CN103234634A - 一种实现极紫外波段多能点光谱分辨的成像系统及其应用 - Google Patents

一种实现极紫外波段多能点光谱分辨的成像系统及其应用 Download PDF

Info

Publication number
CN103234634A
CN103234634A CN2013101341634A CN201310134163A CN103234634A CN 103234634 A CN103234634 A CN 103234634A CN 2013101341634 A CN2013101341634 A CN 2013101341634A CN 201310134163 A CN201310134163 A CN 201310134163A CN 103234634 A CN103234634 A CN 103234634A
Authority
CN
China
Prior art keywords
imaging system
mirror
extreme ultraviolet
primary mirror
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013101341634A
Other languages
English (en)
Other versions
CN103234634B (zh
Inventor
穆宝忠
王新
伊圣振
王占山
朱京涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongji University
Original Assignee
Tongji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongji University filed Critical Tongji University
Priority to CN201310134163.4A priority Critical patent/CN103234634B/zh
Publication of CN103234634A publication Critical patent/CN103234634A/zh
Application granted granted Critical
Publication of CN103234634B publication Critical patent/CN103234634B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

本发明涉及一种实现极紫外波段多能点光谱分辨的成像系统及其应用,该系统包括多块主镜和一块副镜,主镜均设在一个圆周上,副镜位于该圆周的轴线上,每一块主镜分别和副镜共同组成一个通道,每个通道对同一个物体形成一幅图像;物体发出的光经每一个主镜反射后,均照射到副镜上,再经过副镜反射后形成与主镜块数相同的多幅图像;该系统应用于对Z-pinch装置的等离子体进行成像,一次成像即可以获得极紫外波段、多个能点、高光谱分辨的等离子体图像,有利于研究不同温度的等离子体随时间的演化过程。与现有技术相比,本发明具有多能点成像、集光效率高及光谱分辨率高等优点。

