CN103216682A - Composite tube and manufacture method thereof - Google Patents

Composite tube and manufacture method thereof Download PDF

Info

Publication number
CN103216682A
CN103216682A CN2013101668862A CN201310166886A CN103216682A CN 103216682 A CN103216682 A CN 103216682A CN 2013101668862 A CN2013101668862 A CN 2013101668862A CN 201310166886 A CN201310166886 A CN 201310166886A CN 103216682 A CN103216682 A CN 103216682A
Authority
CN
China
Prior art keywords
resistant alloy
corrosion resistant
tube
pipe
parent tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2013101668862A
Other languages
Chinese (zh)
Inventor
谢玉洪
柯吕雄
周声结
李大全
姜义
张燕飞
汪建明
井元彬
王文龙
祁嘉朋
陈大江
王海
高光军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China National Offshore Oil Corp CNOOC
CNOOC China Ltd Zhanjiang Branch
Original Assignee
China National Offshore Oil Corp CNOOC
CNOOC China Ltd Zhanjiang Branch
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China National Offshore Oil Corp CNOOC, CNOOC China Ltd Zhanjiang Branch filed Critical China National Offshore Oil Corp CNOOC
Priority to CN2013101668862A priority Critical patent/CN103216682A/en
Publication of CN103216682A publication Critical patent/CN103216682A/en
Pending legal-status Critical Current

Links

Images

Abstract

The invention discloses a composite tube and a manufacture method thereof. The composite tube comprises a base tube (1) and a corrosion-resistant alloy liner tube (2) mechanically combined in the base tube, wherein a corrosion-resistant alloy surfacing layer (3) is arranged at the inner circumference of the end part of the base tube, the inner end face of the corrosion-resistant alloy surfacing layer (3) is connected with the end face of the corrosion-resistant alloy liner tube (2), and the axial length of the corrosion-resistant alloy surfacing layer (3) is not less than the distance between the end face of the corrosion-resistant alloy liner tube (2) and the end face of the base tube (1). The manufacture method comprises the following steps of: S1, mechanically combining the corrosion-resistant alloy liner tube (2) in the base tube (1); S2, removing the corrosion-resistant alloy liner tube (2) (with certain length) at the end part of the composite tube; and S3, forming the corrosion-resistant alloy surfacing layer (3) on the inner circumference of the end part of the base tube (1) from inside to outside in a surfacing manner from the end part of the corrosion-resistant alloy liner tube (2). According to the composite tube, the problems of large welding difficulty, low welding qualified rate and low speed of the dual-metal mechanical composite tube are solved.

