CN103224559B - 人源hiv广谱中和抗体a16及其相关生物材料与应用 - Google Patents

人源hiv广谱中和抗体a16及其相关生物材料与应用 Download PDF

Info

Publication number
CN103224559B
CN103224559B CN201310154423.4A CN201310154423A CN103224559B CN 103224559 B CN103224559 B CN 103224559B CN 201310154423 A CN201310154423 A CN 201310154423A CN 103224559 B CN103224559 B CN 103224559B
Authority
CN
China
Prior art keywords
sequence
antibody
contain
hiv
nucleic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310154423.4A
Other languages
English (en)
Other versions
CN103224559A (zh
Inventor
何玉先
满来
孟佳子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Pathogen Biology of CAMS
Original Assignee
Institute of Pathogen Biology of CAMS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Pathogen Biology of CAMS filed Critical Institute of Pathogen Biology of CAMS
Priority to CN201310154423.4A priority Critical patent/CN103224559B/zh
Publication of CN103224559A publication Critical patent/CN103224559A/zh
Application granted granted Critical
Publication of CN103224559B publication Critical patent/CN103224559B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Peptides Or Proteins (AREA)

Abstract

本发明公开了一种人源HIV广谱中和抗体A16及其相关生物材料与应用。A16由抗体的重链的Fd片段和抗体的轻链组成,所述重链Fd片段由可变区VH和恒定区亚单位CH1组成,所述VH和VL均由决定簇互补区和框架区组成,所述决定簇互补区由CDR1、CDR2和CDR3组成;所述VL的CDR1、CDR2和CDR3的氨基酸序列分别如序列3的第26-31位、第49-51位、第88-98位所示,所述VH的CDR1、CDR2和CDR3的氨基酸序列分别如序列4的第26-33位、第51-58位、第97-115位所示。A16可用于制备治疗、预防和诊断HIV感染和艾滋病的药物、疫苗以及诊断试剂。

