CN103220033B - Method for parallelizing matrix channels of two-way relay MIMO (Multiple Input Multiple Output) system - Google Patents

Method for parallelizing matrix channels of two-way relay MIMO (Multiple Input Multiple Output) system Download PDF

Info

Publication number
CN103220033B
CN103220033B CN201310174843.9A CN201310174843A CN103220033B CN 103220033 B CN103220033 B CN 103220033B CN 201310174843 A CN201310174843 A CN 201310174843A CN 103220033 B CN103220033 B CN 103220033B
Authority
CN
China
Prior art keywords
msub
matrix
mrow
mover
user
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310174843.9A
Other languages
Chinese (zh)
Other versions
CN103220033A (en
Inventor
张霄龙
陈智
张铎
石宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201310174843.9A priority Critical patent/CN103220033B/en
Publication of CN103220033A publication Critical patent/CN103220033A/en
Application granted granted Critical
Publication of CN103220033B publication Critical patent/CN103220033B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Radio Transmission System (AREA)

Abstract

The invention discloses a method for parallelizing matrix channels of a two-way relay MIMO (Multiple Input Multiple Output) system. In consideration of a problem that system performance is affected since noise can be seriously amplified by a relay and a user receiving matrix which are designed by a traditional parallelizing algorithm, a joint unitary triangular decomposition method is used; a relay and a user receiving matrix with unitary matrix properties are designed; in addition, dirty paper coding is implemented at a user transmitting end; and under the matching of a receiving end, successive interference elimination is implemented, so that the matrix channels are parallelized. By virtue of the two-way relay MIMO system, the noise at the relay is not amplified, the effect on the system rate caused by the noise at the relay can be effectively restrained and the system performance is enhanced.

