量、速度观测量及星敏感器姿态观测量和惯性导航系统误差状态量之间的线性化量测方程:Using the principle of linearized observation of position, velocity, and attitude in the geographic system, the linearized measurement equations between the satellite navigation position observations, velocity observations, star sensor attitude observations, and inertial navigation system error state quantities in the geographic system are established:
上式中,Zp(t)、Zv(t)、Zφ(t)分别为位置、速度及姿态量测矢量;Hp(t)、Hv(t)、Hφ(t)分别为位置、速度及姿态量测系数矩阵;Vp(t)、Vv(t)、Vφ(t)分别为位置、速度及姿态观测量噪声矩阵;In the above formula, Z p (t), Z v (t), Z φ (t) are position, velocity and attitude measurement vectors respectively; H p (t), H v (t), H φ (t) are respectively is the position, velocity and attitude measurement coefficient matrix; V p (t), V v (t), V φ (t) are position, velocity and attitude observation noise matrix respectively;
步骤3、在步骤2的基础上,对系统状态方程和量测方程进行离散化处理以及状态量、量测量的更新,实现对IMU安装误差和标度因数误差的标定与补偿。
进一步的,步骤3中所述对IMU安装误差和标度因数误差的标定与补偿,其具体步骤为:Further, the calibration and compensation of the IMU installation error and scale factor error described in
(301)将滤波器状态方程和量测方程离散化处理:(301) discretize the filter state equation and measurement equation:
X(k)=Φ(k,k-1)X(k-1)+Γ(k,k-1)W(k-1)X(k)=Φ(k,k-1)X(k-1)+Γ(k,k-1)W(k-1)
Z(k)=H(k)X(k)+V(k)Z(k)=H(k)X(k)+V(k)
上式中,X(k)为tk时刻系统状态量;X(k-1)为tk-1时刻系统状态量;Φ(k,k-1)为tk-1时刻至tk时刻系统的状态转移矩阵;Γ(k,k-1)为tk-1时刻至tk时刻系统的噪声驱动矩阵;W(k-1)为tk时刻系统的噪声矩阵;Z(k)为tk时刻系统的位置、速度及姿态观测量矩阵;H(k)为tk时刻的位置、速度及姿态量测系数矩阵;V(k)为tk时刻的位置、速度及姿态观测量的噪声矩阵;In the above formula, X(k) is the system state quantity at time t k ; X(k- 1) is the system state quantity at time t k -1; Φ(k,k-1 ) is the The state transition matrix of the system; Γ(k,k-1) is the noise driving matrix of the system from time t k-1 to time t k ; W(k-1) is the noise matrix of the system at time t k ; Z(k) is The position, velocity and attitude observation matrix of the system at time t k ; H(k) is the position, velocity and attitude measurement coefficient matrix at time t k ; V(k) is the matrix of position, velocity and attitude observations at time t k noise matrix;
(302)按照式(8)、式(9)、式(10)、式(11)对步骤(301)部分的惯性导航系统误差状态量和协方差信息的量测更新:(302) According to formula (8), formula (9), formula (10), formula (11), the measurement update of the inertial navigation system error state quantity and covariance information in step (301):
P(k,k-1)=Φ(k,k-1)P(k-1,k-1)Φ(k,k-1)T+Γ(k,k-1)Q(k)Γ(k,k-1)T P(k,k-1)=Φ(k,k-1)P(k-1,k-1)Φ(k,k-1) T +Γ(k,k-1)Q(k)Γ (k,k-1) T
K(k)=P(k,k-1)H(k)T[H(k)P(k,k-1)H(k)T+R(k)]-1 K(k)=P(k,k-1)H(k) T [H(k)P(k,k-1)H(k) T +R(k)] -1
X(k)=X(k,k-1)+K(k)[Z(k)-H(k)X(k,k-1)]X(k)=X(k,k-1)+K(k)[Z(k)-H(k)X(k,k-1)]
P(k,k)=[I-K(k)H(k)]P(k,k-1)P(k,k)=[I-K(k)H(k)]P(k,k-1)
上述公式中,P(k,k-1)为tk-1时刻至tk时刻一步预测协方差矩阵;P(k-1,k-1)为tk-1时刻滤波状态估计协方差矩阵;Q(k)为tk时刻系统的噪声协方差矩阵;Κ(k)为tk时刻滤波增益矩阵;R(k)为tk时刻位置、速度及姿态量测噪声协方差阵;X(k,k-1)为tk-1时刻至tk时刻一步预测状态量;P(k,k)为tk时刻滤波状态估计协方差矩阵;I为与P(k,k)维数相同的单位矩阵;In the above formula, P(k,k-1) is the one-step prediction covariance matrix from time t k-1 to time t k ; P(k-1,k-1) is the covariance matrix of filter state estimation at time t k-1 ; Q(k) is the noise covariance matrix of the system at tk moment; Κ(k) is the filter gain matrix at tk moment; R(k) is the position, velocity and attitude measurement noise covariance matrix at tk moment; X( k, k-1) is the one-step forecast state quantity from time t k-1 to time t k ; P(k, k) is the covariance matrix of filter state estimation at time t k ; I is the same dimension as P(k, k) the identity matrix;
(303)对滤波输出的状态量X(k,k)进行判断,若状态量X(k,k)的预测值稳定则完成标定,得到对IMU安装误差和标度因数误差的标定结果,进入步骤(304);若预测值不稳定,则返回步骤(302)继续对状态值进行预测估计;(303) Judging the state quantity X(k,k) output by the filter, if the predicted value of the state quantity X(k,k) is stable, the calibration is completed, and the calibration results of the IMU installation error and the scaling factor error are obtained, and enter Step (304); if the predicted value is unstable, return to step (302) to continue predicting and estimating the state value;
(304)在步骤(303)得到对IMU安装误差和标度因数误差的标定结果后,暂存标定值,利用标定值对IMU安装误差和标度因数误差进行补偿校正,校正在一个导航解算周期内完成,误差补偿校正算法为:(304) After the calibration results of IMU installation error and scale factor error are obtained in step (303), the calibration value is temporarily stored, and the calibration value is used to compensate and correct the IMU installation error and scale factor error, and the correction is performed in a navigation solution Completed within a cycle, the error compensation correction algorithm is:
上式中,分别为误差的加速度计输出的加速度和陀螺仪输出的角速率;fb、分别为去除掉误差后的加速度和角速率;▽b为加速度计的随机漂移误差,εb为陀螺的随机漂移误差。In the above formula, The acceleration output by the accelerometer and the angular rate output by the gyroscope are the errors respectively; f b , are the acceleration and angular rate after removing the error; ▽ b is the random drift error of the accelerometer, and ε b is the random drift error of the gyroscope.
本发明在对惯性传感器误差建模的基础上,能够在飞行器动态飞行过程中实现对惯性传感器固定性误差的实时标定,利用标定得到的结果可以对惯性传感器误差进行实时补偿,采用本发明可以显著减小惯性导航系统误差能够有效提高惯性导航系统精度,适合工程应用。On the basis of modeling the inertial sensor error, the present invention can realize the real-time calibration of the inertial sensor fixed error during the dynamic flight process of the aircraft, and the result obtained by using the calibration can perform real-time compensation for the inertial sensor error, and the present invention can significantly Reducing the error of the inertial navigation system can effectively improve the accuracy of the inertial navigation system, which is suitable for engineering applications.
附图说明Description of drawings
图1为本发明的惯性导航系统惯性传感器固定性误差实时标定方法结构图。FIG. 1 is a structural diagram of a real-time calibration method for inertial sensor inertial errors of an inertial navigation system according to the present invention.
图2为标定所用的飞行轨迹。Figure 2 shows the flight path used for calibration.
图3为X轴、Y轴及Z轴陀螺的安装误差标定结果。Figure 3 shows the installation error calibration results of the X-axis, Y-axis and Z-axis gyroscopes.
图4为X轴、Y轴及Z轴陀螺的标度因数误差标定结果。Figure 4 shows the scaling factor error calibration results of the X-axis, Y-axis and Z-axis gyroscopes.
图5为X轴、Y轴及Z轴加速度计的安装误差标定结果。Figure 5 shows the installation error calibration results of the X-axis, Y-axis and Z-axis accelerometers.
图6为X轴、Y轴及Z轴加速度计的标度因数误差标定结果。Figure 6 shows the scaling factor error calibration results of the X-axis, Y-axis and Z-axis accelerometers.
图7为惯性传感器固定性误差标定补偿后的惯性导航姿态误差。Figure 7 shows the inertial navigation attitude error after calibration and compensation of inertial sensor fixed error.
图8为惯性传感器固定性误差标定补偿后的惯性导航速度误差。Fig. 8 shows the inertial navigation speed error after calibration and compensation of inertial sensor fixed error.
图9为惯性传感器固定性误差标定补偿后的惯性导航位置误差。Fig. 9 shows the inertial navigation position error after calibration and compensation of inertial sensor fixed error.
具体实施方式Detailed ways
下面结合附图对本发明的技术方案做进一步的详细说明:如图1所示,本发明所述的惯性传感器固定性误差实时标定方法的原理是:陀螺和加速度计的测量输出分别为及其中均包含了固定性和随机性误差。及fb是经过误差补偿修正后的角速率和加速度信息用于惯性导航系统的导航解算模块。全状态误差建模模块在传统误差模型的基础上建立IMU的安装误差和标度因数误差模型,构建惯性导航系统误差的滤波状态量及状态方程;同时,根据地理系下姿态、速度和位置线性化观测原理,建立地理系下速度、位置及姿态的线性化量测方程,实现对惯性传感器安装误差和标度因数误差的实时标定;利用标定的结果在IMU误差修正模块对IMU的固定性误差进行补偿修正,能够有效提高惯性导航系统精度。Below in conjunction with accompanying drawing, the technical scheme of the present invention is described in further detail: as shown in Figure 1, the principle of the inertial sensor fixed error real-time calibration method of the present invention is: the measurement output of gyroscope and accelerometer is respectively and Both include fixed and random errors. And f b is the angular rate and acceleration information corrected by error compensation, which is used in the navigation calculation module of the inertial navigation system. The full state error modeling module establishes the IMU installation error and scale factor error model on the basis of the traditional error model, and constructs the filter state quantity and state equation of the inertial navigation system error; at the same time, it linearizes the attitude, velocity and position according to the geographic system Based on the principle of observation, the linearized measurement equations of velocity, position, and attitude under the geographic system are established to realize real-time calibration of inertial sensor installation errors and scale factor errors; the fixed errors of the IMU are corrected in the IMU error correction module using the calibration results Compensation and correction can effectively improve the accuracy of the inertial navigation system.