Description

人源HIV广谱中和抗体A16及其相关生物材料与应用
技术领域
本发明涉及一种人源HIV特异性的Fab抗体及其相关生物材料与应用,特别涉及人源HIV中和抗体A16及其相关生物材料与应用。
背景技术
获得性免疫缺陷综合征(Acquired immunodeficiency syndrome,AIDS)简称艾滋病,是由人免疫缺陷病毒(human immunodeficiency virus,HIV)感染引起以T细胞免疫功能缺陷为主的综合征。自1981年发现艾滋病以来,全球已有超过6000万人感染HIV,其中约2500万人已经死亡。据WHO统计,新的感染和死亡人数逐年增加,现在每天就有大约1.6万新发感染。我国于1985年发现首例AIDS病人,迄今累计报告HIV感染者已有43.4万,其中死亡8.8万,但估计我国存活HIV感染者和病人约78万。在云南、河南、新疆等地区,HIV感染已出现流行趋势。令人担忧的是,HIV在我国的传播已从献血、吸毒、卖淫等高危人群转向普通人群,且性传播越来越成为主要途径。因此,大力开展艾滋病防治已成为当务之急。如果措施不力,必将对我国的人口健康和社会发展产生巨大影响。然而,目前既无有效的预防疫苗,也无根治AIDS的药物。
位于HIV颗粒表面的包被糖蛋白(Env)介导病毒感染靶细胞的过程(1)。该蛋白(gp160)由表面亚基gp120和跨膜亚基gp41通过非共价键连接。在天然状态下,gp160为三聚体,其中三分子的gp120形成一个球状复合物,而三分子gp41则象三个脚,插入病毒包膜内。在HIV侵入靶细胞过程中,gp120主要功能是与受体CD4分子和辅助受体(趋化因子受体CCR5或CXCR4等)结合,而gp41分子主要介导病毒和细胞的膜融合。HIV包膜蛋白不但介导病毒感染靶细胞的过程,同时也是诱导中和抗体反应的关键蛋白。艾滋病疫苗失败的一个主要的原因是以往所设计的各种疫苗免疫原都不能诱导有效的HIV中和抗体。深入研究HIV感染免疫应答的分子基础,尤其是中和抗体的抗原表位和中和病毒的分子机制,并据此改造免疫原以诱导中和抗体,是当前艾滋病疫苗设计的重点策略。同时,中和抗体也是天然的病毒侵入抑制剂,动物攻毒实验和病人治疗的临床实验皆证实基于中和抗体的被动免疫具有显著的预防和治疗效果(2)。
尽管HIV自然感染不能诱导保护性免疫,但一些感染者的血清(多克隆抗体)却具有中和不同亚型的广谱中和活性,说明HIV本身具有保守的中和抗体表位。过去几年对先前分离的几个广谱中和单克隆抗体(b12,2G12,2F5,4E10)进行了结构解析,证实它们识别包膜蛋白gp120或gp41上相对保守的抗原结构,主要阻断受体结合和膜融合过程(3-4)。如单克隆抗体IgG-b12作用于包膜蛋白的gp120亚基,可以阻断病毒与受体的结合,而4E10和2F5则作用于gp41亚基,主要是通过阻断病毒细胞膜融合过程而发挥中和作用。由于近年艾滋病疫苗研究的不断失败以及现有治疗药物的局限性,国际社会对HIV中和抗体的研究投入极大的热情,近期发现了具有很好病毒中和活性的人源单克隆抗体VRC01和VRC02(5)、PG9和PG16(6)、10E8(7)、PGT抗体(8)等。广谱高效的HIV中和抗体不但可以指导疫苗设计,而且具有可能的治疗和预防作用,对HIV感染的诊断也具有重要的意义。
HIV具有高度变异性,造成多种亚型(Subtypes)和重组型(CRF)在世界不同地区的流行。多数HIV广谱中和抗体(如b12、2G12、2F5、4E10、VRC01、VRC02)都是从B亚型感染者分离鉴定,p9和p16来源于非洲A亚型感染者。然而,目前发现的HIV广谱中和抗体仅是少数,介导血清中和活性的大部分抗原表位有待鉴定(9)。在我国流行着多种HIV亚型,特别是B’亚型(泰国B)、B/C和A/E重组型已成为占90%以上的主要的流行毒株,但令人遗憾的是,尚未见有关从我国HIV感染者分离到广谱中和抗体的报道。
参考文献:
1.Chan,D.C.,and Kim,P.S.(1998)HIV entry and its inhibition.Cell93,681-684.
2.Gong,R.,Chen,W.,and Dimitrov,D.S.(2012)Candidate antibody-basedtherapeutics against HIV-1.BioDrugs26,143-162.
3.Chen,W.,and Dimitrov,D.S.(2009)Human monoclonal antibodies andengineered antibody domains as HIV-1entry inhibitors.Curr Opin HIV AIDS4,112-117.
4.Chen,W.,and Dimitrov,D.S.(2012)Monoclonal antibody-based candidatetherapeutics against HIV type1.AIDS Res Hum Retroviruses28,425-434.
5.Wu,X.,Yang,Z.Y.,Li,Y.,Hogerkorp,C.M.,Schief,W.R.,Seaman,M.S.,Zhou,T.,Schmidt,S.D.,Wu,L.,Xu,L.,Longo,N.S.,McKee,K.,O'Dell,S.,Louder,M.K.,Wycuff,D.L.,Feng,Y.,Nason,M.,Doria-Rose,N.,Connors,M.,Kwong,P.D.,Roederer,M.,Wyatt,R.T.,Nabel,G.J.,and Mascola,J.R.(2010)Rational design of envelope identifies broadly neutralizing humanmonoclonal antibodies to HIV-1.Science329,856-861.
6.Walker,L.M.,Phogat,S.K.,Chan-Hui,P.Y.,Wagner,D.,Phung,P.,Goss,J.L.,Wrin,T.,Simek,M.D.,Fling,S.,Mitcham,J.L.,Lehrman,J.K.,Priddy,F.H.,Olsen,O.A.,Frey,S.M.,Hammond,P.W.,Kaminsky,S.,Zamb,T.,Moyle,M.,Koff,W.C.,Poignard,P.,and Burton,D.R.(2009)Broadand potent neutralizing antibodies from an African donor reveal a new HIV-1vaccine target.Science326,285-289.
7.Huang,J.,Ofek,G.,Laub,L.,Louder,M.K.,Doria-Rose,N.A.,Longo,N.S.,Imamichi,H.,Bailer,R.T.,Chakrabarti,B.,Sharma,S.K.,Alam,S.M.,Wang,T.,Yang,Y.,Zhang,B.,Migueles,S.A.,Wyatt,R.,Haynes,B.F.,Kwong,P.D.,Mascola,J.R.,and Connors,M.(2012)Broad and potentneutralization of HIV-1by a gp41-specific human antibody.Nature491,406-412.
8.Walker,L.M.,Huber,M.,Doores,K.J.,Falkowska,E.,Pejchal,R.,Julien,J.P.,Wang,S.K.,Ramos,A.,Chan-Hui,P.Y.,Moyle,M.,Mitcham,J.L.,Hammond,P.W.,Olsen,O.A.,Phung,P.,Fling,S.,Wong,C.H.,Phogat,S.,Wrin,T.,Simek,M.D.,Koff,W.C.,Wilson,I.A.,Burton,D.R.,andPoignard,P.(2011)Broad neutralization coverage of HIV by multiple highlypotent antibodies.Nature477,466-470.