Description

Composite pipe and manufacture method thereof
Technical field
The present invention relates to a kind of composite pipe, specifically be meant a kind of conveying acid oil gas bimetal machinery composite pipe that relates to, the invention still further relates to a kind of manufacture method of composite pipe.
Background technique
Composite bimetal pipe is to be composited by machinery or metallurgical mode by outer carbon steel parent tube and interior corrosion resistant alloy bushing pipe, and it organically combines the antiseptic property of corrosion resistant alloy steel and the mechanical property of carbon steel tube excellence.Be applicable to high temperature, hyperbaric environment conveying acid medium.Composite bimetal pipe can be divided into bimetal machinery composite pipe and bimetal metallurgy composite pipe by its combination, and mechanical composite pipe is owing to the advantage on its manufacturing and the price is used widely.Bimetal on market machinery composite pipe is with the manufacturing of detonation technology mostly, this manufacturing technology be the shock wave that produces when utilizing detonation with corrosion-resistant alloy layer moment bulging and closely with the applying of parent tube tubing.This product application of restriction at present is the joint efficiency of bimetal machinery composite pipe with the main cause of development, be welded as example with gathering line, because its liner and matrix tubing belong to dissimilar metal, the corrosion resisting property that should guarantee the liner weld seam in the butt welding process guarantees the mechanical strength of matrix tubing weld seam again, compare its welding difficulty with former single material line pipe very big, while basic unit's carbon steel in butt welding is easy to pollute corrosion-resistant alloy layer makes the decay resistance of corrosion-resistant alloy layer weld seam descend, there is the gap for mechanical bond between bimetal machinery composite pipe basic unit and lining in addition, because air and impurity effect between basic unit and lining, cause in welding pool, forming pore, cause a large amount of pores and weld defects such as fusion not, the gap that has between basic unit and lining simultaneously, also can cause in X-ray procedure and not merge illusion, the problems referred to above adopt usually and just can solve at its pipe end inner wall overlaying one deck corrosion resistant alloy.But accuracy of alignment was difficult to assurance when what is more important made the butt welding of bimetal machinery composite pipe owing to inevitable off-centre, the wall unevenness that exists of seamless carbon steel parent tube, and traditional double V-groove wlding loading is big, and butt welding efficient is extremely low.Above various reasons makes that bimetal machinery composite pipe butt welding welding efficiency is extremely low.And the pipe laying of offshore oil engineering sea has big, the characteristics such as construction environment is complicated, construction quality height of investment, highly difficult, the extremely low welding efficiency of existing bimetal machinery composite pipe butt welding can't satisfy offshore oil engineering sea pipe and lay needs, has had a strong impact on bimetal machinery composite pipe in the offshore oil application in engineering.
Above-mentioned argumentation content purpose is the All aspects of of the technology that may be relevant with the All aspects of of the present invention that below will be described and/or advocate of introducing to the reader, believe that this argumentation content helps to provide background information for the reader, to help understanding All aspects of of the present invention better, therefore, should be appreciated that it is to read these argumentations, rather than admit prior art with this angle.
Summary of the invention
The objective of the invention is to avoid in the prior art that bimetal machinery composite pipe welding difficulty is big, solder yield is low, slow-footed deficiency and a kind of composite pipe and manufacture method thereof are provided.
Purpose of the present invention is achieved through the following technical solutions:
A kind of composite pipe is provided, comprise parent tube and the mechanical bond corrosion resistant alloy bushing pipe in parent tube, be provided with the corrosion resistant alloy overlay cladding in the end of described parent tube week, the end face of the interior edge face of described corrosion resistant alloy overlay cladding and corrosion resistant alloy bushing pipe joins, and the length of described corrosion resistant alloy overlay cladding on axially is not less than the distance between the end face of the end face of corrosion resistant alloy bushing pipe and parent tube.
Wherein, the end periphery of described parent tube has groove, and the bottom of described groove extends to the corrosion resistant alloy overlay cladding.
Wherein, the tilt angle a of described groove is between 6 °~8 °.
Wherein, described corrosion resistant alloy bushing pipe is a Stainless Steel Tube, and/or described parent tube is a carbon steel tube.
A kind of manufacture method of composite pipe comprises the steps:
S1, with corrosion resistant alloy bushing pipe mechanical bond in parent tube;
S2, remove the corrosion resistant alloy bushing pipe of composite pipe end certain-length, the end face of corrosion resistant alloy bushing pipe is in the parent tube and keeps a segment distance with the end face of parent tube;
S3, from the end of corrosion resistant alloy bushing pipe, from the inside to the outside in the end of described parent tube on week built-up welding form the corrosion resistant alloy overlay cladding.