Description

Matrix channel parallelization method of bidirectional relay MIMO system
Technical Field
The present invention belongs to the field of communication technology, and more particularly, to a matrix channel parallelization method for a bidirectional relay MIMO (Multiple-Input Multiple-Output) system.
Background
Different from the traditional one-way relay system, the two-way relay MIMO system can complete the communication process between users in two time slots by using an ANC (Analog-Network-Coding) technology. Fig. 1 is a block diagram of a two-way relay MIMO system access and broadcast slot system. As shown in fig. 1, the first slot is an access slot, and two users simultaneously transmit signals to the relay node, H1Is the channel matrix between access slot user 1 and the relay, H2Is a channel matrix between an access time slot user 2 and a relay; the second time slot is a broadcast time slot, and the relay broadcasts the mixed signal received by the first time slot to two users G1Is the channel matrix, G, between the broadcast time slot relay to user 12Is the channel matrix between the broadcast slot relay to user 2. With ANC, each user knows certain channel information and the signal sent by itself, so that self-interference among users can be easily eliminated, thereby completing the communication process. Compared with a one-way relay system which needs four time slots to complete information interaction, the two-way relay system only needs two time slots, and therefore the frequency spectrum utilization rate of the system is improved in a multiplied mode.
Existing bidirectional relay system methods are divided into two categories:
the first method is to directly adopt vector iterative operation to solve a relay and user matrix, and the method relates to a non-convex vector optimization problem, has high complexity, and can not meet the calculation requirement of a common relay.
And secondly, based on the first method which is more practical and valuable and is provided under the conditions of overhigh complexity and no engineering value, the main idea is to simplify the vector iterative operation into a scalar optimization problem by using a parallelization method, thereby greatly reducing the complexity of the algorithm. Fig. 2 is a schematic diagram of a prior parallelization method. As shown in figure 2 of the drawings, in which,the existing parallelization method adopts GSVD (Generalized Singular Value Decomposition) to convert an equivalent matrix channel into a parallel channel. By decomposing the channel matrix H1And H2Obtaining a user i (i ═ 1,2) transmission precoding matrixAnd a receiving partial matrix of the relay matrixFurther obtaining a receiving matrix at the position of a broadcast time slot user i
In the existing parallelization method, although the parallelization of the matrix channel is completed by the precoding matrix of the user and the relay, the matrix of the receiving part of the relay matrixAnd a user reception matrixThe non-unitary matrix changes the statistical characteristics of the noise, generally causes the noise amplification at the relay and the user, and particularly seriously affects the performance of the whole system after the noise amplification at the relay.
Disclosure of Invention
The invention aims to overcome the defects of the prior art and provides a matrix channel parallelization method of a bidirectional relay MIMO system.
In order to achieve the above object, the method for parallelizing the matrix channel of the bidirectional relay MIMO system according to the present invention is characterized by comprising the following steps:
(1) when accessing time slot, the channel matrix H between user 1 and relay1Is m1X l dimensional matrix where m11 antenna number for user, l relay antenna number; channel matrix H between access time slot user 2 and relay2Is m2X l dimensional matrix where m2For the number of 2 antennas of the user, the system antenna is configured to be m1,m2For channel matrix H greater than or equal to l1And H2The method is obtained by adopting joint unitary triangular decomposition:
<math> <mrow> <msub> <mi>H</mi> <mi>i</mi> </msub> <mo>=</mo> <msub> <mi>T&Gamma;</mi> <mi>i</mi> </msub> <msubsup> <mi>Q</mi> <mi>i</mi> <mi>H</mi> </msubsup> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1,2</mn> </mrow> </math>
wherein QiAnd T is a unitary matrix of the first and second,is QiThe conjugate transpose matrix of (a) is,iis an upper triangular matrix;
constructing a precoding matrix for user iWhereinIs a diagonal matrix, is a power allocation matrix at user i;
signals s to be transmitted are respectively treated at two user transmitting terminalsiPre-coding and dirty paper coding are carried out to obtain a sending signalThe signals received at the relay are:
<math> <mrow> <msubsup> <mi>y</mi> <mi>r</mi> <mi>DPC</mi> </msubsup> <mo>=</mo> <msub> <mi>&Delta;</mi> <msub> <mi>&Gamma;</mi> <mn>1</mn> </msub> </msub> <msub> <mi>&Lambda;</mi> <msub> <mi>U</mi> <mn>1</mn> </msub> </msub> <msub> <mi>s</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>&Delta;</mi> <msub> <mi>&Gamma;</mi> <mn>2</mn> </msub> </msub> <msub> <mi>&Lambda;</mi> <msub> <mi>U</mi> <mn>2</mn> </msub> </msub> <msub> <mi>s</mi> <mn>2</mn> </msub> <mo>+</mo> <msub> <mi>Tn</mi> <mi>r</mi> </msub> </mrow> </math>