9.Scheid,J.F.,Mouquet,H.,Feldhahn,N.,Seaman,M.S.,Velinzon,K.,Pietzsch,J.,Ott,R.G.,Anthony,R.M.,Zebroski,H.,Hurley,A.,Phogat,A.,Chakrabarti,B.,Li,Y.,Connors,M.,Pereyra,F.,Walker,B.D.,Wardemann,H.,Ho,D.,Wyatt,R.T.,Mascola,J.R.,Ravetch,J.V.,and Nussenzweig,M.C.(2009)Broad diversity of neutralizing antibodies isolated from memory Bcells in HIV-infected individuals.Nature458,636-640.
发明内容
本发明所要解决的技术问题是提供一种人源抗艾滋病病毒(HIV)基因工程抗体及其相关生物材料与应用。
本发明所提供的人源抗HIV基因工程抗体是Fab抗体,名称为A16,它由抗体的重链的Fd片段和抗体的轻链组成,所述轻链由可变区VL和恒定区CL组成,所述重链Fd片段由可变区VH和恒定区亚单位CH1组成,所述VH和VL均由决定簇互补区(Complementarity-Determining Region,CDR)和框架区(Framework Region,FR)组成,所述决定簇互补区由CDR1、CDR2和CDR3组成;其中,所述VL的CDR1、CDR2和CDR3的氨基酸序列分别如序列3的第26-31位所示、如序列3的第49-51位所示,如序列3的第88-98位所示,所述VH的CDR1、CDR2和CDR3的氨基酸序列分别如序列4的第26-33位所示、如序列4的第51-58位所示,如序列4的第97-115位所示。
所述Fab抗体A16中,所述VH和VL的框架区可均来源于人。
所述VH的氨基酸序列具体可如序列表中序列4的第1-124位所示;所述VL的氨基酸序列具体可如序列表中序列3的第1-108位所示。
所述Fab抗体A16中,所述CL和所述CH1均可来源于人。
所述重链Fd片段的氨基酸序列具体可如序列表中的序列4所示;所述轻链的氨基酸序列具体可如序列表中的序列3所示。其中序列表中的序列3和序列4分别由214个和238个氨基酸残基组成。
由上述Fab抗体A16得到的衍生抗体也属于本发明的保护范围。
所述衍生抗体具体可为含有所述Fab抗体A16的全分子IgG抗体,将所述Fab抗体A16的VH和VL连接得到的单链抗体。
1)-10)中的任一种与A16相关的生物材料也属于本发明的保护范围:
1)编码A16的核酸分子;
2)含有1)所述核酸分子的表达盒;
3)含有1)所述核酸分子的重组载体,或含有2)所述表达盒的重组载体;
4)含有1)所述核酸分子的重组微生物、或含有2)所述表达盒的重组微生物、或含有3)所述重组载体的重组微生物;
5)含有1)所述核酸分子的转基因细胞系、或含有2)所述表达盒的转基因细胞系、或含有3)所述重组载体的转基因细胞系;
6)编码所述衍生抗体的核酸分子;
7)含有6)所述核酸分子的表达盒;
8)含有6)所述核酸分子的重组载体,或含有7)所述表达盒的重组载体;
9)含有6)所述核酸分子的重组微生物、或含有7)所述表达盒的重组微生物、或含有8)所述重组载体的重组微生物;
10)含有6)所述核酸分子的转基因细胞系、或含有7)所述表达盒的转基因细胞系、或含有8)所述重组载体的转基因细胞系。
上述与A16相关的生物材料中,所述转基因细胞系为非动物繁殖材料和非植物繁殖材料。所述核酸分子可以是DNA,如cDNA、基因组DNA或重组DNA;所述核酸分子也可以是RNA,如mRNA或hnRNA等。
上述与A16相关的生物材料中,1)所述核酸分子具体可为编码A16的DNA分子,6)所述核酸分子为编码所述衍生抗体的DNA分子;所述VL的CDR1的编码序列具体如序列表中序列1的第76-93位所示,所述VL的CDR2编码序列具体如序列表中序列1的第145-153位所示,所述VL的CDR3的编码序列具体如序列表中序列1的第262-294位所示,所述VH的CDR1的编码序列具体如序列表中序列2的第76-99位所示,所述VH的CDR2的编码序列具体如序列表中序列1的第151-174位所示,所述VH的CDR3的编码序列具体如序列表中序列1的第289-345位所示。
上述与A16相关的生物材料中,所述VH的编码序列具体如序列表中序列2的第1-372位所示;所述VL的编码序列具体如序列表中序列1的第1-324位所示;
进一步,所述Fd片段的编码序列具体如序列表中序列2所示,所述Fab抗体的轻链的编码序列具体如序列表中序列1所示。
所述重组载体具体可为将上述编码基因插入pComb3XSS的多克隆位点得到的重组载体。
下述A1-A6中的任一种用途也属于本发明的保护范围:
A1、A16在制备诊断HIV感染的试剂、治疗HIV感染的药物或预防HIV感染的疫苗中的应用;
A2、A16在制备诊断艾滋病的试剂、治疗艾滋病的药物或预防艾滋病的疫苗中的应用;
A3、所述衍生抗体在制备诊断HIV感染的试剂、治疗HIV感染的药物或预防HIV感染的疫苗中的应用;
A4、所述衍生抗体在制备诊断艾滋病的试剂、治疗艾滋病的药物或预防艾滋病的疫苗中的应用;
A5、所述生物材料在制备诊断HIV感染的试剂、治疗HIV感染的药物或预防HIV感染的疫苗中的应用;
A6、所述生物材料在制备诊断艾滋病的试剂、治疗艾滋病的药物或预防艾滋病的疫苗中的应用。
所述HIV具体可为HIV A亚型(如MG505.W0M.ENV.A2和MG505.W0M.ENV.H3)、HIVB亚型(如SF162、NL4-3、JRFL和TRO)、HIV C亚型(如Du156.12和CAP45.2.00.G3)、HIV B’亚型(如CNE9和CNE11)、HIV A/E亚型(如CNE3和CNE5)、HIV B/C亚型(如CNE20和CNE23)。
本发明采用噬菌体抗体展示技术,从我国B’型HIV感染者分离HIV包膜蛋白特异性人源单克隆Fab抗体,命名为A16,它具有特殊的序列结构,可以与多种亚型的HIV包膜蛋白结合,对HIV具有很强的中和活性。可利用该抗体的CDR区或Fab或IgG全抗体基因,可在原核细胞、酵母细胞、昆虫细胞和真核细胞及任何表达系统中制备不同形式的基因工程抗体,以用于制备治疗、预防和诊断HIV感染和艾滋病的药物、疫苗以及诊断试剂。
附图说明
图1为A16与多种HIV包膜蛋白抗原的免疫反应性。
图2为A16对HIV毒株SF162和NL4-3的中和活性。
图3为A16对gp120二硫键的依赖性分析。
图4为A16对gp120与CD4结合的抑制作用。
具体实施方式
本发明运用噬菌体表面呈现技术,从一个中国B’亚型HIV感染者获得外周血淋巴细胞,通过基因工程技术构建了人源抗HIV基因工程抗体文库,并从中筛选获得特异性抗HIV基因工程Fab抗体A16,获得该抗体基因及其在原核细胞中的表达,表位分析表明该抗体作用于HIV包膜蛋白的受体结合部位,具有对HIV感染的中和活性。
A16是一种人源的在原核细胞中获得稳定表达的重组Fab功能性片段,可特异性结合HIV的包膜蛋白,对HIV感染具有中和活性。该Fab抗体作用于病毒包膜蛋白的受体结合区。
本发明所提供的人源抗HIV基因工程抗体是Fab抗体A16,其特异性的轻链和重链可变区基因来源于对人源抗HIV抗体基因库的特异性筛选获得,相应的三个决定簇互补区域(CDRs)CDR1、CDR2和CDR3为该抗体特有的全新序列。A16抗体蛋白功能由存在于抗体基因轻链和重链可变区的决定簇互补区域CDR1、CDR2和CDR3中特异性核苷酸序列决定,其相应的氨基酸序列构成了抗体的特异性抗原结合区域。换言之,其轻链和重链可变区相应的三个CDR区序列组合及其CDR之间的框架区(FRs)序列组成了每个抗体可变区特征。A16的VH的CDR1、CDR2和CDR3序列分别为:GFPFSDYN、ISSTSRNI和TRDLSSLFFCRQTSCPSAY,轻链的CDR1、CDR2和CDR3序列分别为:NIRRRT、DDR和QVWDSSSDHWV。