Wherein, also comprise step S4, composite pipe pipe end overlay cladding inwall is carried out the machining full circle, and composite pipe pipe end face is processed as the flush end mouth.
Wherein, also comprise step S5, periphery processes the groove that extends to the corrosion resistant alloy overlay cladding in the end of parent tube.
Wherein, the tilt angle a of described groove is between 6 °~8 °.
Wherein, remove certain thickness material from outside to inside in the interior week of parent tube.
The present invention has following beneficial effect:
1, bimetal machinery composite pipe pipe end is a metallurgy combination, has not only eliminated between original parent tube and bushing pipe air and impurity the influence of butt welding quality has also been eliminated between parent tube and the bushing pipe in the relative movement of installing under stressed and the heating condition simultaneously;
2, adopt in centering butt welding because fine finishing full circle after the built-up welding is interior centering reference level with overlay cladding, eliminated the influence of parent tube off-centre, the internal centering validity of wall unevenness;
3, bimetal machinery composite pipe adopts the internal centralizer of butt welding group to realize that the complete interchangeable butt joint group between pipeline section is right, has reduced group to the time, has improved group to quality, and then has guaranteed welding quality;
4, bimetal machinery composite pipe end is the certain-length overlay cladding, processes new groove when being convenient to butt welding and reprocessing again;
5, backing weld carries out on the corrosion resistant alloy overlay cladding that " exposing " comes out, thereby has effectively avoided the pollution of carbon steel to corrosion-resistant alloy layer;
6, narrow gap U type bevel for welding, with respect to 30 ° of traditional grooves, the wlding loading has reduced 73%, has greatly improved welding efficiency.
Description of drawings
The invention will be further described to utilize accompanying drawing, but the embodiment in the accompanying drawing does not constitute any limitation of the invention, for those of ordinary skill in the art, under the prerequisite of not paying creative work, can also obtain other accompanying drawing according to the following drawings.
Fig. 1 is the structural representation after the machining before the composite pipe built-up welding.
Fig. 2 is the structural representation behind the composite pipe root bead.
Fig. 3 is the structural representation after the composite pipe built-up welding.
Fig. 4 is the structural representation behind the fine finishing full circle after the composite pipe built-up welding.
Fig. 5 is the structural representation after the processing of composite pipe groove.
Fig. 6 is two composite pipe butt welding schematic representation.
Include: 1---parent tube, 2---corrosion resistant alloy bushing pipe, 3---corrosion resistant alloy overlay cladding, 4---groove in the drawings.
Embodiment
In order to make those skilled in the art understand technological scheme of the present invention better, the present invention is described in further detail below in conjunction with the drawings and specific embodiments, need to prove that under the situation of not conflicting, the application's embodiment and the feature among the embodiment can make up mutually.
As shown in Figure 5, composite pipe of the present invention comprises parent tube 1 and the corrosion resistant alloy bushing pipe 2 that is arranged in the parent tube 1, and described parent tube 1 is a carbon steel tube, and described corrosion resistant alloy bushing pipe 2 is a Stainless Steel Tube.Corrosion resistant alloy bushing pipe 2 mechanical bond are in parent tube 1.Be provided with corrosion resistant alloy overlay cladding 3 in the end of described parent tube 1 week, the end face of the interior edge face of described corrosion resistant alloy overlay cladding 3 and corrosion resistant alloy bushing pipe 2 joins, and the length of described corrosion resistant alloy overlay cladding 3 on axially is not less than the distance between the end face of the end face of corrosion resistant alloy bushing pipe 2 and parent tube 1.The end periphery of described parent tube 1 has groove 4, and the bottom of described groove 4 extends to corrosion resistant alloy overlay cladding 3, and the tilt angle a of described groove 4 is between 6 °~8 °.
The present invention makes to be metallurgy combination between its parent tube end and overlay cladding at the corrosion resistant alloy overlay cladding of composite pipe end end built-up welding corrosion resistant alloy material formation certain-length, has eliminated between parent tube and the bushing pipe in the relative movement of installing under stressed and the heating condition.When butt welding, eliminated between original parent tube and bushing pipe air and impurity to the influence of butt welding quality, and the butt joint backing weld can carry out on the corrosion resistant alloy overlay cladding that " exposing " comes out, thereby effectively avoid the pollution of carbon steel corrosion-resistant alloy layer.
The manufacture method of composite pipe of the present invention comprises the steps:
S1, with corrosion resistant alloy bushing pipe 2 mechanical bond in parent tube 1;
S2, remove the corrosion resistant alloy bushing pipe 2 of composite pipe end certain-length, the end face of corrosion resistant alloy bushing pipe 2 is in the parent tube 1 and keeps a segment distance with the end face of parent tube 1; Concrete, can adopt machining process, on beveling machine, will treat the stainless steel inner lining tube of the bimetal machinery composite pipe end removal certain-length of built-up welding; Remove certain thickness carbon steel layer simultaneously from outside to inside in the parent tube inboard, composite pipe as shown in Figure 1 at this moment.