本发明的具体实施方式如下:The specific embodiment of the present invention is as follows:
1.建立惯性传感器固定性误差模型1. Establish the inertial sensor fixed error model
(1.1)加速度计误差模型(1.1) Accelerometer error model
在捷联惯性导航系统中,由于飞行器振动会导致陀螺仪和加速度计都存在安装误差及标度因数误差。忽略高阶非线性误差项,加速度计的误差模型为:In the strapdown inertial navigation system, there are installation errors and scale factor errors in both the gyroscope and the accelerometer due to aircraft vibration. Neglecting higher-order nonlinear error terms, the error model for the accelerometer is:
δfb=[δKA+δA]fb+▽b (1)δf b =[δK A +δA]f b +▽ b (1)
式(1)中,δKA=diag[δKAx δKAy δKAz]为加速度计的标度因数误差;In formula (1), δK A =diag[δK Ax δK Ay δK Az ] is the scale factor error of the accelerometer;
▽=[▽x ▽y ▽z]T为加速度计的零偏误差;
加速度计的标度因数误差δKA和安装误差δA均取为随机常数,加速度计的零偏误差▽取为一阶马尔可夫过程:且假定三个轴加速度计的误差模型相同:Both the scale factor error δK A and the installation error δA of the accelerometer are taken as random constants, and the zero bias error ▽ of the accelerometer is taken as a first-order Markov process: and it is assumed that the error models of the three-axis accelerometers are the same:
(1.2)陀螺误差模型(1.2) Gyro error model
与加速度计误差建模方法类似,陀螺的误差模型为:Similar to the accelerometer error modeling method, the error model of the gyroscope is:
式(3)中,δKG=diag[δKGx δKGy δKGz]为陀螺的标度因数误差矩阵;
安装误差均取为随机常数,假定三个轴陀螺的误差模型相同,得到:The installation errors are all taken as random constants, assuming that the error models of the three-axis gyroscopes are the same, we get:
陀螺漂移误差εb=[εx εy εz]T取为Gyro drift error ε b = [ε x ε y ε z ] T is taken as
ε=εb+εr+wg (5)ε=ε b +ε r +w g (5)
式(5)中,为随机常数,为一阶马尔可夫过程,wg为白噪声。In formula (5), is a random constant, is a first-order Markov process, w g is white noise.
2.建立基于全状态误差模型的卡尔曼滤波器模型2. Establish a Kalman filter model based on the full state error model
(2.1)建立惯性导航系统误差的状态量方程(2.1) Establish the state quantity equation of the inertial navigation system error
选取机体坐标系(b系)为机体的“右、前、上”(X,Y,Z)方向,选取导航坐标系(n系)为东北天(ENU)地理坐标系。基于全状态误差建模的系统状态变量为:The body coordinate system (b system) is selected as the "right, front and up" (X, Y, Z) direction of the body, and the navigation coordinate system (n system) is selected as the Northeast Heaven (ENU) geographic coordinate system. The system state variables based on full state error modeling are:
X=[φE φN φU δVE δVN δVU δL δλ δh εbx εby εbz εrx εry εrz ▽x ▽y ▽zδAx δAy δAz δKAx δKAy δKAz δGx δGy δGz δKGx δKGy δKGz]T X=[φ E φ N φ U δV E δV N δV U δL δλ δh ε bx ε by ε bz ε rx ε ry ε rz ▽ x ▽ y ▽ z δA x δA y δA z δK Ax δK Ay δK Az δG x δG y δG z δK Gx δK Gy δK Gz ] T
(6)(6)
式(6)中,φE,φN,φU分别为惯性导航系统中的东向、北向及天向平台误差误差角状态量;δVE,δVN,δVU分别为惯性导航系统误差中的东向、北向及天向速度误差状态量;δL,δλ,δh表示惯性导航系统中的纬度误差状态量、经度误差状态量及高度误差状态量;εbx,εby,εbz分别为惯性导航系统中的X轴、Y轴、Z轴方向陀螺的常值漂移误差状态量;εrx,εry,εrz分别为X轴、Y轴和Z轴方向的陀螺一阶马尔科夫漂移误差状态量;▽x,▽y,▽z分别为惯性导航系统中X轴、Y轴及Z轴方向的加速度计一阶马尔科夫零偏误差状态量;δAx,δAy,δAz为惯性导航系统中X轴、Y轴及Z轴方向上加速度计的安装误差状态量;δKAx,δKAy,δKAz为惯性导航系统中X轴、Y轴及Z轴方向上加速度计的标度因数误差状态量;δGx,δGy,δGz为惯性导航系统中X轴、Y轴及Z轴三个方向上陀螺的安装误差状态量;δKGx,δKGy,δKGz为惯性导航系统中X轴、Y轴及Z轴方向上陀螺的标度因数误差状态量;In formula (6), φ E , φ N , φ U are the error angle state variables of the eastward, northward and skyward platform errors in the inertial navigation system respectively; δV E , δV N , δV U are the δL, δλ, δh represent the latitude error state quantity, longitude error state quantity and altitude error state quantity in the inertial navigation system; ε bx , ε by , ε bz are the inertial The constant value drift error state quantity of the gyroscope in the X - axis, Y- axis , and Z-axis directions in the navigation system; State quantities; ▽ x , ▽ y , ▽ z are the first-order Markov zero-bias error state quantities of accelerometers in the X-axis, Y-axis and Z-axis directions of the inertial navigation system; δA x , δA y , δA z are inertial The installation error state quantity of the accelerometer in the X-axis, Y-axis and Z-axis directions in the navigation system; δK Ax , δK Ay , δK Az are the scale factors of the accelerometer in the X-axis, Y-axis and Z-axis directions in the inertial navigation system Error state quantity; δG x , δG y , δG z are the installation error state quantities of the gyroscope in the three directions of X axis, Y axis and Z axis in the inertial navigation system; δK Gx , δK Gy , δK Gz are the X axis in the inertial navigation system The scale factor error state quantity of the gyroscope in the directions of Y axis, Y axis and Z axis;