Description

一种实现极紫外波段多能点光谱分辨的成像系统及其应用
技术领域
本发明涉及极紫外成像领域,尤其是涉及一种实现极紫外波段多能点光谱分辨的成像系统及其应用。
背景技术
高功率Z-pinch装置可产生强X射线脉冲,在材料和器件的辐照特性、可控聚变和纳米光刻技术等研究方面有重要的应用前景。具有光谱选择能力的成像系统可以获取特定温度下等离子体的辐射状况。目前,在Z-pinch装置等离子体诊断中国内外常用的成像设备包括:针孔相机、掠入射成像系统和正入射成像系统。针孔相机是基于“小孔成像”的原理,Z-pinch的靶经过直径约几十微米的针孔后成像在像面,利用软X射线积分CCD相机将所成的像记录下来。如果将单个针孔换成由多个针孔组成的阵列,并采用分幅相机作为探测器,可以实现二维空间分辨和时间分辨成像。在等离子体诊断中常用的掠入射成像系统是KB显微成像系统,等离子体发出的软X光与镜面的夹角很小,约1°。软X光经过两个正交放置的球面镜聚焦成像在探测器的表面。KB显微镜还可以组成多通道成像物镜,即能够对一个物点成多幅图像,例如,四通道KB成四幅图像,八通道KB成八幅图像……。如果采用分幅相机作为探测器,也可以实现二维空间分辨和时间分辨。另外一种常用的等离子体诊断设备是基于正入射结构的Schwarzschild(施瓦兹希尔德)成像系统。对于该系统,极紫外或软X光几乎与镜面相垂直,光线经过凹面镜和凸面镜的反射后成像在探测器表面,目前,该类型的装置已经应用在了国外OMEGA和我国SILEX强激光装置上。
对于针孔相机而言,其可以进行单个针孔的二维积分成像,也可以利用针孔阵列结合分幅相机实现具有时间分辨的二维成像。但是,针孔相机的光谱分辨能力是依赖放置在探测器前面的滤片来实现的,对于针孔本身而言,其没有光谱选择的能力,即针孔对任何波段的光均通过,无法选择对特定波段的光进行成像。结合滤片后能够选择具有一定波长的光,但是滤片对很大波长范围内的光均可以通过,例如,如果采用A1材料的滤片,其可以滤除掉可见光,但是从17.2nm到接近80nm的光均能够穿透滤片,所以光谱选择能力弱。针孔相机的另外一个不足之处是集光效率(收集光的能力)太低,约10-9。由于分幅相机的灵敏度低,较低的集光效率会影响探测到的图像的亮度。相对于针孔相机而言,掠入射成像系统(KB显微镜)将集光效率提高了约2个数量级。在光学元件表面镀制特定的多层膜,其具有了一定的光谱分辨能力,但是,在掠入射情况下,其光谱的分辨率仍不高,例如,镀制Cr/C和W/C周期结构多层膜的KB显微镜在2.5keV能点的光谱带宽约500eV,能量分辨本领为E/ΔE=5。正入射结构的Schwarzschild显微镜的数值孔径可以做到0.2甚至更大,考虑到薄膜对光的反射率后,集光效率可以达到10-2,较针孔相机及掠入射成像系统得到了明显的提高。另外,光学元件表面镀制多层膜后,其在92eV的带宽仅3.4eV,光谱分辨本领为27,明显优于以上两种成像装置。但是,系统仅由一块凹面镜和一块凸面镜组成,仅能进行单能成像,即无法同时对多个能点进行诊断。另外,该显微镜仅能对一个目标成一幅图像,无法和分幅相机结合进行二维空间和时间分辨成像,可以采用条纹相机作为探测器,实现一维空间分辨和时间分辨成像。
目前,国内正在开展Z-pinch源等离子体诊断方面的研究,需要对其极紫外波段的辐射进行时空分辨的二维成像诊断,为了在分幅相机的像面获得高亮度的等离子体图像,要求其集光立体角达到10-4sr,并且要求该系统能够同时对多个能点的等离子体辐射进行成像。前面所述的三种成像系统均无法达到诊断的要求。
发明内容
本发明的目的就是为了克服上述现有诊断成像技术存在的缺陷而提供一种实现极紫外波段多能点光谱分辨的成像系统及其应用。
本发明的目的可以通过以下技术方案实现:
一种实现极紫外波段多能点光谱分辨的成像系统,用于对一个物体形成多个图像,该成像系统包括多块主镜和一块副镜,所述的主镜均设在一个圆周上,所述的副镜位于该圆周的轴线上,每一块主镜分别和副镜共同组成一个通道,每个通道对同一个物体形成一幅图像;
物体发出的光经每一个主镜反射后,均照射到副镜上,再经过副镜反射后形成与主镜块数相同的多幅图像。
所述的主镜和副镜的表面均镀制具有光谱选择性的薄膜,所述的薄膜仅对特定波长或能点的极紫外光或软X射线光进行反射,能够使同一个物体所得到的图像对应不同的波长或能点。
在副镜表面镀制薄膜时,将副镜表面均分成与主镜个数相同的区域,并在每个区域内镀制薄膜,每个区域上薄膜的材料和参数与相对应主镜上薄膜的材料和参数相同。副镜的不同区域与相对应的主镜构成的通道对不同波长的光进行反射,从而实现多能点或多波长的光谱选择能力。
所述的薄膜的材料选自C/Si、Mo/Si、Mo/Y或Mo/Si。
所述的薄膜为多层膜。镀制的薄膜在极紫外波段反射光谱的带宽窄,仅几个电子伏特,具有较高的光谱选择能力,可以用来探测等离子体温度等物理信息。
所述的主镜的个数为4个或8个。
在主镜和副镜表面镀制的薄膜还可以为宽带多层膜,使系统覆盖更宽的光谱。