S3, from the end of corrosion resistant alloy bushing pipe 2, from the inside to the outside in the end of described parent tube 1 on week built-up welding form corrosion resistant alloy overlay cladding 3.Can carry out root bead earlier before the built-up welding, select suitable welding parameter for use, adopt the tungsten argon arc welding machine to carry out the manual argon arc welding root bead at the groove root, composite pipe as shown in Figure 2 at this moment.Behind the root bead bimetal machinery composite pipe is carried out horizontal fixed, select suitable built-up welding parameter for use, adopt automatic resurfacing welding machine to begin to carry out built-up welding from the inside to the outside and form the multiple-bead deposit layer from root bead, direction of welding is a helix direction during built-up welding, built-up welding finishes back overlay cladding inside wall height and is not less than the internal surface height of stainless steel inner lining tube and the external port height that its external port height is not less than stainless steel inner lining tube, and postwelding carries out polishing with stainless steel brush.Composite pipe as shown in Figure 3 at this moment.Root bead, built-up welding wlding and butt welding wlding are selected stainless steel wlding of the same race for use.
S4 carries out the machining full circle to composite pipe pipe end overlay cladding inwall, and composite pipe pipe end face is processed as the flush end mouth.Concrete, adopt machining process, under the prerequisite that guarantees the overlay cladding minimum thickness, on beveling machine, composite pipe pipe end overlay cladding inwall is carried out the machining full circle, and the pipe end end face is processed as the flush end mouth by certain internal diameter size requirement.Composite pipe as shown in Figure 4 at this moment.
S5 processes the groove 4 that extends to corrosion resistant alloy overlay cladding 3 in the end of parent tube 1 periphery.Concrete, the bimetal machinery composite pipe end after built-up welding processes narrow gap groove, and this narrow gap groove tilt angle a is between 6 °~8 °, and root face thickness is less than overlay cladding thickness.Composite pipe as shown in Figure 5 at this moment.
The composite pipe of manufacturing of the present invention is when docking, and as shown in Figure 6, the butt joint backing weld can carry out on the overlay cladding that " exposing " comes out, thereby has effectively avoided the pollution of carbon steel to corrosion-resistant alloy layer.
Be the mm of 219.1 mm * (14.3+3) with specification below, material is that the bimetal machinery composite pipe of X65/316L is an example, and manufacture method of the present invention is elaborated.
1, pretreatment before the built-up welding
By Fig. 1 requirement bimetal machinery composite pipe end is processed.
2, root bead
As Fig. 2; select the Inconel625 welding wire for use; adopt the tungsten argon arc welding machine to carry out the manual argon arc welding root bead at the groove root; matrix surface adopts acetone to carry out preweld cleaning before the root bead; electric current is 150~170 A during root bead; welding speed is 55~70 mm/min, and shielding gas (Ar) flow is 10~20 L/min.Carry out dye penetrant inspection behind the root bead.
3, built-up welding
As Fig. 3, bimetal machinery composite pipe carries out horizontal fixed behind the root bead, adopt automatic resurfacing welding machine to begin to carry out built-up welding from the inside to the outside and form the multiple-bead deposit layer from root bead, direction of welding is a helix direction during built-up welding, the welding bead pendulum is wide to be 10~15 mm, welding current is 170~200 A, weldingvoltage is 20~25A, the evenly heat input quantity is 3~5 KJ, shielding gas (Ar) flow is 10~20 L/min, and interpass temperature is controlled at 50~70 ℃, and rotational speed (frock frequency) is 35~45 Hz, be total to built-up welding 5~10 roads, 2~3 layers, the amount of lap between road and the road is 30 %~50 %; Built-up welding finishes back overlay cladding inside wall height and is not less than the internal surface height of stainless steel inner lining tube and the external port height that its external port height is not less than stainless steel inner lining tube, matrix surface adopts acetone to carry out preweld cleaning before the built-up welding, and postwelding carries out polishing with stainless steel brush.
4, postwelding fine finishing, end full circle
As Fig. 4, adopt machining process, under the prerequisite that guarantees the overlay cladding minimum thickness, on beveling machine, composite pipe end overlay cladding inwall is carried out the machining full circle, and the pipe end end face is processed as the flush end mouth by its internal diameter size requirement.
5, narrow gap groove processing
As Fig. 5, the bimetal machinery composite pipe pipe end after built-up welding processes narrow gap groove, and this narrow gap groove tilt angle a is 8 °, root face thickness 2mm, overlay cladding thickness 3mm.
Set forth a lot of details so that fully understand the present invention in the top description, still, the present invention can also adopt other to be different from other modes described here and implement, and therefore, can not be interpreted as limiting the scope of the invention.
In a word; though the present invention has exemplified above-mentioned preferred implementation, should illustrate, though those skilled in the art can carry out various variations and remodeling; unless such variation and remodeling have departed from scope of the present invention, otherwise all should be included in protection scope of the present invention.