建立惯性导航系统的误差状态方程,如式(7)所示:Establish the error state equation of the inertial navigation system, as shown in formula (7):
式(7)中,X(t)为系统状态变量,为状态变量X(t)的一阶导数;F(t)为系统矩阵,G(t)为噪声系数矩阵,W(t)为噪声矩阵。In formula (7), X(t) is the system state variable, is the first derivative of the state variable X(t); F(t) is the system matrix, G(t) is the noise coefficient matrix, and W(t) is the noise matrix.
根据步骤1中所建立的惯性传感器误差模型,与式(6)及式(7)对应的系统矩阵F(t)为:According to the inertial sensor error model established in
式(8)中,FN(t)9×9为对应9个惯性导航系统导航参数(姿态、速度及位置)之间的关系矩阵,其非零项元素为:In formula (8), FN(t) 9×9 is the relationship matrix corresponding to nine inertial navigation system navigation parameters (attitude, velocity and position), and its non-zero elements are:
RM为地球子午圈曲率半径,RN为地球卯酉圈曲率半径;fe,fn,fu为东向、北向及天向的加速度。R M is the radius of curvature of the meridian circle of the earth, R N is the radius of curvature of the meridian circle of the earth; f e , f n , f u are the accelerations in the east, north and celestial directions.
式(8)中,
式(9)中:In formula (9):
其中:3为机体系到地理坐标系的转换矩阵,
式(8)中,惯性传感器误差之间的关系矩阵为:In formula (8), the relationship matrix between inertial sensor errors is:
系统噪声矩阵为:The system noise matrix is:
W=[wgx wgy wgz wrx wry wrz wax way waz] (11)W=[w gx w gy w gz w rx w ry w rz w ax w ay w az ] (11)
误差系数矩阵:Error coefficient matrix:
(2.2)量测方程的确定(2.2) Determination of measurement equation
采用地理系下姿态、速度和位置线性化观测原理,建立地理系下卫星导航速度、位置及星敏感器姿态观测量和步骤2.1)中惯性导航系统误差状态量之间的线性化量测方程:Using the principle of linearized observation of attitude, velocity and position under the geographic system, the linearized measurement equation between the satellite navigation velocity, position and star sensor attitude observations under the geographic system and the error state quantity of the inertial navigation system in step 2.1) is established:
式中,Zp(t),Zv(t)以及Zφ(t)是位置、速度及姿态量测矢量。Hp(t),Hv(t),Hφ(t)为位置、速度及姿态量测系数矩阵,位置、速度及姿态观测量噪声矩阵为Vp(t),Vv(t)及Vφ(t)。3.惯性传感器固定性误差的实时标定补偿In the formula, Z p (t), Z v (t) and Z φ (t) are position, velocity and attitude measurement vectors. H p (t), H v (t), H φ (t) is the position, velocity and attitude measurement coefficient matrix, the position, velocity and attitude measurement noise matrix is V p (t), V v (t) and V φ (t). 3. Real-time calibration compensation of inertial sensor fixed error
(3.1)将滤波器状态方程和量测方程离散化处理:(3.1) Discretize the filter state equation and measurement equation:
X(k)=Φ(k,k-1)X(k-1)+Γ(k,k-1)W(k-1) (14)X(k)=Φ(k,k-1)X(k-1)+Γ(k,k-1)W(k-1) (14)
Z(k)=H(k)X(k)+V(k) (15)Z(k)=H(k)X(k)+V(k) (15)
式(15)中,X(k)为tk时刻系统状态量;X(k-1)为tk-1时刻系统状态量;Φ(k,k-1)为tk-1时刻至tk时刻系统的状态转移矩阵;Γ(k,k-1)为tk-1时刻至tk时刻系统的噪声驱动矩阵;W(k-1)为tk时刻系统的噪声矩阵;Z(k)为tk时刻系统的位置、速度及姿态观测量矩阵;H(k)为tk时刻的位置、速度及姿态量测系数矩阵;V(k)为tk时刻的位置、速度及姿态观测量的噪声矩阵。In formula (15), X(k) is the state quantity of the system at time t k ; X(k-1) is the state quantity of the system at time t k-1 ; Φ(k,k- 1 ) is The state transition matrix of the system at time k ; Γ(k,k-1) is the noise driving matrix of the system from time t k-1 to time t k ; W(k-1) is the noise matrix of the system at time t k ; Z(k ) is the position, velocity and attitude observation matrix of the system at time t k ; H(k) is the position, velocity and attitude measurement coefficient matrix at time t k ; V(k) is the position, velocity and attitude observation at time t k Quantitative noise matrix.