A16的Fd片段的核苷酸序列如序列表中序列2所示,A16轻链的编码序列如序列表中序列1所示;A16的Fd片段的氨基酸序列如序列表中的序列4所示,轻链的氨基酸序列如序列表中的序列3所示。
根据A16可变区中特异性核苷酸或氨基酸序列,可在体外人工合成与此相同或接近的核苷酸序列或编码相同氨基酸的核苷酸序列,从而可以获得相同的抗体基因或用于相关基因的改造;利用上述获得的A16基因,可在原核细胞、酵母细胞、昆虫细胞和真核细胞及任何表达系统中制备不同形式的基因工程抗体,或以此为基础进行改建而获得含有该抗体基因的其他基因,从而获得类似于A16具有结合并中和HIV的抗体产物。
以下的优选实施例对本发明作详细说明,但不意味着限制本发明的内容。下述实施例中的实验方法,为说明本发明,采用的材料与试剂包括:噬菌体表达载体pComb3XSS、及人源Fab模板载体pComb3XTT和pComb3Xλ见由Barbas等人编著的《Phage Display-A Laboratory Manual》一书的第9章(Carbos F.Barbas III,DennisR.Burton,Jamie K.Scott,Gregg J.Siverman.Phage Display-A Laboratory Manual.Cold Spring Harbor Laboratory Press.New York);所用辅助噬菌体为VCSM13(美国Stratagene公司Cat No:200251-81);菌株为XL1-Blue(Stratagene公司CatNo:200228);mRNA分离试剂盒(Invitrogen公司Part No:45-0019);第一链合成试剂盒(Invitrogen公司SuperScriptTMⅡFirst-Strand Synthesis System for RT-PCRCat No:11904-18);PCR扩增试剂PCR SuperMix High Fidelity(Invitrogen公司Cat No:12532);胶回收试剂盒QIAquick Gel Extraction kit(QIAGEN CatNo:28706);内切酶SfiⅠ(Roche公司Cat No:1288059);T4连接酶(New England Biolab公司Cat No:M0202);胰酶(Sigma Cat No:T7409);酶标抗人Fab二抗(Sigma Cat No:A0293);酶标抗HA二抗(Sigma Cat No:H6533);TMB底物(Sigma Cat No:T0440);核酸酶(Novagen公司Cat No:70746-3);镍填料Ni-NTASuperflow(GE公司Cat No:17-5318-02);蛋白G(GE公司);HRP标记抗M13抗体(SinoBiological Inc,Cat No:11973-MM05)。重组HIV-1包膜蛋白gp120(来自Bal、SF162、ADA、JRFL、JRCSF、R2、YU2、MN、LAI病毒株)或gp140(来自92RW020和C.ZA.1197MB病毒株)、以及可溶性CD4蛋白(sCD4)购自美国Immune Technology公司;NHS-LS-Biotin生物素标记试剂盒(Cat No:24450)购自Thermo Fisher Scientific公司;辣根过氧化物酶(HRP)标记的亲和素(Cat No:43-4323)购自Invitrogen公司。用于制备HIV假病毒的HIV骨架质粒pSG3deltaEnv(Cat No:11051)、表达HIV包膜蛋白(Env)的质粒包括A亚型MG505.W0M.ENV.A2(Cat No:11528)和MG505.W0M.ENV.H3(Cat No:11529)、B亚型TRO(Cat No:11023)、C亚型Du156.12(Cat No:11306)和CAP45.2.00.G3(Cat No:11316)、以及抗HIV单克隆抗体b12(Cat No:2640)和VRC01(Cat No:12033)均由美国国立卫生研究院NIH AIDS Researchand Reference Reagent Program提供;表达B'(CNE9、CNE11)、A/E(CNE3、CNE5)和B/C(CNE20、CNE23)亚型HIV包膜蛋白(Env)的质粒参见Shang H等发表的文献(Shang H,Han X,Shi X,Zuo T,Goldin M,Chen D,Han B,Sun W,Wu H,Wang X,Zhang L.Genetic and neutralization sensitivity of diverse HIV-1env clonesfrom chronically infected patients in China.J Biol Chem,2011,286(16):14531-41);表达B亚型SF162和JRFL包膜蛋白(Env)的质粒参见He Y等发表的文献(He Y,Honnen W,Krachmarov C,Kayman S,Corvalon J,Pinter A.Efficient isolation of novel human monoclonal antibodies with neutralizingactivity against HIV-1from transgenic mice expressing human Ig loci.J.Immunol.2002,169:595-605);表达B亚型NL4-3包膜蛋白(Env)的质粒参见ChongH等发表的文献(Chong H,Yao X,Zhang C,Cai L,Cui S,Wang Y,He Y.Biophysicalproperty and broad anti-HIV activity of Albuvirtide,a3-maleimimidopropionicacid-modified peptide fusion inhibitor.PLoS One,2012,7(3):e32599)。在实施例中作为对照抗体的HY5识别位于gp120上CD4结合区的构象表位,在实施例中作为对照抗体的HY7识别位点位于gp120V3环顶部的线性表位。
以下的实施例便于更好地理解本发明,但本发明并不仅限于这些实施例。下述实施例中的实验方法,如无特殊说明,均为常规方法。下述实施例中所用的材料、试剂等,如无特殊说明,均为本领域的常规材料、试剂。
实施例1为A16的筛选和制备方法;实施例2为A16的的表达和纯化;实施例3为A16与HIV包膜蛋白抗原的反应性;实施例4为A16对HIV的中和活性的检测;实施例5为确定A16是否作用于gp120的构象表位;实施例6为确定A16能否抑制gp120与CD4的结合。
实施例1、人源抗HIV抗体的Fab片段的制备
一、人源抗HIV抗体的Fab片段的基因序列和氨基酸序列的获得
1、噬菌体抗体库的构建