Claims (9)

1. composite pipe, comprise parent tube (1) and the mechanical bond corrosion resistant alloy bushing pipe (2) in parent tube (1), it is characterized in that: be provided with corrosion resistant alloy overlay cladding (3) in the end of described parent tube (1) week, the end face of the interior edge face of described corrosion resistant alloy overlay cladding (3) and corrosion resistant alloy bushing pipe (2) joins, and the length of described corrosion resistant alloy overlay cladding (3) on axially is not less than the distance between the end face of the end face of corrosion resistant alloy bushing pipe (2) and parent tube (1).
2. composite pipe according to claim 1 is characterized in that: the end periphery of described parent tube (1) has groove (4), and the bottom of described groove (4) extends to corrosion resistant alloy overlay cladding (3).
3. composite pipe according to claim 2 is characterized in that: the tilt angle a of described groove (4) is between 6 °~8 °.
4. according to each described composite pipe in the claim 1 to 3, it is characterized in that: described corrosion resistant alloy bushing pipe (2) is a Stainless Steel Tube, and/or described parent tube (1) is a carbon steel tube.
5. the manufacture method of a composite pipe comprises the steps:
S1, with corrosion resistant alloy bushing pipe (2) mechanical bond in parent tube (1);
S2, remove the corrosion resistant alloy bushing pipe (2) of composite pipe end certain-length, the end face of corrosion resistant alloy bushing pipe (2) is in the parent tube (1) and keeps a segment distance with the end face of parent tube (1);
S3, from the end of corrosion resistant alloy bushing pipe (2), in the end of described parent tube (1), go up built-up welding from the inside to the outside week and form corrosion resistant alloy overlay cladding (3).
6. manufacture method according to claim 5 is characterized in that: also comprise step S4, composite pipe pipe end overlay cladding inwall is carried out the machining full circle, and composite pipe pipe end face is processed as the flush end mouth.
7. manufacture method according to claim 5 is characterized in that: also comprise step S5, process the groove (4) that extends to corrosion resistant alloy overlay cladding (3) in the end periphery of parent tube (1).
8. manufacture method according to claim 7 is characterized in that: the tilt angle a of described groove (4) is between 6 °~8 °.
9. according to each described manufacture method of claim 5 to 8, it is characterized in that: in step S2, remove certain thickness material from outside to inside in the interior week of parent tube (1).
CN2013101668862A 2013-05-09 2013-05-09 Composite tube and manufacture method thereof Pending CN103216682A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2013101668862A CN103216682A (en) 2013-05-09 2013-05-09 Composite tube and manufacture method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2013101668862A CN103216682A (en) 2013-05-09 2013-05-09 Composite tube and manufacture method thereof