wherein,is composed of a matrixiA diagonal matrix of diagonal elements; siRepresentation sent from user i to userI.e., when i is 1,on the contrary, when i is 2,nrrepresenting gaussian noise at the relay;
(2) in broadcasting time slot, the channel conjugate matrix between the relay and the user 1And the channel conjugate matrix relayed to user 2The method is obtained by adopting joint unitary triangular decomposition:
Gi=KiXiEH
wherein E and KiIs a unitary matrix, EHIs a conjugate transpose of E, XiIs an upper triangular matrix;
constructing a relay precoding matrix F ═ E ΛFTHWherein ΛFIs a diagonal matrix, is a power distribution matrix at the relay, THA conjugate transpose matrix for T; relaying signals received in an access slotPrecoding to obtain a forwarded signal <math> <mrow> <msub> <mi>y</mi> <mi>r</mi> </msub> <mo>=</mo> <msub> <mi>K</mi> <mi>i</mi> </msub> <msub> <mi>X</mi> <mi>i</mi> </msub> <msub> <mi>&Lambda;</mi> <mi>F</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&Delta;</mi> <msub> <mi>&Gamma;</mi> <mn>1</mn> </msub> </msub> <msub> <mi>&Lambda;</mi> <msub> <mi>U</mi> <mn>1</mn> </msub> </msub> <msub> <mi>s</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>&Delta;</mi> <msub> <mi>&Gamma;</mi> <mn>2</mn> </msub> </msub> <msub> <mi>&Lambda;</mi> <msub> <mi>U</mi> <mn>2</mn> </msub> </msub> <msub> <mi>s</mi> <mn>2</mn> </msub> <mo>+</mo> <msub> <mi>Tn</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math> The relay amplifies the forwarding signal and broadcasts the forwarding signal in a broadcast time slot;
user i receives the broadcast signal, and the received signal is:
<math> <mrow> <msub> <mi>y</mi> <mi>i</mi> </msub> <mo>=</mo> <msub> <mi>K</mi> <mi>i</mi> </msub> <msub> <mi>X</mi> <mi>i</mi> </msub> <msub> <mi>&Lambda;</mi> <mi>F</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&Delta;</mi> <msub> <mi>&Gamma;</mi> <mover> <mi>i</mi> <mo>&OverBar;</mo> </mover> </msub> </msub> <msub> <mi>&Lambda;</mi> <msub> <mi>U</mi> <mover> <mi>i</mi> <mo>&OverBar;</mo> </mover> </msub> </msub> <msub> <mi>s</mi> <mover> <mi>i</mi> <mo>&OverBar;</mo> </mover> </msub> <mo>+</mo> <msub> <mi>&Delta;</mi> <msub> <mi>&Gamma;</mi> <mi>i</mi> </msub> </msub> <msub> <mi>&Lambda;</mi> <msub> <mi>U</mi> <mi>i</mi> </msub> </msub> <msub> <mi>s</mi> <mi>i</mi> </msub> <mo>+</mo> <msub> <mi>Tn</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>n</mi> <mi>i</mi> </msub> </mrow> </math>
wherein n isiGaussian noise at user i;
performing self-interference cancellation to obtain:
<math> <mrow> <msubsup> <mi>y</mi> <mi>i</mi> <mo>&prime;</mo> </msubsup> <mo>=</mo> <msub> <mi>K</mi> <mi>i</mi> </msub> <msub> <mi>X</mi> <mi>i</mi> </msub> <msub> <mi>&Lambda;</mi> <mi>F</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&Delta;</mi> <msub> <mi>&Gamma;</mi> <mover> <mi>i</mi> <mo>&OverBar;</mo> </mover> </msub> </msub> <msub> <mi>&Lambda;</mi> <msub> <mi>U</mi> <mover> <mi>i</mi> <mo>&OverBar;</mo> </mover> </msub> </msub> <msub> <mi>s</mi> <mover> <mi>i</mi> <mo>&OverBar;</mo> </mover> </msub> <mo>+</mo> <msub> <mi>Tn</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>n</mi> <mi>i</mi> </msub> </mrow> </math>
will receive the signalMultiplication by unitary matrix Is KiThe conjugate transpose matrix of (a) and then using successive interference cancellation yields:
<math> <mrow> <msubsup> <mi>y</mi> <mi>i</mi> <mi>SIC</mi> </msubsup> <mo>=</mo> <msub> <mi>&Delta;</mi> <msub> <mi>X</mi> <mi>i</mi> </msub> </msub> <msub> <mi>&Lambda;</mi> <mi>F</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&Delta;</mi> <msub> <mi>&Gamma;</mi> <mover> <mi>i</mi> <mo>&OverBar;</mo> </mover> </msub> </msub> <msub> <mi>&Lambda;</mi> <msub> <mi>U</mi> <mover> <mi>i</mi> <mo>&OverBar;</mo> </mover> </msub> </msub> <msub> <mi>s</mi> <mover> <mi>i</mi> <mo>&OverBar;</mo> </mover> </msub> <mo>+</mo> <msub> <mi>Tn</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msubsup> <mi>K</mi> <mi>i</mi> <mi>H</mi> </msubsup> <msub> <mi>n</mi> <mi>i</mi> </msub> </mrow> </math>
wherein,is comprised of a matrix XiA diagonal matrix of diagonal elements.
Wherein the system antenna is configured as m1=m2=l。
Wherein, the dirty paper coding adopts zero-forcing dirty paper coding.
The invention discloses a matrix channel parallelization method of a bidirectional relay MIMO system, which uses joint unitary triangular decomposition on a channel matrix in both an access time slot and a broadcast time slot to obtain a relay receiving matrix and a user receiving matrix with unitary matrix property, and simultaneously performs joint parallelization on the whole equivalent matrix channel by performing dirty paper coding on a pre-coded sending signal at a user transmitting end and adopting continuous interference elimination at a user receiving end. The invention effectively inhibits the influence of noise by adopting the unitary triangular matrix, converts the complex vector calculation problem into a scalar problem by parallelizing the equivalent matrix channel, not only effectively improves the performance, but also reduces the calculation burden of the relay.
Drawings
FIG. 1 is a block diagram of a two-way relay MIMO system access and broadcast slot system;
FIG. 2 is a diagram of a prior parallelization method;