建库技术主要参考Barbas等所介绍的方法(Carbos F.Barbas III,Dennis R.Burton,Jamie K.Scott,Gregg J.Siverman.Phage Display-A Laboratory Manual.Cold Spring Harbor Laboratory Press.New York),如抗体基因的引物设计及PCR扩增、噬菌体表达载体的制备等。首先进行人源IgG Fab段基因的PCR扩增。其步骤是:采用淋巴细胞分离液从HIV感染者分离外周血单核淋巴细胞(PBMC),以mRNA分离试剂盒提取总细胞RNA,然后以第一链合成试剂盒的Oligo-dT引物将提取的RNA经逆转录制备成cDNA。用一组第一轮PCR引物以cDNA为模板扩增重链和轻链的可变区基因,PCR条件为:94℃15秒,56℃15秒,72℃90秒,30个循环。同时,分别以一套PCR引物以pComb3XTT为模板扩增抗体重链恒定区基因CH1片段和轻链恒定区基因Cκ片段,以pComb3XλT为模板扩增轻链恒定区基因Cλ片段。上述PCR产物分别经琼脂糖凝胶回收,以DNA纯化试剂盒QIAquickTM kit(德国QIAGEN公司)纯化后获得第一轮PCR产物。随后,用第二轮PCR引物分别对重链可变区(VH)和恒定区(CH1)基因、轻链可变区(VL)和恒定区(Cκ或Cλ)基因进行连接,PCR条件为:94℃15秒,56℃15秒72℃2分钟,20个循环。如此VH和CH1连接后产生重链的Fd片段,VL和Cκ连接后产生轻链。第二轮PCR产物经琼脂糖凝胶回收,以DNA纯化试剂盒QIAquickTM kit(德国QIAGEN公司)纯化。再用第三轮PCR引物对重链和轻链基因进行连接,PCR条件为:94℃15秒,56℃15秒72℃3分钟,20个循环。PCR产物经DNA纯化试剂盒(QIAquickTM kit)回收后获得1.5Kb左右的Fab基因片段。将Fab片段和载体pComb3XSS均用SfiⅠ酶切后经QIAquick kit回收。将Fab酶切回收产物和载体pComb3XSS酶切回收的3.3Kb片段通过T4连接酶进行连接,得到连接产物pComb3XSS-Fab。连接产物经乙醇沉淀后用15μl蒸馏水重悬,电转导入300μl的大肠杆菌XL1-Blue感受态中(电转条件:Bio-Red电转仪,0.2cm电转杯,2.5K伏电压)。电转后用5ml SOC培养基37℃250rpm转摇1小时,加入10ml含有氨苄青霉素和四环素的SB培养基并于37℃250rpm转摇2小时,加入183ml含有氨苄青霉素和四环素的SB培养基和2ml滴度为1012pfu/ml的辅助噬菌体VCSM13,于37℃300rpm转摇2小时后加入卡那霉素至70μg/ml,置37℃300rpm转摇过夜。次日,于3000g离心15分钟后上清用4%PEG8000和3%NaCl沉淀,经15000g4℃离心15分钟后用2ml含1%BSA的TBS缓冲液(pH7.4)重悬沉淀,全速离心5分钟,上清过滤分装保存-80℃冰箱中。
2、噬菌体抗体库的特异性富集
用于噬菌体抗体库的特异性富集和筛选的抗原为真核表达的重组HIV包膜蛋白包外区gp140,来自A亚型HIV-1病毒株92RW020(简称为A-gp140)和C亚型HIV-1病毒株C.ZA.1197MB(简称为C-gp140)。用50μl0.1M NaHCO3(pH8.6)溶液包被A-gp140或B-gp140蛋白于酶标板微孔中,每孔0.5μg,于4℃过夜;次日,用150μl3%BSA37℃封闭1小时,弃封闭液,每孔加入50μl新鲜噬菌体抗体库,37℃孵育2小时,弃去未结合噬菌体,用0.5%TBST冲洗5次(第二次10次、第三、四次各15次),每次冲洗用移液器吹打10-20次,吸净液体后每孔加入50μl10mg/ml胰酶TBS溶液,37℃孵育30分钟,将洗脱的噬菌体加入2ml新鲜制备的大肠杆菌XL1-Blue菌液(OD600=1)中,室温孵育15分钟,加入6ml含有氨苄青霉素和四环素的SB培养基,于37℃250rpm转摇2小时,加入91ml含有氨苄青霉素和四环素的SB培养基和1ml滴度为1012pfu/ml的辅助噬菌体VCSM13,再于37℃300rpm转摇2小时后加入卡那霉素至终浓度70μg/ml,37℃300rpm转摇过夜。于3000g离心15分钟后,上清用4%PEG8000和3%NaCl沉淀,经15000g于4℃离心15分钟后用2ml含1%BSA的TBS(pH7.4)重悬沉淀,全速离心5分钟,上清过滤保存,取50μl加入已包被A-gp140或C-gp140蛋白的酶标板中,如此反复富集4次。为获得具有交叉反应性的Fab抗体,第一轮和第二轮采用A-gp140富集,第三轮和第四轮采用C-gp140富集。
3、HIV特异性Fab抗体的小量诱导表达和检测
将4次富集的噬菌体稀释106、107、108倍后各取1μl加入50μl新鲜制备的大肠杆菌XL1-Blue菌液,室温感染15分钟,涂氨苄抗性LB板。第二天选择合适菌落密度的板挑取单克隆菌落,每个单克隆菌落加入到2ml含氨苄青霉素的SB培养基中,于37℃300rpm转摇6小时,每管中取0.2μl菌液在氨苄抗性LB板上保菌,然后各加入8μl0.5M IPTG,37℃300rpm转摇过夜。次日离心取上清进行ELISA检测。具体步骤是,将A-gp140以1μg/ml浓度用100μl0.1M NaHCO3(pH8.6)溶液包被,4℃过夜。第二天用200μl3%BSA37℃封闭1小时,弃封闭液,用0.05%PBS-T洗一遍,加入100μl过夜诱导的细菌上清,37℃孵育1小时,0.05%PBS-T洗三遍。加入100μl酶标抗人Fab二抗(1:30000稀释),37℃孵育1小时,以0.05%PBS-T洗三遍。用TMB显色30分钟,2M H2SO4终止,酶标仪检测吸光度A值。
4、人源Fab抗体A16的核酸序列和氨基酸序列分析
从保菌板上挑取阳性克隆相应的菌落,用QIAGEN Miniprep Kit质粒提取试剂盒提取质粒DNA进行核苷酸序列测序。测序为自动测序,轻链测序引物为5’-AAGACAGCTATCGCGATTGCAG-3,重链测序引物为5’-ACCTATTGCCTACGGCAGCCG-3’。将获得的序列进行分析,并与Internet网络上基因库中的IgG序列比对,证实A16为人源特异性Fab抗体,具有特有的轻链和重链基因可变区序列。
A16的Fd片段的编码序列如序列表中序列2所示,A16的轻链的编码序列如序列表中序列1所示;其中序列表中序列2的第1-372位为VH的编码序列;序列表中序列1的第1-324位为VL的编码序列。采用IMGT/V-QUEST软件(http://www.imgt.org)分析CDR序列,VL的CDR1的编码序列如序列表中序列1的第76-93位所示,VL的CDR2编码序列如序列表中序列1的第145-153位所示,VL的CDR3的编码序列如序列表中序列1的第262-294位所示;VH的CDR1的编码序列如序列表中序列1的第76-99位所示,VH的CDR2的编码序列如序列表中序列1的第151-174位所示,VH的CDR3的编码序列如序列表中序列1的第289-345位所示。
A16的Fd片段的氨基酸序列如序列表中的序列4所示;Fd片段的VH的氨基酸序列如序列表中序列4的第1-124位所示;VL的氨基酸序列具体可如序列表中序列3的第1-108位所示。VL中含有3个决定簇互补区CDR1、CDR2和CDR3,其氨基酸序列分别如序列表中序列3的第26-31位、49-51位和88-98位所示;被这3个决定簇互补区间隔的其余四个区为框架区。VH中含有3个决定簇互补区CDR1、CDR2和CDR3,其氨基酸序列分别如序列表中序列4的第26-33位、51-58位和97-115位所示;被这3个决定簇互补区间隔的其余四个区为框架区。
实施例2、人源Fab抗体A16的的表达和纯化
将上述筛选获得的含有A16编码基因的重组载体pComb3XSS-Fab转化至大肠杆菌TOP10F’感受态细胞,挑取单个菌落加入到500ml含20mM MgCl2和50μg/ml氨苄青霉素的SB培养基中37℃250rpm摇5-8小时(OD600=1),加入1ml0.5M IPTG,37℃250rpm摇16小时,细菌-80℃冻融破菌,加入25μl多粘菌素B溶液,0.5μl核酸酶冰上摇匀1小时,10000转速离心30分钟,上清用镍填料Ni-NTA Superflow N柱或蛋白G柱纯化(依说明书提供的方法进行)。得到纯化的抗HIV抗体人源Fab抗体A16。
实施例3、A16与HIV包膜蛋白的反应性