Publications (1)

Publication Number Publication Date
CN103216682A true CN103216682A (en) 2013-07-24

Family

ID=48814729

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2013101668862A Pending CN103216682A (en) 2013-05-09 2013-05-09 Composite tube and manufacture method thereof

Country Status (1)

Country Link
CN (1) CN103216682A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104339123A (en) * 2013-07-31 2015-02-11 中国石油天然气集团公司 Bimetal composite pipe welding method
CN105127685A (en) * 2015-09-22 2015-12-09 西安向阳航天材料股份有限公司 Method for sealing weld of pipe end of mechanical bimetal composite pipe
CN105605359A (en) * 2016-02-16 2016-05-25 湖州久立管件有限公司 Reinforced elbow and overlay welding method thereof
CN105750832A (en) * 2014-12-18 2016-07-13 中国石油天然气集团公司 Production method for bimetal composite pipe
CN105983755A (en) * 2015-01-28 2016-10-05 胜利油田金岛工程安装有限责任公司 Surfacing welding method for enclosed connection of long-distance pipeline without mending
CN106270949A (en) * 2015-06-23 2017-01-04 胜利油田金岛工程安装有限责任公司 A kind of submerged pipeline anticorrosion built-up welding internal joint patch method
CN106270933A (en) * 2015-05-13 2017-01-04 胜利油田金岛工程安装有限责任公司 A kind of complex welding method of large aperture pipe end built-up welding corrosion resistant alloy composite steel tube
CN106514029A (en) * 2016-12-20 2017-03-22 东方电气集团东方锅炉股份有限公司 Method for surfacing end of long pipe
CN106695068A (en) * 2015-08-21 2017-05-24 关磊 Anticorrosion surfacing method for inner wall of steel pipe welding seam
CN106975819A (en) * 2016-01-15 2017-07-25 宝鸡石油钢管有限责任公司 A kind of Ni-based composite bimetal pipe all-position automatic soldering method
CN107052710A (en) * 2016-12-21 2017-08-18 中国石油天然气集团公司 A kind of undercoating pipeline manufacture method
CN107803607A (en) * 2016-09-09 2018-03-16 中国石化工程建设有限公司 Welding dissimilar materials structure for composite plate pressing pressure container
CN109483009A (en) * 2018-10-31 2019-03-19 中国石油天然气集团有限公司 A kind of manufacturing method of composite bimetal pipe end portion treatment structure
CN110181228A (en) * 2019-05-17 2019-08-30 东莞材料基因高等理工研究院 A kind of manufacturing process of bimetallic mechanical composite-curve
CN111716745A (en) * 2020-06-17 2020-09-29 浙江久立特材科技股份有限公司 Method for preparing bimetal glued composite pipe
CN113028154A (en) * 2021-03-31 2021-06-25 西安向阳航天材料股份有限公司 Mechanical bimetal composite pipe with thickened pipe end lining layer and preparation method thereof
CN113864537A (en) * 2020-10-29 2021-12-31 广东博盈特焊技术股份有限公司 Preparation method and application of composite pipe
WO2023207118A1 (en) * 2022-04-28 2023-11-02 中国石油天然气集团有限公司 Composite bimetal drill pipe and preparation method therefor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201149150Y (en) * 2007-12-24 2008-11-12 郭衡纲 Composite steel tube of end inner wall build-up welding corrosion resisting alloy layer
CN101628355A (en) * 2009-08-12 2010-01-20 西安向阳航天材料股份有限公司 Sealing method for tube end of carbon steel/stainless steel composited tube
CN101653855A (en) * 2009-08-12 2010-02-24 西安向阳航天材料股份有限公司 Method for welding composited tube at bonding interface of carbon steel/stainless steel machinery
CN201672164U (en) * 2010-06-10 2010-12-15 西安向阳航天材料股份有限公司 Metal composite tube with adapter rings
CN102528244A (en) * 2012-02-14 2012-07-04 中国海洋石油总公司 Semiautomatic argon tungsten-arc welding technological process of bimetal compounding sea pipe
CN102773592A (en) * 2012-07-20 2012-11-14 长春轨道客车股份有限公司 Method for welding carbon steel medium plate
CN203223649U (en) * 2013-05-09 2013-10-02 中国海洋石油总公司 Composite tube