FIG. 3 is a schematic diagram of inter-user communication in one embodiment of a method for parallelizing matrix channels in a bidirectional relay MIMO system according to the present invention;
FIG. 4 is a comparison of the performance of the prior art parallelization method and the present invention at high signal-to-noise ratio;
fig. 5 is a comparison of the performance of the prior parallelization method and the present invention at low signal-to-noise ratio.
Detailed Description
The following description of the embodiments of the present invention is provided in order to better understand the present invention for those skilled in the art with reference to the accompanying drawings. It is to be expressly noted that in the following description, a detailed description of known functions and designs will be omitted when it may obscure the subject matter of the present invention.
The method for parallelizing the matrix channel of the bidirectional relay MIMO system parallelizes the equivalent matrix channel of the bidirectional relay MIMO system by reasonably designing the relay matrix and the user matrix, and mainly comprises two parts: and obtaining a precoding matrix capable of inhibiting noise influence through unitary triangular decomposition, and then carrying out equivalent matrix channel parallelization based on the precoding matrix.
Channel matrix H between user 1 and relay when accessing time slot1Is m1X l dimensional matrix where m11 antenna number for user, l relay antenna number; channel matrix H between access time slot user 2 and relay2Is m2X l dimensional matrix where m2For the number of 2 antennas of the user, the system antenna is configured to be m1,m2Not less than l. In practical engineering applications, to utilize the gain in degrees of freedom, the system antenna may be configured as m1=m2L. For channel matrix H1And H2The method is obtained by adopting joint unitary triangular decomposition:
<math> <mrow> <msub> <mi>H</mi> <mi>i</mi> </msub> <mo>=</mo> <msub> <mi>T&Gamma;</mi> <mi>i</mi> </msub> <msubsup> <mi>Q</mi> <mi>i</mi> <mi>H</mi> </msubsup> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1,2</mn> </mrow> </math>
wherein QiAnd T is a unitary matrix of the first and second,is QiThe conjugate transpose matrix of (a) is,iis an upper triangular matrix.
The principles and procedures of joint unitary trigonometric decomposition are described in Khina A, Kochman Y, Erez U.J. elementary trigonometry for MIMO networks [ J ]. Signal Processing, IEEEtransformations on,2012,60(1): 326-.
In broadcasting time slot, the channel conjugate matrix between the relay and the user 1And the channel conjugate matrix relayed to user 2The method is obtained by adopting joint unitary triangular decomposition:
Gi=KiXiEHi=1,2
wherein E and KiIs a unitary matrix, EHIs a conjugate transpose of E, XiIs an upper triangular matrix.
The precoding matrix of user i can be obtainedWherein the diagonal matrixIs the power allocation matrix at user i; relay precoding matrix F ═ E ΛFTHWherein the diagonal matrix ΛFIs the power distribution matrix at the relay, THIs the conjugate transpose of T.
If the precoding matrix is directly adopted to precode the signal to be sent and the relay signal of the user, the signal received at the user i is as follows:
<math> <mrow> <msubsup> <mi>y</mi> <mi>i</mi> <mo>*</mo> </msubsup> <mo>=</mo> <msub> <mi>K</mi> <mi>i</mi> </msub> <msub> <mi>X</mi> <mi>i</mi> </msub> <msub> <mi>&Lambda;</mi> <mi>F</mi> </msub> <msub> <mi>&Gamma;</mi> <mi>i</mi> </msub> <msub> <mi>&Lambda;</mi> <msub> <mi>U</mi> <mover> <mi>i</mi> <mo>&OverBar;</mo> </mover> </msub> </msub> <msub> <mi>s</mi> <mover> <mi>i</mi> <mo>&OverBar;</mo> </mover> </msub> <mrow> <mo>+</mo> <msub> <mi>K</mi> <mi>i</mi> </msub> <msub> <mi>X</mi> <mi>i</mi> </msub> <msub> <mi>&Lambda;</mi> <mi>F</mi> </msub> <msub> <mi>&Gamma;</mi> <mi>i</mi> </msub> <msub> <mi>&Lambda;</mi> <msub> <mi>U</mi> <mi>i</mi> </msub> </msub> <msub> <mi>s</mi> <mi>i</mi> </msub> <mo>+</mo> <msub> <mi>K</mi> <mi>i</mi> </msub> <msub> <mi>X</mi> <mi>i</mi> </msub> <msub> <mi>&Lambda;</mi> <mi>F</mi> </msub> <msub> <mi>Tn</mi> <mi>r</mi> </msub> <mo>+</mo> <msub> <mi>n</mi> <mi>i</mi> </msub> </mrow> </mrow> </math>
wherein s isiRepresentation sent from user i to userI.e., when i is 1,on the contrary, when i is 2,nrrepresenting gaussian noise at the repeater. For user iIs the signal expected to be received, i.e. the opposite userThe signal from siThe interference signal is generated after the self signal is relayed and returned, self-interference elimination can be performed by using an analog network coding technology of a bidirectional relay MIMO system, and then the received signal at the user i:
<math> <mrow> <msubsup> <mi>y</mi> <mi>i</mi> <mrow> <mo>*</mo> <mo>&prime;</mo> </mrow> </msubsup> <mo>=</mo> <msub> <mi>K</mi> <mi>i</mi> </msub> <msub> <mi>X</mi> <mi>i</mi> </msub> <msub> <mi>&Lambda;</mi> <mi>F</mi> </msub> <msub> <mi>&Gamma;</mi> <mi>i</mi> </msub> <msub> <mi>&Lambda;</mi> <msub> <mi>U</mi> <mover> <mi>i</mi> <mo>&OverBar;</mo> </mover> </msub> </msub> <msub> <mi>s</mi> <mover> <mi>i</mi> <mo>&OverBar;</mo> </mover> </msub> <mo>+</mo> <msub> <mi>K</mi> <mi>i</mi> </msub> <msub> <mi>X</mi> <mi>i</mi> </msub> <msub> <mi>&Lambda;</mi> <mi>F</mi> </msub> <msub> <mi>Tn</mi> <mi>r</mi> </msub> <mo>+</mo> <msub> <mi>n</mi> <mi>i</mi> </msub> </mrow> </math>