以ELISA法检测A16与11种来自不同亚型HIV的包膜蛋白重组抗原(gp120或gp140)的交叉反应性,包括HIV亚型A,B和C。其步骤为,将每个蛋白以1μg/ml浓度用100μl0.1M NaHCO3(pH8.6)溶液分别包被,4℃过夜。第二天用200ml3%BSA37℃封闭1小时,弃封闭液,0.05%PBS-T洗一遍,加入100μl小量诱导的细菌上清,37℃孵育1小时后,用0.05%PBS-T洗三遍。加入100μl以1:30000稀释的酶标抗人Fab二抗,37℃孵育1小时,0.05%PBS-T洗三遍。用TMB显色30分钟,2M H2SO4终止,酶标仪检测吸光度A值。结果发现,A16可以与来自不同HIV亚型的包膜蛋白重组抗原反应。如图1所示,A16可以与来自92RW020(A)、Bal(B)、SF162(B)、ADA(B)、JRFL(B)、JRCSF(B)、YU2(B)、R2(B)、MN(B)、LAI(B)和C.ZA.1197MB(C)病毒株的重组包膜蛋白反应。如前所述,A亚型92RW020蛋白和C亚型C.ZA.1197MB蛋白为gp140,其余为B亚型的gp120蛋白。图1中,从左至右的11个柱状图为来自相应毒株的包膜蛋白重组抗原,第12个柱状图为将BSA(牛血清白蛋白)也以1μg/ml浓度用100μl0.1M NaHCO3(pH8.6)溶液包被的结果。
实施例4、A16对HIV的中和活性
采用HIV假病毒感染系统评价A16的抗病毒活性,实验方法参见发明人发表的论文(Chong H,Yao X,Zhang C,Cai L,Cui S,Wang Y,He Y.(2012)Biophysical propertyand broad anti-HIV activity of Albuvirtide,a3-maleimimidopropionicacid-modified peptide fusion inhibitor.PLoS One.7(3):e32599;Yao X,ChongH,Zhang C,Waltersperger S,Wang M,Cui S,He Y.(2012)Broad antiviral activityand crystal structure of HIV-1fusion inhibitor Sifuvirtide.J Biol Chem.287(9):6788-6796))。具体步骤为将表达HIV毒株(如表1)包膜蛋白(Env)的质粒和HIV骨架质粒pSG3deltaEnv,按质量比1:2的比例转染293T细胞,同时设pSG3deltaEnv对照,即只转染相同量的pSG3deltaEnv。于37℃、5%CO2细胞培养箱中孵育6hr以后使质粒进入细胞,而后换液,于细胞培养箱中继续孵育48hr,假病毒分泌至上清中。用移液器尽量多地吸出细胞培养瓶或细胞培养板中的上清,经0.45μm滤器过滤或1000g离心10min取上清,向其中加入FBS使其终浓度为20%,转移入聚丙烯管中于-80℃保存备用或直接进行病毒滴定。收获大量的假病毒后,加入牛血清终浓度达20%,分装冻存。取出假病毒在96孔板中做5倍稀释,8个梯度,4个复孔,终体积为100μl。其中用pSG3deltaEnv单独转染所收上清做相同稀释。将TZM-bl细胞胰酶消化,细胞计数,用DMEM完全培养基将细胞稀释至105个/ml,每孔加100μl,每孔细胞为104个,加入DEAE-dextran,终浓度为15μg/ml。将96孔板放入细胞培养箱中,37℃,5%CO2培养48小时。之后从细胞培养箱中取出96孔板,从上样孔中吸弃上清,加入30μl细胞裂解液,放置10min后加入100μl荧光素酶检测试剂。用移液器从每孔中吸出100μl液体,加于对应96孔白板中,于微孔板光度计读取发光值。以pSG3deltaEnv对照孔化学发光值的3倍作为cutoff值,结果用S/CO值表示。用Reed-Muench法计算假病毒的病毒滴度。为检测A16的中和病毒活性,将人源抗HIV抗体的Fab抗体A16按倍比稀释铺入96孔板中,终体积为50μl,其中用50μl DMEM培养基替代药物作为阴性对照。加入TZM-bl细胞100μl(105个细胞/ml)含DEAE-dextran终浓度为15μg/ml,加入已获得的HIV-1假病毒50μl,每孔相当于100TCID50。培养48h后,利用荧光素酶检测试剂(Promega)测定每孔的相对荧光单位(RLU)。半数中和剂量是能引起50%最大效应(量反应)的剂量,用半数中和剂量(ND50)表示。结果如图2和表1所示,A16对表1所列的A、B、B’、C、A/E和B/C亚型HIV假病毒株均具有很强的中和活性,表明A16抗体是一个具有广谱作用的中和抗体。
表1.A16对不同亚型HIV的广谱中和活性
HIV假病毒 亚型 ND50(μg/ml)
SF162 B 3.63
NL4-3 B 1.12
MG505.W0M.ENV.A2 A 1.95
MG505.W0M.ENV.H3 A 2.71
JRFL B 2.96
TRO B 1.57
CNE9 B' 0.23
CNE11 B' 0.49
Du156.12 C 0.84
CAP45.2.00.G3 C 5.39
CNE3 A/E 0.29
CNE5 A/E 1.57
CNE20 B/C 0.76
CNE23 B/C 0.87
实施例5、A16作用于gp120的构象表位
为测定A16抗体与二硫键降解的gp120反应性,取YU2的gp120(YU2-gp120)用PBS稀释至50μl,加二硫苏糖醇(DTT)至10mM,加碘乙酰胺至10mM,以不加DTT和碘乙酰胺的YU2-gp120作为对照,两者于37℃孵育30分钟,用0.1M NaHCO3(pH8.6)溶液包被,4℃过夜。第二天用200ml3%BSA37℃封闭1小时,弃封闭液,0.05%PBS-T洗一遍,加入100μlA16抗体(l5μg/ml),37℃孵育1小时,0.05%PBS-T洗三遍。加入100μl以1:30000稀释的酶标抗人Fab二抗,37℃孵育1小时,0.05%PBS-T洗三遍。用TMB显色30分钟,2M H2SO4终止,酶标仪检测吸光度A值。如图3所示,A16与天然构象的gp120反应,但不与DTT处理的gp120反应,说明抗体表位取决于二硫键依赖的构象。图3中,Native表示不加DTT和碘乙酰胺的YU2-gp120,+DTT表示加DTT和碘乙酰胺的YU2-gp120。
实施例6、A16能够抑制gp120与CD4的结合
研究表明,位于gp120的受体CD4结合区(CD4binding site,CD4bs)是一主要的HIV中和表位,广谱中和抗体b12和VRC01既是针对该位点。为确定A16在gp120上的识别位点,采用ELISA方法测定A16是否能够抑制gp120和CD4结合。为此,按以生物素标记试剂盒说明的方法生物素化sCD4蛋白(biotin-CD4),并通过滴定选用合适的工作浓度。将YU2-gp120蛋白以1μg/ml浓度用100μl0.1M NaHCO3(pH8.6)溶液包被,4℃过夜。第二天用200ml3%BSA37℃封闭1小时,弃封闭液,0.05%PBS-T洗一遍,加入100μl待测抗体或未标记的sCD4(100μg/ml),37℃孵育1小时。0.05%PBS-T洗三遍,加入100μl生物素标记的sCD4蛋白,37℃孵育1小时。以0.05%PBS-T洗三遍,加入100μl HRP标记的亲和素,37℃孵育1小时,0.05%PBS-T洗三遍。用TMB显色30分钟,2M H2SO4终止,酶标仪检测吸光度A值。结果见图4。首先,biotin-CD4能够有效结合YU2-gp120,而未标记的sCD4能够有效抑制其结合;作为针对gp120受体结合区(CD4bs)的对照抗体b12、VRC01和HY5均能有效抑制biotin-CD4和gp120的结合反应,而针对gp120V3环的抗体HY7则没有这种效应;可以确定的是,A16同三个针对CD4bs的抗体类似,能够有效抑制biotin-CD4和gp120结合。该结果说明,A16是一个新的作用于gp120受体结合区的中和抗体,其表位依赖于该区的空间构象。图4中,No Ab表示未加待测抗体和未标记的sCD4的处理,CD4为加入未标记的sCD4的处理,其它为加入相应抗体的处理。