(3.2)按照式(16)、式(17)、式(18)、式(19)对子步骤3.1)部分的惯导误差状态量和协方差信息的量测更新:(3.2) According to the formula (16), formula (17), formula (18), formula (19) to the measurement update of the inertial navigation error state quantity and covariance information of sub-step 3.1):
P(k,k-1)=Φ(k,k-1)P(k-1,k-1)Φ(k,k-1)T+Γ(k,k-1)Q(k)Γ(k,k-1)T P(k,k-1)=Φ(k,k-1)P(k-1,k-1)Φ(k,k-1) T +Γ(k,k-1)Q(k)Γ (k,k-1) T
(16)(16)
K(k)=P(k,k-1)H(k)T[H(k)P(k,k-1)H(k)T+R(k)]-1 (17)K(k)=P(k,k-1)H(k) T [H(k)P(k,k-1)H(k) T +R(k)] -1 (17)
X(k)=X(k,k-1)+K(k)[Z(k)-H(k)X(k,k-1)] (18)X(k)=X(k,k-1)+K(k)[Z(k)-H(k)X(k,k-1)] (18)
P(k,k)=[I-K(k)H(k)]P(k,k-1) (19)P(k,k)=[I-K(k)H(k)]P(k,k-1) (19)
其中,P(k,k-1)为tk-1时刻至tk时刻一步预测协方差矩阵;P(k-1,k-1)为tk-1时刻滤波状态估计协方差矩阵;Q(k)为tk时刻系统的噪声协方差矩阵;Κ(k)为tk时刻滤波增益矩阵;R(k)为tk时刻位置、速度及姿态量测噪声协方差阵;X(k,k-1)为tk-1时刻至tk时刻一步预测状态量;P(k,k)为tk时刻滤波状态估计协方差矩阵;Among them, P(k,k-1) is the one-step prediction covariance matrix from time t k-1 to time t k ; P(k-1,k-1) is the covariance matrix of filter state estimation at time t k-1 ; Q (k) is the noise covariance matrix of the system at time t k ; Κ(k) is the filter gain matrix at time t k ; R(k) is the noise covariance matrix of position, velocity and attitude measurement at time t k ; X(k, k-1) is the one-step forecast state quantity from time t k-1 to time t k ; P(k,k) is the covariance matrix of filter state estimation at time t k ;
I为与P(k,k)维数相同的单位阵;I is an identity matrix with the same dimension as P(k,k);
(3.3)对滤波输出的状态量X(k,k)进行判断,若状态量的预测值稳定,则完成标定进入步骤(3.4)若预测值不稳定,则返回步骤(3.2)继续对状态值进行预测估计。(3.3) Judge the state quantity X(k,k) output by the filter. If the predicted value of the state quantity is stable, complete the calibration and enter step (3.4). If the predicted value is unstable, return to step (3.2) and continue to check the state value Make forecast estimates.
(3.4)在步骤(3.3)得到对IMU安装误差和标度因数误差的标定结果后,暂存标定值,利用该标定值对IMU安装误差和标度因数误差进行补偿校正,校正在一个导航解算周期内完成。误差补偿校正算法为:(3.4) After obtaining the calibration results of the IMU installation error and scale factor error in step (3.3), temporarily store the calibration value, and use the calibration value to compensate and correct the IMU installation error and scale factor error. completed within the calculation period. The error compensation correction algorithm is:
式(20)中,δKA、δA、▽b分别为加速度计的标度因数误差、安装误差和零偏,δKG、δG、εb为陀螺的标度因数误差、安装误差及随机零偏,均由标定过程中获得。In formula (20), δK A , δA, ▽ b are the scale factor error, installation error and zero bias of the accelerometer respectively, and δK G , δG, ε b are the scale factor error, installation error and random zero bias of the gyroscope , are obtained during the calibration process.