it can be found that the received signal is not a parallelized structure, and needs to be parallelized by other operations. In order to eliminate the influence of non-diagonal elements, a matrix channel is parallelized into a plurality of independent sub-channels and converted into scalar operation, the method is divided into two steps, wherein the first step is to parallelize an access time slot by using Dirty Paper Coding (DPC) at a user transmitting end; the second step is to parallelize the broadcast time slot by using Successive Interference Cancellation (SIC) at the user receiving end, and finally the equivalent matrix channel is diagonalized. The principle and process of DPC can be referred to Jindal N, Goldsmith A. dirty-coding vertuss TDMA for MIMO channels [ J ]. Information Theory, IEEEtransactions on,2005,51(5):1783-1794. SIC: khina A, Kochman Y, Erez U.J. unity triangularization for MIMO networks [ J ]. SignalProcessing, IEEE Transactions on,2012,60(1): 326-) -336. The specific implementation process is as follows:
using ZF-DPC to the pre-coded signal at two user transmitting terminals to obtain the transmitting signalThe signals received at the relay at this time are:
<math> <mrow> <msubsup> <mi>y</mi> <mi>r</mi> <mi>DPC</mi> </msubsup> <mo>=</mo> <msub> <mi>&Delta;</mi> <msub> <mi>&Gamma;</mi> <mn>1</mn> </msub> </msub> <msub> <mi>&Lambda;</mi> <msub> <mi>U</mi> <mn>1</mn> </msub> </msub> <msub> <mi>s</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>&Delta;</mi> <msub> <mi>&Gamma;</mi> <mn>2</mn> </msub> </msub> <msub> <mi>&Lambda;</mi> <msub> <mi>U</mi> <mn>2</mn> </msub> </msub> <msub> <mi>s</mi> <mn>2</mn> </msub> <mo>+</mo> <msub> <mi>Tn</mi> <mi>r</mi> </msub> </mrow> </math>
whereinIs composed of a matrixiA diagonal matrix of diagonal elements.
Relaying the signal to be receivedPrecoding to obtain a forwarded signal <math> <mrow> <msub> <mi>y</mi> <mi>r</mi> </msub> <mo>=</mo> <msub> <mi>K</mi> <mi>i</mi> </msub> <msub> <mi>X</mi> <mi>i</mi> </msub> <msub> <mi>&Lambda;</mi> <mi>F</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&Delta;</mi> <msub> <mi>&Gamma;</mi> <mn>1</mn> </msub> </msub> <msub> <mi>&Lambda;</mi> <msub> <mi>U</mi> <mn>1</mn> </msub> </msub> <msub> <mi>s</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>&Delta;</mi> <msub> <mi>&Gamma;</mi> <mn>2</mn> </msub> </msub> <msub> <mi>&Lambda;</mi> <msub> <mi>U</mi> <mn>2</mn> </msub> </msub> <msub> <mi>s</mi> <mn>2</mn> </msub> <mo>+</mo> <msub> <mi>Tn</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math> Thus, user i receives the signal:
<math> <mrow> <msub> <mi>y</mi> <mi>i</mi> </msub> <mo>=</mo> <msub> <mi>K</mi> <mi>i</mi> </msub> <msub> <mi>X</mi> <mi>i</mi> </msub> <msub> <mi>&Lambda;</mi> <mi>F</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&Delta;</mi> <msub> <mi>&Gamma;</mi> <mover> <mi>i</mi> <mo>&OverBar;</mo> </mover> </msub> </msub> <msub> <mi>&Lambda;</mi> <msub> <mi>U</mi> <mover> <mi>i</mi> <mo>&OverBar;</mo> </mover> </msub> </msub> <msub> <mi>s</mi> <mover> <mi>i</mi> <mo>&OverBar;</mo> </mover> </msub> <mo>+</mo> <msub> <mi>&Delta;</mi> <msub> <mi>&Gamma;</mi> <mi>i</mi> </msub> </msub> <msub> <mi>&Lambda;</mi> <msub> <mi>U</mi> <mi>i</mi> </msub> </msub> <msub> <mi>s</mi> <mi>i</mi> </msub> <mo>+</mo> <msub> <mi>Tn</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>n</mi> <mi>i</mi> </msub> </mrow> </math>
after self-interference cancellation, then the received signal at user i:
<math> <mrow> <msubsup> <mi>y</mi> <mi>i</mi> <mo>&prime;</mo> </msubsup> <mo>=</mo> <msub> <mi>K</mi> <mi>i</mi> </msub> <msub> <mi>X</mi> <mi>i</mi> </msub> <msub> <mi>&Lambda;</mi> <mi>F</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&Delta;</mi> <msub> <mi>&Gamma;</mi> <mover> <mi>i</mi> <mo>&OverBar;</mo> </mover> </msub> </msub> <msub> <mi>&Lambda;</mi> <msub> <mi>U</mi> <mover> <mi>i</mi> <mo>&OverBar;</mo> </mover> </msub> </msub> <msub> <mi>s</mi> <mover> <mi>i</mi> <mo>&OverBar;</mo> </mover> </msub> <mo>+</mo> <msub> <mi>Tn</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>n</mi> <mi>i</mi> </msub> </mrow> </math>
note that the received signal is still not parallelized, the invention is directed toMultiplication by unitary matrix Is KiThen using SIC, the conjugate transpose matrix of (c) can be obtained:
<math> <mrow> <msubsup> <mi>y</mi> <mi>i</mi> <mi>SIC</mi> </msubsup> <mo>=</mo> <msub> <mi>&Delta;</mi> <msub> <mi>X</mi> <mi>i</mi> </msub> </msub> <msub> <mi>&Lambda;</mi> <mi>F</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&Delta;</mi> <msub> <mi>&Gamma;</mi> <mover> <mi>i</mi> <mo>&OverBar;</mo> </mover> </msub> </msub> <msub> <mi>&Lambda;</mi> <msub> <mi>U</mi> <mover> <mi>i</mi> <mo>&OverBar;</mo> </mover> </msub> </msub> <msub> <mi>s</mi> <mover> <mi>i</mi> <mo>&OverBar;</mo> </mover> </msub> <mo>+</mo> <msub> <mi>Tn</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msubsup> <mi>K</mi> <mi>i</mi> <mi>H</mi> </msubsup> <msub> <mi>n</mi> <mi>i</mi> </msub> </mrow> </math>
wherein,is comprised of a matrix XiA diagonal matrix of diagonal elements.
Therefore, the parallelization of the matrix channel is completed by using the joint unitary triangular decomposition and the nonlinear precoding means, and the independent parallel sub-channel is obtained.
Examples