Claims (11)

1.Fab抗体,它由抗体的重链的Fd片段和抗体的轻链组成,所述轻链由可变区VL和恒定区CL组成,所述重链Fd片段由可变区VH和恒定区亚单位CH1组成,所述VH和VL均由决定簇互补区和框架区组成,所述决定簇互补区由CDR1、CDR2和CDR3组成;其特征在于:所述VL的CDR1、CDR2和CDR3的氨基酸序列分别如序列3的第26-31位所示、如序列3的第49-51位所示,如序列3的第88-98位所示,所述VH的CDR1、CDR2和CDR3的氨基酸序列分别如序列4的第26-33位所示、如序列4的第51-58位所示,如序列4的第97-115位所示。
2.根据权利要求1所述Fab抗体,其特征在于:所述VH和VL的框架区均来源于人。
3.根据权利要求1或2所述Fab抗体,其特征在于:所述VH的氨基酸序列如序列表中序列4的第1-124位所示;所述VL的氨基酸序列如序列表中序列3的第1-108位所示。
4.根据权利要求1或2所述抗体的Fab抗体,其特征在于:所述CL和所述CH1均来源于人。
5.根据权利要求1或2所述抗体的Fab抗体,其特征在于:所述抗体重链的Fd片段的氨基酸序列如序列表中的序列4所示;所述轻链的氨基酸序列如序列表中的序列3所示。
6.权利要求1至5中任一所述Fab抗体的衍生抗体,是下述a)或b):
a)由权利要求1至5中任一所述Fab抗体的VH和VL连接得到的单链抗体;
b)含有权利要求1至5中任一所述Fab抗体的IgG。
7.与权利要求1至5中任一所述Fab抗体相关的生物材料,所述生物材料为1)-10)中的任一种:
1)编码权利要求1至5中任一所述Fab抗体的核酸分子;
2)含有1)所述核酸分子的表达盒;
3)含有1)所述核酸分子的重组载体,或含有2)所述表达盒的重组载体;
4)含有1)所述核酸分子的重组微生物、或含有2)所述表达盒的重组微生物、或含有3)所述重组载体的重组微生物;
5)含有1)所述核酸分子的转基因细胞系、或含有2)所述表达盒的转基因细胞系、或含有3)所述重组载体的转基因细胞系;
6)编码权利要求6所述衍生抗体的核酸分子;
7)含有6)所述核酸分子的表达盒;
8)含有6)所述核酸分子的重组载体,或含有7)所述表达盒的重组载体;
9)含有6)所述核酸分子的重组微生物、或含有7)所述表达盒的重组微生物、或含有8)所述重组载体的重组微生物;
10)含有6)所述核酸分子的转基因细胞系、或含有7)所述表达盒的转基因细胞系、或含有8)所述重组载体的转基因细胞系。
8.根据权利要求7所述的生物材料,其特征在于:编码权利要求1至5中任一所述Fab抗体的核酸分子为编码权利要求1至5中任一所述Fab抗体的DNA分子,编码权利要求6所述衍生抗体的核酸分子为编码权利要求6所述衍生抗体的DNA分子;
所述VL的CDR1的编码序列如序列表中序列1的第76-93位所示,所述VL的CDR2编码序列如序列表中序列1的第145-153位所示,所述VL的CDR3的编码序列如序列表中序列1的第262-294位所示,所述VH的CDR1的编码序列如序列表中序列2的第76-99位所示,所述VH的CDR2的编码序列如序列表中序列1的第151-174位所示,所述VH的CDR3的编码序列如序列表中序列1的第289-345位所示。
9.根据权利要求8所述的生物材料,其特征在于:所述VH的编码序列如序列表中序列2的第1-372位所示;所述VL的编码序列如序列表中序列1的第1-324位所示。
10.根据权利要求9所述的生物材料,其特征在于:所述Fd片段的编码序列如序列表中序列2所示,所述Fab抗体的轻链的编码序列如序列表中序列1所示。
11.下述A1-A6中的任一种用途:
A1、权利要求1至5中任一所述Fab抗体在制备诊断HIV感染的试剂、治疗HIV感染的药物或预防HIV感染的疫苗中的应用;
A2、权利要求1至5中任一所述Fab抗体在制备诊断艾滋病的试剂、治疗艾滋病的药物或预防艾滋病的疫苗中的应用;
A3、权利要求6所述衍生抗体在制备诊断HIV感染的试剂、治疗HIV感染的药物或预防HIV感染的疫苗中的应用;
A4、权利要求6所述衍生抗体在制备诊断艾滋病的试剂、治疗艾滋病的药物或预防艾滋病的疫苗中的应用;
A5、权利要求7-10中任一所述的生物材料在制备诊断HIV感染的试剂、治疗HIV感染的药物或预防HIV感染的疫苗中的应用;
A6、权利要求7-10中任一所述的生物材料在制备诊断艾滋病的试剂、治疗艾滋病的药物或预防艾滋病的疫苗中的应用。
CN201310154423.4A 2013-04-28 2013-04-28 人源hiv广谱中和抗体a16及其相关生物材料与应用 Expired - Fee Related CN103224559B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310154423.4A CN103224559B (zh) 2013-04-28 2013-04-28 人源hiv广谱中和抗体a16及其相关生物材料与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310154423.4A CN103224559B (zh) 2013-04-28 2013-04-28 人源hiv广谱中和抗体a16及其相关生物材料与应用