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201149150Y (en) * 2007-12-24 2008-11-12 郭衡纲 Composite steel tube of end inner wall build-up welding corrosion resisting alloy layer
CN101628355A (en) * 2009-08-12 2010-01-20 西安向阳航天材料股份有限公司 Sealing method for tube end of carbon steel/stainless steel composited tube
CN101653855A (en) * 2009-08-12 2010-02-24 西安向阳航天材料股份有限公司 Method for welding composited tube at bonding interface of carbon steel/stainless steel machinery
CN201672164U (en) * 2010-06-10 2010-12-15 西安向阳航天材料股份有限公司 Metal composite tube with adapter rings
CN102528244A (en) * 2012-02-14 2012-07-04 中国海洋石油总公司 Semiautomatic argon tungsten-arc welding technological process of bimetal compounding sea pipe
CN102773592A (en) * 2012-07-20 2012-11-14 长春轨道客车股份有限公司 Method for welding carbon steel medium plate
CN203223649U (en) * 2013-05-09 2013-10-02 中国海洋石油总公司 Composite tube

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会: "复合钢的推荐坡口", 《中华人民共和国国家标准》 *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104339123A (en) * 2013-07-31 2015-02-11 中国石油天然气集团公司 Bimetal composite pipe welding method
CN105750832A (en) * 2014-12-18 2016-07-13 中国石油天然气集团公司 Production method for bimetal composite pipe
CN105750832B (en) * 2014-12-18 2018-08-14 中国石油天然气集团公司 The production method of composite bimetal pipe
CN105983755A (en) * 2015-01-28 2016-10-05 胜利油田金岛工程安装有限责任公司 Surfacing welding method for enclosed connection of long-distance pipeline without mending
CN106270933A (en) * 2015-05-13 2017-01-04 胜利油田金岛工程安装有限责任公司 A kind of complex welding method of large aperture pipe end built-up welding corrosion resistant alloy composite steel tube
CN106270949A (en) * 2015-06-23 2017-01-04 胜利油田金岛工程安装有限责任公司 A kind of submerged pipeline anticorrosion built-up welding internal joint patch method
CN106695068A (en) * 2015-08-21 2017-05-24 关磊 Anticorrosion surfacing method for inner wall of steel pipe welding seam
CN105127685A (en) * 2015-09-22 2015-12-09 西安向阳航天材料股份有限公司 Method for sealing weld of pipe end of mechanical bimetal composite pipe
CN105127685B (en) * 2015-09-22 2017-05-24 西安向阳航天材料股份有限公司 Method for sealing weld of pipe end of mechanical bimetal composite pipe
CN106975819A (en) * 2016-01-15 2017-07-25 宝鸡石油钢管有限责任公司 A kind of Ni-based composite bimetal pipe all-position automatic soldering method
CN105605359A (en) * 2016-02-16 2016-05-25 湖州久立管件有限公司 Reinforced elbow and overlay welding method thereof
CN107803607A (en) * 2016-09-09 2018-03-16 中国石化工程建设有限公司 Welding dissimilar materials structure for composite plate pressing pressure container
CN107803607B (en) * 2016-09-09 2019-08-20 中国石化工程建设有限公司 Dissimilar material welding structure for composite plate pressing pressure container
CN106514029A (en) * 2016-12-20 2017-03-22 东方电气集团东方锅炉股份有限公司 Method for surfacing end of long pipe
CN106514029B (en) * 2016-12-20 2019-05-14 东方电气集团东方锅炉股份有限公司 The method of long tube end built-up welding
CN107052710A (en) * 2016-12-21 2017-08-18 中国石油天然气集团公司 A kind of undercoating pipeline manufacture method
CN109483009A (en) * 2018-10-31 2019-03-19 中国石油天然气集团有限公司 A kind of manufacturing method of composite bimetal pipe end portion treatment structure
CN109483009B (en) * 2018-10-31 2021-04-30 中国石油天然气集团有限公司 Manufacturing method of end processing structure of bimetal composite pipe
CN110181228A (en) * 2019-05-17 2019-08-30 东莞材料基因高等理工研究院 A kind of manufacturing process of bimetallic mechanical composite-curve
CN110181228B (en) * 2019-05-17 2021-02-02 东莞材料基因高等理工研究院 Manufacturing process of bimetal mechanical composite bent pipe
CN111716745A (en) * 2020-06-17 2020-09-29 浙江久立特材科技股份有限公司 Method for preparing bimetal glued composite pipe
CN113864537A (en) * 2020-10-29 2021-12-31 广东博盈特焊技术股份有限公司 Preparation method and application of composite pipe
CN113028154A (en) * 2021-03-31 2021-06-25 西安向阳航天材料股份有限公司 Mechanical bimetal composite pipe with thickened pipe end lining layer and preparation method thereof
WO2023207118A1 (en) * 2022-04-28 2023-11-02 中国石油天然气集团有限公司 Composite bimetal drill pipe and preparation method therefor