(3.5)在步骤(3.4)对IMU的安装误差和标度因数误差校正补偿完成后,不再使用滤波器进入纯惯性导航系统工作模式。(3.5) After the correction and compensation of the installation error and scale factor error of the IMU in step (3.4), the filter is no longer used to enter the pure inertial navigation system working mode.
为了验证发明所提出的惯性导航系统惯性传感器的固定性误差建模及标定方法的正确性及有效性,采用本发明方法建立模型,进行matlab仿真验证。图2为验证时采用的飞行航迹,对惯性传感器的安装误差及标度因数误差的标定结果如图3、图4、图5、图6所示。In order to verify the correctness and effectiveness of the fixed error modeling and calibration method of the inertial navigation system inertial sensor proposed by the invention, the method of the invention is used to establish a model and perform matlab simulation verification. Figure 2 shows the flight path used in the verification, and the calibration results of the installation error and scale factor error of the inertial sensor are shown in Figure 3, Figure 4, Figure 5, and Figure 6.
在飞行器动态飞行过程中利用标定结果对IMU安装误差和标度因数误差进行补偿修正,补偿后的惯性导航结果与未经过补偿的惯性导航导航结果进行对比验证,验证结果如图7、图8、图9所示。During the dynamic flight process of the aircraft, the calibration results are used to compensate and correct the IMU installation error and scale factor error. The compensated inertial navigation results are compared with the uncompensated inertial navigation navigation results. The verification results are shown in Figure 7, Figure 8, Figure 9 shows.
图3、图4、图5、图6中黑色实线代表本发明的标定结果,红色点划线为设定值。从图中可以看出对IMU安装误差和标度因数误差标定所用时间在20s左右,标定结果与设定值一致。图7、图8、图9中黑色实线代表未补偿IMU固定性误差的纯惯导导航结果,红色点划线代表补偿IMU固定性误差后的纯惯导导航结果。从图7、图8、图9中可以看出,利用对IMU安装误差和标度因数误差的标定结果对IMU的安装误差和标度因数误差进行校正后,惯性导航系统误差明显减小,具有有益的工程应用价值。In Fig. 3, Fig. 4, Fig. 5 and Fig. 6, the black solid line represents the calibration result of the present invention, and the red dotted line is the set value. It can be seen from the figure that it takes about 20s to calibrate the IMU installation error and scale factor error, and the calibration result is consistent with the set value. In Figure 7, Figure 8, and Figure 9, the black solid line represents the pure inertial navigation result without compensating the IMU fixed error, and the red dotted line represents the pure inertial navigation result after compensating the IMU fixed error. It can be seen from Fig. 7, Fig. 8, and Fig. 9 that after correcting the installation error and scale factor error of the IMU by using the calibration results of the IMU installation error and scale factor error, the error of the inertial navigation system is significantly reduced, with Beneficial engineering application value.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310142701.4A CN103245359B (en) | 2013-04-23 | 2013-04-23 | A kind of inertial sensor fixed error real-time calibration method in inertial navigation system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310142701.4A CN103245359B (en) | 2013-04-23 | 2013-04-23 | A kind of inertial sensor fixed error real-time calibration method in inertial navigation system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103245359A true CN103245359A (en) | 2013-08-14 |
CN103245359B CN103245359B (en) | 2015-10-28 |
Family
ID=48925035
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310142701.4A Expired - Fee Related CN103245359B (en) | 2013-04-23 | 2013-04-23 | A kind of inertial sensor fixed error real-time calibration method in inertial navigation system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103245359B (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103576554A (en) * | 2013-11-07 | 2014-02-12 | 北京临近空间飞行器系统工程研究所 | Flight vehicle pneumatic error model component hierarchical design method based on control demands |
CN104122412A (en) * | 2014-07-29 | 2014-10-29 | 北京机械设备研究所 | Accelerometer calibrating method based on Beidou second generation velocity information |
CN104215262A (en) * | 2014-08-29 | 2014-12-17 | 南京航空航天大学 | An Online Dynamic Identification Method for Inertial Sensor Errors in Inertial Navigation System |
CN105136166A (en) * | 2015-08-17 | 2015-12-09 | 南京航空航天大学 | Strapdown inertial navigation error model simulation method with specified inertial navigation position precision |
CN106052716A (en) * | 2016-05-25 | 2016-10-26 | 南京航空航天大学 | Method for calibrating gyro errors online based on star light information assistance in inertial system |
CN104101362B (en) * | 2014-06-24 | 2017-02-15 | 湖北航天技术研究院总体设计所 | Flexible SIMU system model based on-line compensation method for scale factors of gyroscope |
WO2017063388A1 (en) * | 2015-10-13 | 2017-04-20 | 上海华测导航技术股份有限公司 | A method for initial alignment of an inertial navigation apparatus |
CN106996778A (en) * | 2017-03-21 | 2017-08-01 | 北京航天自动控制研究所 | Error parameter scaling method and device |