Publications (2)

Publication Number Publication Date
CN103224559A CN103224559A (zh) 2013-07-31
CN103224559B true CN103224559B (zh) 2014-11-19

Family

ID=48835219

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310154423.4A Expired - Fee Related CN103224559B (zh) 2013-04-28 2013-04-28 人源hiv广谱中和抗体a16及其相关生物材料与应用

Country Status (1)

Country Link
CN (1) CN103224559B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111499735B (zh) * 2019-01-30 2021-10-22 清华大学 一种针对hiv的双特异性抗体及其编码基因和应用
CN112266416B (zh) * 2020-10-26 2021-04-13 苏州卫生职业技术学院 一种抗hiv的广谱中和抗体及其制备方法和应用
CN115716872B (zh) * 2022-09-16 2023-04-28 北京昭衍生物技术有限公司 一种抗hiv的抗体及其制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102190726A (zh) * 2011-03-30 2011-09-21 中国医学科学院病原生物学研究所 一种人源HIV抗体的Fab片段及其编码基因与应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102190726A (zh) * 2011-03-30 2011-09-21 中国医学科学院病原生物学研究所 一种人源HIV抗体的Fab片段及其编码基因与应用

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
HIV-1中和抗体和基于抗体的疫苗设计;曹志亮等;《中国生物工程杂志》;20101231;全文 *
人类免疫缺陷病毒/艾滋病患者中抗体保守表位氨基酸变异研究;王倩等;《中华检验医学杂志》;20051231;全文 *
含抗HIV广谱中和抗体2F4、4E10靶基因载体的构建及鉴定;王晶研等;《河南师范大学学报》;20120930;全文 *
曹志亮等.HIV-1中和抗体和基于抗体的疫苗设计.《中国生物工程杂志》.2010,全文. *
王倩等.人类免疫缺陷病毒/艾滋病患者中抗体保守表位氨基酸变异研究.《中华检验医学杂志》.2005,全文. *
王晶研等.含抗HIV广谱中和抗体2F4、4E10靶基因载体的构建及鉴定.《河南师范大学学报》.2012,全文. *

Also Published As

Publication number Publication date
CN103224559A (zh) 2013-07-31

Similar Documents

Publication Publication Date Title
Huang et al. Identification of a CD4-binding-site antibody to HIV that evolved near-pan neutralization breadth
Forsman et al. Llama antibody fragments with cross-subtype human immunodeficiency virus type 1 (HIV-1)-neutralizing properties and high affinity for HIV-1 gp120
McCoy et al. Potent and broad neutralization of HIV-1 by a llama antibody elicited by immunization
Vanlandschoot et al. Nanobodies®: new ammunition to battle viruses
Tudor et al. HIV-1 gp41-specific monoclonal mucosal IgAs derived from highly exposed but IgG-seronegative individuals block HIV-1 epithelial transcytosis and neutralize CD4+ cell infection: an IgA gene and functional analysis
Zhang et al. Identification and characterization of a new cross-reactive human immunodeficiency virus type 1-neutralizing human monoclonal antibody
Strokappe et al. Llama antibody fragments recognizing various epitopes of the CD4bs neutralize a broad range of HIV-1 subtypes A, B and C
Poignard et al. Heterogeneity of envelope molecules expressed on primary human immunodeficiency virus type 1 particles as probed by the binding of neutralizing and nonneutralizing antibodies
Falkowska et al. PGV04, an HIV-1 gp120 CD4 binding site antibody, is broad and potent in neutralization but does not induce conformational changes characteristic of CD4
McKeating et al. Synergistic interaction between ligands binding to the CD4 binding site and V3 domain of human immunodeficiency virus type I gpl20
CN107033241A (zh) Hiv-1广谱中和抗体及其用途
CN107022027A (zh) Hiv-1广谱中和抗体及其用途
CN102272158A (zh) 源自记忆b细胞的人单克隆抗体的快速表达克隆
US20070292390A1 (en) Broadly Cross-Reactive Hiv-1 Neutralizing Human Monoclonal Antibodies
US6008044A (en) Human monoclonal antibodies directed against the transmembrane glycoprotein (gp41) of human immunodeficiency virus-1 (HIV-1) and detection of antibodies against epitope (GCSGKLIC)
CN103224559B (zh) 人源hiv广谱中和抗体a16及其相关生物材料与应用
JP2013505236A (ja) Hiv−1抗体
US8722861B2 (en) Monoclonal antibodies that bind to the V3 loop of HIV-1 gp120
Kumar et al. CD4-binding site directed cross-neutralizing scFv monoclonals from HIV-1 subtype C infected Indian children
Miersch et al. Ultrapotent and broad neutralization of SARS-CoV-2 variants by modular, tetravalent, bi-paratopic antibodies
Luo et al. Tissue memory B cell repertoire analysis after ALVAC/AIDSVAX B/E gp120 immunization of rhesus macaques
CN102190726B (zh) 一种人源HIV抗体的Fab片段及其编码基因与应用
Pilewski et al. Functional HIV-1/HCV cross-reactive antibodies isolated from a chronically co-infected donor
CA2831258C (en) Compositions for preventing and/or treating an infection by an hiv-1 virus
Cao et al. Discovery and development of human SARS-CoV-2 neutralizing antibodies using an unbiased phage display library approach

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20141119

CF01 Termination of patent right due to non-payment of annual fee