一种实现极紫外波段多能点光谱分辨的成像系统的应用,将成像系统应用于对Z-pinch装置的等离子体成像,有利于研究不同温度的等离子体随时间的演化过程。
与现有技术相比,本发明具有以下优点:
1.本发明的物镜具有较大的集光立体角(约10-3~10-4sr),较针孔相机(约10-9sr)提高约5个数量级,较KB显微镜提高了2~3个数量级,能够明显改善像面的光强度,提高图像的亮度。
2.本发明在主镜和副镜表面镀制多种薄膜,所镀制的薄膜仅对特定波长(能点)的极紫外或软X射线光反射,具有光谱选择的本领,并且光谱分辨率高,能够使同一个物所得到的图像对应不同的波长(能点)。
3.本发明在主镜和副镜表面镀制的薄膜还可以为宽带多层膜,使系统覆盖更宽的光谱。
4.本发明的系统具有多能点成像、集光效率高及光谱分辨率高的特点。
附图说明
图1为实施例1中四通道极紫外成像系统的光路结构示意图;
图2为实施例1中的主镜排布示意图;
图3为实施例1中的的副镜的结构示意图;
图4为实施例1的成像系统在四个能点的反射率曲线示意图;
图5为实施例2中的主镜排布示意图。
图中,1为物体,2为副镜,3为第一主镜,4为第二主镜,5为第三主镜,6为第四主镜,7为第一图像,8为第二图像,9为第三图像,10为第四图像,11为物体发出的极紫外或软X光,12为主镜所在的圆周,13为第一区域,14为第二区域,15为第三区域,16为第四区域,17为第一投影,18为第二投影,19为第三投影,20为第四投影,21为中心孔,22为50eV能点的反射率曲线,23为95eV能点的反射率曲线,24为150eV能点的反射率曲线,25为系统在宽带50~100eV的反射率曲线。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
实施例1
一种实现极紫外波段多能点光谱分辨的成像系统,该成像系统工作波长为极紫外光或软X射线光。该成像系统应用于对Z-pinch装置的等离子体进行成像。如图1、图2所示,该系统包括4块主镜(分别为第一主镜3、第二主镜4、第三主镜5、第四主镜6)和一块副镜2,第一主镜3、第二主镜4、第三主镜5、第四主镜6均匀布设在一个圆周上,副镜2位子该圆周的轴线上,每一块主镜分别和副镜2共同组成一个通道,每个通道对同一个物体1形成一幅图像;物体1发出的极紫外或软X光11经第一主镜3、第二主镜4、第三主镜5及第四主镜6反射后,均照射到副镜2上,光再经过副镜2反射后形成物体的4个图像,分别为第一图像7、第二图像8、第三图像9及第四图像10。图1中,xoy平面垂直于轴O1O2,yoz平面垂直于xoy平面,图中,h1、h2分别表示图像之间的距离。
第一主镜3、第二主镜4、第三主镜5及第四主镜6和副镜2的表面均镀制薄膜,所镀制的薄膜具有光谱选择性,仅对特定波长或能点的极紫外光或软X射线光反射,能够使同一个物体所得到的图像对应不同的波长或能点。第一主镜3、第二主镜4、第三主镜5及第四主镜6分别对应50eV、95eV、150eV和50~100eV宽带光谱,所镀制的薄膜为多层膜,材料分别为C/Si、Mo/Si、Mo/Y和Mo/Si。镀制的薄膜在极紫外波段反射光谱的带宽窄,仅几个电子伏特,具有较高的光谱选择能力,可以用来探测等离子体温度等物理信息。
如图3所示,副镜2为带有中心孔21的圆形物镜,中心孔21的直径为50mm。在副镜2表面镀制薄膜时,副镜2表面被均分成与主镜个数相同的区域,分别为第一区域13、第二区域14、第三区域15及第四区域16。副镜2的每个区域分别与不同的主镜相对应,即第一区域13、第二区域14、第三区域15及第四区域16分别与第一主镜3、第二主镜4、第三主镜5及第四主镜6一一对应。副镜2每个区域镀制的薄膜的材料和参数分别与对应的主镜的薄膜的材料和参数相同;副镜2与不同主镜构成的不同的通道对不同波长的极紫外或软X光11进行反射,从而实现多能点或多波长的光谱选择能力。物体1发出的光经第一主镜3、第二主镜4、第三主镜5及第四主镜6反射后在副镜2表面形成投影,分别为第一投影17,第二投影18,第三投影19及第四投影20。
因此第一图像7、第二图像8、第三图像9及第四图像10分别对应等离子体在50eV、95eV、150eV和50~100eV宽带光谱的辐射,反映了等离子体在该温度的辐射状况。
本实施例的成像系统具有高光谱分辨率的特性。图4给出了该成像系统在四个能点(50eV、95eV、150eV和50~100eV宽带光谱)的反射率曲线。系统在这三个单能点的反射率分别为22.1%,71.9%、25.7%,在50~100eV宽带的反射率为10%。单能点的光谱带宽分别为5.58eV,3.79eV和1.48eV,光谱分辨本领分别为9.0、25.1和101.4。
本成像系统有一个通道为宽带。50~100eV宽带范围内,系统的反射率较平,说明对该范围内的光反射率基本相同。该特点可以用来获取等离子体更多的温度信息。
实施例2
与实施例1不同之处在于,该系统为八通道系统,该系统包括八个主镜,如图5所示,八个主镜均布设在同一个圆周12上,相应的副镜2被分割成与主镜个数相同的区域。该系统包括12个或更多个主镜,相应的副镜2被分割成与主镜个数相同的区域。