CN108507568A (en) * | 2017-02-27 | 2018-09-07 | 华为技术有限公司 | The method, apparatus and integrated navigation system of compensation temperature drift error |
CN108562288A (en) * | 2018-05-08 | 2018-09-21 | 北京航天时代激光导航技术有限责任公司 | A kind of Laser strapdown used group of system-level online self-calibration system and method |
CN109655081A (en) * | 2018-12-14 | 2019-04-19 | 上海航天控制技术研究所 | The in-orbit self-adapting correction method of optical system of star sensor parameter and system |
CN111238535A (en) * | 2020-02-03 | 2020-06-05 | 南京航空航天大学 | An online calibration method of IMU error based on factor graph |
CN111288993A (en) * | 2018-12-10 | 2020-06-16 | 北京京东尚科信息技术有限公司 | Navigation processing method, navigation processing device, navigation equipment and storage medium |
CN112363249A (en) * | 2020-09-02 | 2021-02-12 | 广东工业大学 | Mobile meteorological measurement method and device |
CN112643665A (en) * | 2019-10-10 | 2021-04-13 | 北京京东乾石科技有限公司 | Calibration method and device for installation error of absolute pose sensor |
CN112733314A (en) * | 2019-10-28 | 2021-04-30 | 成都安则优科技有限公司 | Inertial sensor data simulation method |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105865446A (en) * | 2016-05-25 | 2016-08-17 | 南京航空航天大学 | Inertia altitude channel damping Kalman filtering method based on atmosphere assistance |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101221046A (en) * | 2008-01-22 | 2008-07-16 | 南京航空航天大学 | Error processing method of output signal of fiber optic gyroscope components |
KR20110085495A (en) * | 2010-01-20 | 2011-07-27 | 국방과학연구소 | Automatic calibration method during operation of sensor error and inertial navigation system using it |
-
2013
- 2013-04-23 CN CN201310142701.4A patent/CN103245359B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101221046A (en) * | 2008-01-22 | 2008-07-16 | 南京航空航天大学 | Error processing method of output signal of fiber optic gyroscope components |
KR20110085495A (en) * | 2010-01-20 | 2011-07-27 | 국방과학연구소 | Automatic calibration method during operation of sensor error and inertial navigation system using it |
Non-Patent Citations (3)
Title |
---|
RONG WANG ETC: "SINS/GPS/CNS Information Fusion System Based on Improved Huber Filter with Classified Adaptive Factors for High-speed UAVs", 《IEEE》 * |
华冰等: "捷联惯性传感器多余度配置的误差标定技术研究", 《传感器技术》 * |
王东升等: "一种提高车载定位定向系统定位精度的方法", 《中国惯性技术学报》 * |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103576554B (en) * | 2013-11-07 | 2016-05-18 | 北京临近空间飞行器系统工程研究所 | The pneumatic error model component of aircraft based on demand for control, grading design method |
CN103576554A (en) * | 2013-11-07 | 2014-02-12 | 北京临近空间飞行器系统工程研究所 | Flight vehicle pneumatic error model component hierarchical design method based on control demands |
CN104101362B (en) * | 2014-06-24 | 2017-02-15 | 湖北航天技术研究院总体设计所 | Flexible SIMU system model based on-line compensation method for scale factors of gyroscope |
CN104122412A (en) * | 2014-07-29 | 2014-10-29 | 北京机械设备研究所 | Accelerometer calibrating method based on Beidou second generation velocity information |
CN104215262A (en) * | 2014-08-29 | 2014-12-17 | 南京航空航天大学 | An Online Dynamic Identification Method for Inertial Sensor Errors in Inertial Navigation System |
CN105136166B (en) * | 2015-08-17 | 2018-02-02 | 南京航空航天大学 | A kind of SINS error model emulation mode of specified inertial navigation positional precision |
CN105136166A (en) * | 2015-08-17 | 2015-12-09 | 南京航空航天大学 | Strapdown inertial navigation error model simulation method with specified inertial navigation position precision |
US10670424B2 (en) | 2015-10-13 | 2020-06-02 | Shanghai Huace Navigation Technology Ltd | Method for initial alignment of an inertial navigation apparatus |
WO2017063388A1 (en) * | 2015-10-13 | 2017-04-20 | 上海华测导航技术股份有限公司 | A method for initial alignment of an inertial navigation apparatus |
CN106052716B (en) * | 2016-05-25 | 2019-04-05 | 南京航空航天大学 | Gyro error online calibration method based on starlight information auxiliary under inertial system |
CN106052716A (en) * | 2016-05-25 | 2016-10-26 | 南京航空航天大学 | Method for calibrating gyro errors online based on star light information assistance in inertial system |
CN108507568B (en) * | 2017-02-27 | 2021-01-29 | 华为技术有限公司 | Method and device for compensating temperature drift error and integrated navigation system |
CN108507568A (en) * | 2017-02-27 | 2018-09-07 | 华为技术有限公司 | The method, apparatus and integrated navigation system of compensation temperature drift error |
CN106996778A (en) * | 2017-03-21 | 2017-08-01 | 北京航天自动控制研究所 | Error parameter scaling method and device |
CN106996778B (en) * | 2017-03-21 | 2019-11-29 | 北京航天自动控制研究所 | Error parameter scaling method and device |