Fig. 3 is a schematic diagram of inter-user communication in a specific embodiment of a matrix channel parallelization method for a bidirectional relay MIMO system according to the present invention. Only the case where the user 1 communicates with the user 2 is explained here. As shown in FIG. 3, λ1,…,λNFor the characteristic sub-channels from the user 1 to the relay obtained by the invention, N is the number of the characteristic sub-channels, and N is1,…,nNGaussian noise of each characteristic sub-channel at the relay;for the characteristic sub-channel relayed to user 2, M is the number of characteristic sub-channels,which is the gaussian noise of each characteristic subchannel at user 2.
When accessing the slot, both users 1 and 2 send signals to the relay. The channel matrix from the user 1 to the relay is obtained by joint unitary triangular decompositionThereby obtaining the precoding matrix of user 1Transmitted signal s1After pre-coding and DPC, the signals are transmitted, and the received signals obtained at the relay areIn broadcasting time slot, for channel matrix G between relay and user 22Obtaining G by joint unitary triangular decomposition2=K2X2EHAnd constructing a relay precoding matrix F ═ E ΛFTHThe relay willAnd precoding and amplifying and then broadcasting. The signal received by user 2 is <math> <mrow> <msub> <mi>y</mi> <mn>2</mn> </msub> <mo>=</mo> <msub> <mi>K</mi> <mn>2</mn> </msub> <msub> <mi>X</mi> <mn>2</mn> </msub> <msub> <mi>&Lambda;</mi> <mi>F</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&Delta;</mi> <msub> <mi>&Gamma;</mi> <mn>1</mn> </msub> </msub> <msub> <mi>&Lambda;</mi> <msub> <mi>U</mi> <mn>1</mn> </msub> </msub> <msub> <mi>s</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>&Delta;</mi> <msub> <mi>&Gamma;</mi> <mn>2</mn> </msub> </msub> <msub> <mi>&Lambda;</mi> <msub> <mi>U</mi> <mn>2</mn> </msub> </msub> <msub> <mi>s</mi> <mn>2</mn> </msub> <mo>+</mo> <msub> <mi>Tn</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>n</mi> <mn>2</mn> </msub> <mo>,</mo> </mrow> </math> Through self-interference elimination, obtaining <math> <mrow> <msubsup> <mi>y</mi> <mn>2</mn> <mo>&prime;</mo> </msubsup> <mo>=</mo> <msub> <mi>K</mi> <mn>2</mn> </msub> <msub> <mi>X</mi> <mn>2</mn> </msub> <msub> <mi>&Lambda;</mi> <mi>F</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&Delta;</mi> <msub> <mi>&Gamma;</mi> <mn>1</mn> </msub> </msub> <msub> <mi>&Lambda;</mi> <msub> <mi>U</mi> <mn>1</mn> </msub> </msub> <msub> <mi>s</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>Tn</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>n</mi> <mn>2</mn> </msub> <mo>,</mo> </mrow> </math> Will be provided withMultiplication by unitary matrixAvailable using SIC <math> <mrow> <msubsup> <mi>y</mi> <mn>2</mn> <mi>SIC</mi> </msubsup> <mo>=</mo> <msub> <mi>&Delta;</mi> <msub> <mi>X</mi> <mn>2</mn> </msub> </msub> <msub> <mi>&Lambda;</mi> <mi>F</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&Delta;</mi> <msub> <mi>&Gamma;</mi> <mn>1</mn> </msub> </msub> <msub> <mi>&Lambda;</mi> <msub> <mi>U</mi> <mn>1</mn> </msub> </msub> <msub> <mi>s</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>Tn</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msubsup> <mi>K</mi> <mn>2</mn> <mi>H</mi> </msubsup> <msub> <mi>n</mi> <mn>2</mn> </msub> <mo>.</mo> </mrow> </math>
Fig. 4 is a comparison of the performance of the prior parallelization method and the present invention at high snr. Fig. 5 is a comparison of the performance of the prior parallelization method and the present invention at low signal-to-noise ratio. In order to simplify the simulation process in the simulation, numerical simulation is adopted, and the system antenna is configured with m1=m2The signals transmitted by the two users are independent of each other and meet expectationsAll antennas of a user transmitting end are distributed with equal power, the user transmitting end adopts zero forcing dirty paper coding, the transmitting power is 10W, the signal-to-noise ratio of a user receiving end is fixed to be 10d B, all noises meet Gaussian circular symmetric distribution with expectation of 0 and variance of 1, and the relay noise suppression condition is observed under the condition that the signal-to-noise ratio changes. As shown in fig. 4 and fig. 5, method 1 is the system and rate of the existing parallelization method, i.e. the sum of the communication rate from user 1 to user 2 and the communication rate from user 2 to user 1, and method 2 is the system and rate of the present invention. Therefore, by adopting the method and the device, no matter whether the signal-to-noise ratio of the relay is high or low, the influence of the noise of the relay on the system performance can be inhibited, and the system and the speed are improved, so that the system performance is improved.
Although illustrative embodiments of the present invention have been described above to facilitate the understanding of the present invention by those skilled in the art, it should be understood that the present invention is not limited to the scope of the embodiments, and various changes may be made apparent to those skilled in the art as long as they are within the spirit and scope of the present invention as defined and defined by the appended claims, and all matters of the invention which utilize the inventive concepts are protected.