Claims (7)

1.一种实现极紫外波段多能点光谱分辨的成像系统,用于对一个物体形成多个图像,其特征在于,该成像系统包括多块主镜和一块副镜,所述的主镜均设在一个圆周上,所述的副镜位于该圆周的轴线上,每一块主镜分别和副镜共同组成一个通道,每个通道对同一个物体形成一幅图像;
物体发出的光经每一个主镜反射后,均照射到副镜上,再经过副镜反射后形成与主镜块数相同的多幅图像。
2.根据权利要求1所述的一种实现极紫外波段多能点光谱分辨的成像系统,其特征在于,所述的主镜和副镜的表面均镀制具有光谱选择性的薄膜,所述的薄膜仅对特定波长或能点的极紫外光或软X射线光进行反射。
3.根据权利要求2所述的一种实现极紫外波段多能点光谱分辨的成像系统,其特征在于,在副镜表面镀制薄膜时,将副镜表面均分成与主镜个数相同的区域,并在每个区域内镀制薄膜,每个区域上薄膜的材料和参数与相对应主镜上薄膜的材料和参数相同。
4.根据权利要求2所述的一种实现极紫外波段多能点光谱分辨的成像系统,其特征在于,所述的薄膜的材料选自C/Si、Mo/Si、Mo/Y或Mo/Si。
5.根据权利要求2所述的一种实现极紫外波段多能点光谱分辨的成像系统,其特征在于,所述的薄膜为多层膜。
6.根据权利要求1所述的一种实现极紫外波段多能点光谱分辨的成像系统,其特征在于,所述的主镜的个数为4个或8个。
7.一种如权利要求1~6任一所述的实现极紫外波段多能点光谱分辨的成像系统的应用,其特征在于,将成像系统应用于对Z-pinch装置的等离子体成像。
CN201310134163.4A 2013-04-17 2013-04-17 一种实现极紫外波段多能点光谱分辨的成像系统及其应用 Expired - Fee Related CN103234634B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310134163.4A CN103234634B (zh) 2013-04-17 2013-04-17 一种实现极紫外波段多能点光谱分辨的成像系统及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310134163.4A CN103234634B (zh) 2013-04-17 2013-04-17 一种实现极紫外波段多能点光谱分辨的成像系统及其应用

Publications (2)

Publication Number Publication Date
CN103234634A true CN103234634A (zh) 2013-08-07
CN103234634B CN103234634B (zh) 2015-11-04

Family

ID=48882685

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310134163.4A Expired - Fee Related CN103234634B (zh) 2013-04-17 2013-04-17 一种实现极紫外波段多能点光谱分辨的成像系统及其应用

Country Status (1)