CN108562288B (en) * | 2018-05-08 | 2020-07-14 | 北京航天时代激光导航技术有限责任公司 | System-level online self-calibration system and method for laser strapdown inertial measurement unit |
CN108562288A (en) * | 2018-05-08 | 2018-09-21 | 北京航天时代激光导航技术有限责任公司 | A kind of Laser strapdown used group of system-level online self-calibration system and method |
CN111288993A (en) * | 2018-12-10 | 2020-06-16 | 北京京东尚科信息技术有限公司 | Navigation processing method, navigation processing device, navigation equipment and storage medium |
CN111288993B (en) * | 2018-12-10 | 2023-12-05 | 北京京东尚科信息技术有限公司 | Navigation processing method, navigation processing device, navigation equipment and storage medium |
CN109655081A (en) * | 2018-12-14 | 2019-04-19 | 上海航天控制技术研究所 | The in-orbit self-adapting correction method of optical system of star sensor parameter and system |
CN112643665A (en) * | 2019-10-10 | 2021-04-13 | 北京京东乾石科技有限公司 | Calibration method and device for installation error of absolute pose sensor |
CN112733314A (en) * | 2019-10-28 | 2021-04-30 | 成都安则优科技有限公司 | Inertial sensor data simulation method |
CN112733314B (en) * | 2019-10-28 | 2023-03-21 | 成都安则优科技有限公司 | Inertial sensor data simulation method |
CN111238535A (en) * | 2020-02-03 | 2020-06-05 | 南京航空航天大学 | An online calibration method of IMU error based on factor graph |
CN111238535B (en) * | 2020-02-03 | 2023-04-07 | 南京航空航天大学 | IMU error online calibration method based on factor graph |
CN112363249A (en) * | 2020-09-02 | 2021-02-12 | 广东工业大学 | Mobile meteorological measurement method and device |
Also Published As
Publication number | Publication date |
---|---|
CN103245359B (en) | 2015-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103245359B (en) | A kind of inertial sensor fixed error real-time calibration method in inertial navigation system | |
CN112629538B (en) | Ship horizontal attitude measurement method based on fusion complementary filtering and Kalman filtering | |
CN102621565B (en) | A transfer alignment method for airborne distributed POS | |
CN102538792B (en) | Filtering method for position attitude system | |
CN101949703B (en) | Strapdown inertial/satellite combined navigation filtering method | |
CN103076015B (en) | A kind of SINS/CNS integrated navigation system based on optimum correction comprehensively and air navigation aid thereof | |
CN102519470B (en) | Multi-level embedded integrated navigation system and navigation method | |
CN110017837B (en) | Attitude anti-magnetic interference combined navigation method | |
CN103630146B (en) | The laser gyro IMU scaling method that a kind of discrete parsing is combined with Kalman filter | |
CN111121766B (en) | A Method of Astronomical and Inertial Integrated Navigation Based on Starlight Vector | |
CN102607595B (en) | Method of Measuring Dynamic Random Drift of Strapdown Flexible Gyroscope Using Laser Doppler Velocimeter | |
CN104215262A (en) | An Online Dynamic Identification Method for Inertial Sensor Errors in Inertial Navigation System | |
CN103727941A (en) | Volume kalman nonlinear integrated navigation method based on carrier system speed matching | |
CN106052716A (en) | Method for calibrating gyro errors online based on star light information assistance in inertial system | |
CN103344259A (en) | Method for correcting feedback of inertial navigation system/global position system (INS/GPS) combined navigation system based on lever arm estimation | |
CN104215244B (en) | Re-entry space vehicle integrated navigation robust filtering method based on launch inertial coordinate system | |
CN104764467A (en) | Online adaptive calibration method for inertial sensor errors of aerospace vehicle | |
CN104374401A (en) | Compensating method of gravity disturbance in strapdown inertial navigation initial alignment | |
CN102607596A (en) | Strapdown flexible gyro dynamic random drift error testing method based on difference GPS (global position system) observation | |
CN111220151B (en) | Inertia and milemeter combined navigation method considering temperature model under load system | |
CN106940193A (en) | A kind of ship self adaptation based on Kalman filter waves scaling method | |
CN106767797A (en) | A kind of inertia based on dual quaterion/GPS Combinated navigation methods | |
CN103925930B (en) | A kind of compensation method of gravimeter biax gyrostabilized platform course error effect | |
CN104374405A (en) | MEMS strapdown inertial navigation initial alignment method based on adaptive central difference Kalman filtering | |
CN102879779A (en) | Rod arm measurement and compensation method based on synthetic aperture radar (SAR) remote sensing imaging |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20151028 |
|
CF01 | Termination of patent right due to non-payment of annual fee |