Similar Documents

Publication Publication Date Title
CN103216682A (en) Composite tube and manufacture method thereof
CN102528237B (en) Welding process for carbon steel process pipeline
CN104741741B (en) A kind of pipe pipe docking all positon automatic TIG welding technique of continuous pipe
RU2588930C2 (en) Method for formation of underwater pipeline during laying thereof
CN101417364B (en) Semi-automatic welding method of metal flux cored filler rod conduit root
CN107442891A (en) A kind of cut deal body longitudinal and girth welding joint and welding procedure
CN104816076A (en) Tube-to-tube butt welding technological method of coiled tube
CN105252117A (en) Manual tungsten-electrode argon arc welding process for nickel alloy process pipeline
CN103008999B (en) Spiral seam submerged-arc welded pipe butt joint process
CN105195872A (en) Double-sided submerged arc back-chipping-free welding technology for pipeline steel
CN108176910A (en) A kind of nuclear power station Leak-tight liner siding band ceramic backing Lincoln weld method
CN106903399B (en) The high strength pipe semiautomatic welding method of X80 or more grade of steel
CN103586566A (en) Semi-automatic argon-arc welding method for bimetal composite pipes
CN102528238A (en) Manual argon-arc welding process of tungsten electrode
CN103612001B (en) A kind of composite bimetal pipe pipe end sealing welding technique for extra based on R shape groove
CN103252557A (en) Welding method achieving medium thick plate backing welding without back gouging
RU2285599C1 (en) Tube electron-beam welding method
CN102615392A (en) Welding groove process of mechanical bimetallic composite marine pipe
CN111438461A (en) Welding groove form and welding process of container connecting pipe or blind flange connecting pipe
CN102658415B (en) Single-arc twin-wire pipeline welding method
CN109514047A (en) The welding procedure of thick-walled pipe
CN110899904A (en) All-position welding method for small-caliber pipe
CN101972885B (en) Bushing-free narrow-gap pulse gas metal arc backing welding method of petroleum kelly bar
CN106583951A (en) Large aperture thick wall nickel alloy composite tube butt welding process
CN102390002B (en) Automatic submerged-arc welding method for large insertion-type adapting pipe on cone

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20130724