Country Link
CN (1) CN103234634B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111562716A (zh) * 2020-04-15 2020-08-21 同济大学 一种具有准同轴观测功能的多通道kb显微镜结构
CN114594587A (zh) * 2020-12-07 2022-06-07 中国科学院长春光学精密机械与物理研究所 一种紫外巡天的光学成像系统
CN117352527A (zh) * 2023-10-08 2024-01-05 同济大学 一种六通道阵列式Schwarzschild极紫外成像系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5982497A (en) * 1998-07-09 1999-11-09 Optical Insights, Llc Multi-spectral two-dimensional imaging spectrometer
US20040120042A1 (en) * 2001-03-06 2004-06-24 Tomohiko Nagase Multi-screen spectroscopic imaging device
CN201233362Y (zh) * 2008-06-04 2009-05-06 江西农业大学 一种用于检测水果品质的多光谱成像装置
CN102945688A (zh) * 2012-10-30 2013-02-27 同济大学 一种x射线kba显微成像系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5982497A (en) * 1998-07-09 1999-11-09 Optical Insights, Llc Multi-spectral two-dimensional imaging spectrometer
US20040120042A1 (en) * 2001-03-06 2004-06-24 Tomohiko Nagase Multi-screen spectroscopic imaging device
CN201233362Y (zh) * 2008-06-04 2009-05-06 江西农业大学 一种用于检测水果品质的多光谱成像装置
CN102945688A (zh) * 2012-10-30 2013-02-27 同济大学 一种x射线kba显微成像系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王新,穆宝忠,黄怡,朱京涛,王占山,贺鹏飞: "《13.5nm Schwarzschild显微镜系统及成像实验》", 《光学精密工程》, vol. 19, no. 8, 31 August 2011 (2011-08-31) *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111562716A (zh) * 2020-04-15 2020-08-21 同济大学 一种具有准同轴观测功能的多通道kb显微镜结构
CN114594587A (zh) * 2020-12-07 2022-06-07 中国科学院长春光学精密机械与物理研究所 一种紫外巡天的光学成像系统
CN114594587B (zh) * 2020-12-07 2023-06-09 中国科学院长春光学精密机械与物理研究所 一种紫外巡天的光学成像系统
CN117352527A (zh) * 2023-10-08 2024-01-05 同济大学 一种六通道阵列式Schwarzschild极紫外成像系统
CN117352527B (zh) * 2023-10-08 2024-04-26 同济大学 一种六通道阵列式Schwarzschild极紫外成像系统

Also Published As

Publication number Publication date
CN103234634B (zh) 2015-11-04

Similar Documents

Publication Publication Date Title
US9989746B2 (en) Light microscope and microscopy method
US20150055745A1 (en) Phase Contrast Imaging Using Patterned Illumination/Detector and Phase Mask
JP6580310B2 (ja) 高分解能走査顕微鏡
US10215622B2 (en) Method and gonioradiometer for the direction-dependent measurement of at least one lighting or radiometric characteristic variable of an optical radiation source
JP2015515018A (ja) 高分解能走査顕微鏡
CN103234987B (zh) 一种时间分辨的多色单能x射线成像谱仪
CN103534627A (zh) 光导像素
JP2010539471A (ja) 厚さ測定装置
JP2015060229A (ja) 高分解能走査顕微鏡
CN108956561A (zh) 基于扫描振镜的共聚焦与环形全内反射双模式显微镜系统
JP5884021B2 (ja) マルチスペクトル撮像装置およびマルチスペクトル撮像方法
CN103631081A (zh) 一种透射式软x光带通成像系统
US9869868B2 (en) Light splitting module for obtaining spectrums and dual-mode multiplexing optical device
CN111060289B (zh) 一种高灵敏度日冕仪杂光检测装置
US20220043246A1 (en) Microscope and method for microscopic image recording with variable illumination
CN103940514B (zh) 一种宽波段近景紫外成像光谱装置
BR102013027425A2 (pt) Matriz de imagem focal multiespectral
US9568437B2 (en) Inspection device
CN103234634B (zh) 一种实现极紫外波段多能点光谱分辨的成像系统及其应用
CN104833685A (zh) X射线光栅成像系统
CN102032950B (zh) 一种通过白日观测恒星测量整层大气相干长度的方法
JP2014048096A (ja) 二次元分光計測装置及び二次元分光計測方法
CN114486840A (zh) 一种阴极荧光光谱与高衬度成像装置及其成像方法
CN101241231B (zh) 一种红外光学成像装置
US9273241B2 (en) High-resolution imaging system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20151104

Termination date: 20180417