Claims (3)

1. A matrix channel parallelization method of a bidirectional relay MIMO system is characterized by comprising the following steps:
(1) when accessing time slot, the channel matrix H between user 1 and relay1Is m1X l dimensional matrix where m11 antenna number for user, l relay antenna number; channel matrix H between access time slot user 2 and relay2Is m2X l dimensional matrix where m2For the number of 2 antennas of the user, the system antenna is configured to be m1,m2For channel matrix H greater than or equal to l1And H2By joint unitaryTriangular decomposition is carried out to obtain:
<math> <mrow> <msub> <mi>H</mi> <mi>i</mi> </msub> <mo>=</mo> <msub> <mi>T&Gamma;</mi> <mi>i</mi> </msub> <msubsup> <mi>Q</mi> <mi>i</mi> <mi>H</mi> </msubsup> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1,2</mn> </mrow> </math>
wherein QiAnd T is a unitary matrix of the first and second,is QiThe conjugate transpose matrix of (a) is,iis an upper triangular matrix;
constructing a precoding matrix for user iWhereinIs a diagonal matrix, is a power allocation matrix at user i;
signals s to be transmitted are respectively treated at two user transmitting terminalsiPre-coding and dirty paper coding are carried out to obtain a sending signalThe signals received at the relay are:
<math> <mrow> <msubsup> <mi>y</mi> <mi>r</mi> <mi>DPC</mi> </msubsup> <mo>=</mo> <msub> <mi>&Delta;</mi> <msub> <mi>&Gamma;</mi> <mn>1</mn> </msub> </msub> <msub> <mi>&Lambda;</mi> <msub> <mi>U</mi> <mn>1</mn> </msub> </msub> <msub> <mi>s</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>&Delta;</mi> <msub> <mi>&Gamma;</mi> <mn>2</mn> </msub> </msub> <msub> <mi>&Lambda;</mi> <msub> <mi>U</mi> <mn>2</mn> </msub> </msub> <msub> <mi>s</mi> <mn>2</mn> </msub> <mo>+</mo> <mi>T</mi> <msub> <mi>n</mi> <mi>r</mi> </msub> </mrow> </math>
wherein,is composed of a matrixiA diagonal matrix of diagonal elements; siRepresentation sent from user i to userThe signal of (a); n isrRepresenting gaussian noise at the relay; DPC represents dirty paper coding;
(2) in broadcasting time slot, the channel conjugate matrix between the relay and the user 1And the channel conjugate matrix relayed to user 2The method is obtained by adopting joint unitary triangular decomposition:
Gi=KiXiEH
wherein E and KiIs a unitary matrix, EHIs a conjugate transpose of E, XiIs an upper triangular matrix;
constructing a relay precoding matrix F ═ E ΛFTHWherein ΛFIs a diagonal matrix, is a power distribution matrix at the relay, THA conjugate transpose matrix for T; relaying signals received in an access slotPrecoding to obtain a forwarded signalThe relay amplifies the forwarding signal and broadcasts the forwarding signal in a broadcast time slot;
user i receives the broadcast signal, and the received signal is:
<math> <mrow> <msub> <mi>y</mi> <mi>i</mi> </msub> <mo>=</mo> <msub> <mi>K</mi> <mi>i</mi> </msub> <msub> <mi>X</mi> <mi>i</mi> </msub> <msub> <mi>&Lambda;</mi> <mi>F</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&Delta;</mi> <mrow> <msub> <mi>&Gamma;</mi> <mover> <mi>i</mi> <mo>&OverBar;</mo> </mover> </msub> <mi></mi> </mrow> </msub> <msub> <mi>&Lambda;</mi> <msub> <mi>U</mi> <mover> <mi>i</mi> <mo>&OverBar;</mo> </mover> </msub> </msub> <msub> <mi>s</mi> <mover> <mi>i</mi> <mo>&OverBar;</mo> </mover> </msub> <mo>+</mo> <msub> <mi>&Delta;</mi> <msub> <mi>&Gamma;</mi> <mi>i</mi> </msub> </msub> <msub> <mi>&Lambda;</mi> <msub> <mi>U</mi> <mi>i</mi> </msub> </msub> <msub> <mi>s</mi> <mi>i</mi> </msub> <mo>+</mo> <msub> <mi>Tn</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>n</mi> <mi>i</mi> </msub> </mrow> </math>
wherein n isiGaussian noise at user i; when the value of i is 1, the value of i,on the contrary, when i is 2,
performing self-interference cancellation to obtain:
<math> <mrow> <msubsup> <mi>y</mi> <mi>i</mi> <mo>&prime;</mo> </msubsup> <mo>=</mo> <msub> <mi>K</mi> <mi>i</mi> </msub> <msub> <mi>X</mi> <mi>i</mi> </msub> <msub> <mi>&Lambda;</mi> <mi>F</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&Delta;</mi> <mrow> <msub> <mi>&Gamma;</mi> <mover> <mi>i</mi> <mo>&OverBar;</mo> </mover> </msub> <mi></mi> </mrow> </msub> <msub> <mi>&Lambda;</mi> <msub> <mi>U</mi> <mover> <mi>i</mi> <mo>&OverBar;</mo> </mover> </msub> </msub> <msub> <mi>s</mi> <mover> <mi>i</mi> <mo>&OverBar;</mo> </mover> </msub> <mo>+</mo> <msub> <mi>Tn</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>n</mi> <mi>i</mi> </msub> </mrow> </math>
will receive signal y'iMultiplication by unitary matrixIs KiThe conjugate transpose matrix of (a) and then using successive interference cancellation yields:
<math> <mrow> <msubsup> <mi>y</mi> <mi>i</mi> <mi>SIC</mi> </msubsup> <mo>=</mo> <msub> <mi>&Delta;</mi> <msub> <mi>x</mi> <mi>i</mi> </msub> </msub> <msub> <mi>&Lambda;</mi> <mi>F</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&Delta;</mi> <msub> <mi>&Gamma;</mi> <mover> <mi>i</mi> <mo>&OverBar;</mo> </mover> </msub> </msub> <msub> <mi>&Lambda;</mi> <msub> <mi>U</mi> <mover> <mi>i</mi> <mo>&OverBar;</mo> </mover> </msub> </msub> <msub> <mi>s</mi> <mover> <mi>i</mi> <mo>&OverBar;</mo> </mover> </msub> <mo>+</mo> <msub> <mi>Tn</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msubsup> <mi>K</mi> <mi>i</mi> <mi>H</mi> </msubsup> <msub> <mi>n</mi> <mi>i</mi> </msub> </mrow> </math>
wherein,is comprised of a matrix XiDiagonal matrix of diagonal bins, SIC stands for successive interference cancellation.
2. The method according to claim 1, wherein the system antenna configuration is m1=m2=l。
3. The method according to claim 1 or 2, wherein the dirty-paper coding is zero-forcing paper coding.
CN201310174843.9A 2013-05-13 2013-05-13 Method for parallelizing matrix channels of two-way relay MIMO (Multiple Input Multiple Output) system Expired - Fee Related CN103220033B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310174843.9A CN103220033B (en) 2013-05-13 2013-05-13 Method for parallelizing matrix channels of two-way relay MIMO (Multiple Input Multiple Output) system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310174843.9A CN103220033B (en) 2013-05-13 2013-05-13 Method for parallelizing matrix channels of two-way relay MIMO (Multiple Input Multiple Output) system

Publications (2)

Publication Number Publication Date
CN103220033A CN103220033A (en) 2013-07-24
CN103220033B true CN103220033B (en) 2015-05-27

Family

ID=48817561

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310174843.9A Expired - Fee Related CN103220033B (en) 2013-05-13 2013-05-13 Method for parallelizing matrix channels of two-way relay MIMO (Multiple Input Multiple Output) system

Country Status (1)

Country Link
CN (1) CN103220033B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105992316B (en) * 2015-02-03 2019-07-19 华邦电子股份有限公司 The method and device of power distribution is limited in a wireless communication system
CN109195216B (en) * 2018-09-13 2019-10-08 长安大学 A kind of random energies dispatching method suitable for bi-directional relaying communication network source node
CN111371478B (en) 2018-12-26 2021-10-15 华为技术有限公司 Precoding method and device and information transmission method and device
CN109982300A (en) * 2019-03-28 2019-07-05 重庆邮电大学 The method of user equipment uplink minimum energy consumption based on D2D communication in NB-IoT

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1703645A1 (en) * 2005-03-04 2006-09-20 Samsung Electronics Co., Ltd. User scheduling method for multiuser MIMO communication system
CN102204138A (en) * 2008-10-28 2011-09-28 株式会社日立制作所 Multi-user mimo wireless communication method and multi-user mimo wireless communication device
CN102237921A (en) * 2011-08-02 2011-11-09 中国科学技术大学 Physical layer network coding method for bidirectional relay channel of cellular system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1703645A1 (en) * 2005-03-04 2006-09-20 Samsung Electronics Co., Ltd. User scheduling method for multiuser MIMO communication system
CN102204138A (en) * 2008-10-28 2011-09-28 株式会社日立制作所 Multi-user mimo wireless communication method and multi-user mimo wireless communication device
CN102237921A (en) * 2011-08-02 2011-11-09 中国科学技术大学 Physical layer network coding method for bidirectional relay channel of cellular system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Jindal, N.;Goldsmith, A..Dirty-paper coding versus TDMA for MIMO Broadcast channels.《IEEE》.2005,第51卷第1783-1794页. *

Also Published As

Publication number Publication date
CN103220033A (en) 2013-07-24

Similar Documents

Publication Publication Date Title
Feng et al. Power scaling of full-duplex two-way massive MIMO relay systems with correlated antennas and MRC/MRT processing
US9608706B2 (en) System and method for multiple-input and multiple-output (MIMO) full-duplex precoding structures
Shi et al. Joint source-relay design for full-duplex MIMO AF relay systems
Roemer et al. Algebraic norm-maximizing (ANOMAX) transmit strategy for two-way relaying with MIMO amplify and forward relays
Senaratne et al. Beamforming for space division duplexing
KR101081317B1 (en) Method for precoding and decoding of distributive mimo channels in relay-based df cooperative wireless networks
US9450787B2 (en) System and method for early termination in iterative null-space directed singular value decomposition for MIMO
CN106301457B (en) Self-interference removing method in bi-directional full-duplex MIMO relay communications system
CN105450274B (en) Based on the extensive multiple antennas relay system number of users optimization method that efficiency is optimal
CN103220033B (en) Method for parallelizing matrix channels of two-way relay MIMO (Multiple Input Multiple Output) system
KR20110060304A (en) Rf relay of full-duplex and method for reducing interference of em-level thereof
CN101986575B (en) Precoding method for multi-user multiple input multiple output (MIMO) system
CN101917218A (en) MIMO multi-user system downlink transmission method and system for reducing feedback information
Sboui et al. Precoder design and power allocation for MIMO cognitive radio two-way relaying systems
CN102801456A (en) Combined downlink precoding method of single-cell relay communication cellular system
CN102025405A (en) Combined receiving and transmitting terminal information based multi-beam forming method and system
CN104202277A (en) Design method for secondary user network linear transceiver with cognitive relay network
CN102088342B (en) Feedback device and method for MIMO (multiple input multiple output) system
Xing et al. Self-interference suppression with imperfect channel estimation in a shared-antenna full-duplex massive MU-MIMO system
CN102857292B (en) Multi-user bidirectional relay transmission system and multi-user bidirectional relay transmission method
Chen et al. Interference neutralization for separated multiuser uplink-downlink with distributed relays
Sun et al. Multi-pair two-way massive MIMO AF full-duplex relaying with ZFR/ZFT and imperfect CSI
Bjornson et al. Can hardware distortion correlation be neglected when analyzing uplink SE in massive MIMO?
Xu et al. Achievable rate of full-duplex massive MIMO relaying with hardware impairments
Deng et al. Multiuser MIMO precoders with proactive primary interference cancelation and link quality enhancement for cognitive radio relay systems

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150527

Termination date: 20160513

CF01 Termination of patent right due to non-payment of annual fee