CN103214964A - Method for coating aluminum-copper alloy foil explosion-proof material - Google Patents

Method for coating aluminum-copper alloy foil explosion-proof material Download PDF

Info

Publication number
CN103214964A
CN103214964A CN2013101057411A CN201310105741A CN103214964A CN 103214964 A CN103214964 A CN 103214964A CN 2013101057411 A CN2013101057411 A CN 2013101057411A CN 201310105741 A CN201310105741 A CN 201310105741A CN 103214964 A CN103214964 A CN 103214964A
Authority
CN
China
Prior art keywords
explosion
coating method
proof
coating
substrate surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2013101057411A
Other languages
Chinese (zh)
Inventor
黄晓东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Huapeng Explosion Proof Technology Co Ltd
Original Assignee
Shanghai Huapeng Explosion Proof Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Huapeng Explosion Proof Technology Co Ltd filed Critical Shanghai Huapeng Explosion Proof Technology Co Ltd
Priority to CN2013101057411A priority Critical patent/CN103214964A/en
Publication of CN103214964A publication Critical patent/CN103214964A/en
Pending legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

The invention discloses an anticorrosive paint coating method. The method comprises the steps of mixing ingredients, such as siloxane, a solvent, silicon dioxide particles, a rare-earth compound, deionized water, a catalyst, carbon fibers, polyimide and the like, then carrying out aging treatment, filtrating an aged mixture, then spraying, brushing or dipping the mixture on the surface of an explosion-proof base material, and forming a coating layer on the surface of the explosion-proof base material after the mixture is deposited, thereby realizing anticorrosive surface treatment.

Description

A kind of coating method of aluminum-copper alloy paper tinsel explosion-proof lamp
Technical field
The present invention relates to a kind of protective system coating method, relate in particular to the tinsel explosion-proof lamp, the coating method of aluminum-copper alloy paper tinsel explosion-proof lamp particularly, this method is used the environmental protection coating material of aromatic free solvent.
Background technology
In modern industry and daily life; corrosion of metal is seen everywhere; especially crevice corrosion, stress corrosion and the corrosion fatigue, the particularly destruction of the forms such as corrosion of metal explosion-proof lamp that takes place in the fuel oil dangerization product storage vessel causes great potential safety hazard for people's lives.The manufacturing process of described metal explosion-proof lamp generally includes: ingot casting, be rolled into paper tinsel, grooving machine joint-cutting, drawing and forming Web materials.
The metal protection method that adopts can roughly be divided three classes at present: a class is to carry out anodic oxidation treatment, promptly form the anode oxide film of one deck tens micron thickness in the metallic surface, but because the anode oxidation process power consumption is big, and electrolyte solution is seriously polluted, be difficult to handle, use its application to be restricted; Second class is a chemical conversion film, being about to metal parts is immersed in the solution of definite composition, rely on chemical reaction to form one deck chemical conversion film at a certain temperature, wherein most widely used is the oxidation of chromic salt chemistry, but chromic salt is a kind of carcinogenic toxicant, and the world environments protective tissue has proposed restriction and used chromic salt and other to contain chromate compound; The 3rd class is an organic coating, promptly applies one deck organic coating in the metallic surface, with outward appearance and the physical and chemical performance that improves metal.People begin rare earth element is used in the aseptic technic of metallic surface in recent years.
The rare-earth conversion coatings film technique develops into today, and people have carried out a large amount of improvement to various film-forming process, and the performance of film also is improved.The rare-earth conversion coatings technology mainly is an immersion treatment, and this technological operation is simple, be easy to safeguard; But its drawback is that the long period of soaking process treatment time is oversize, and formed rete is thin and relatively poor with the sticking power of explosion-proof base material.Discover through long-term exploration, in soaking solution, add strong oxidizer, as H 2O 2, KMnO 4, (NH 4) 2S 2O 8Etc. strong oxide compound, rate of film build is improved greatly, the treatment time shortens dramatically, and simultaneously the treatment soln temperature is not high yet, can at room temperature use, but because the existence of strong oxidizer makes the less stable of treatment process.
In order to solve the problem that the rare-earth conversion coatings treatment process exists, the present invention proposes a kind of improved protective system coating method.This method anticorrosion with low cost, remarkable in economical benefits can be carried out normal temperature and be spread, and coating processes is simple, and solution is environment friendly and pollution-free.
Summary of the invention
The objective of the invention is at the deficiencies in the prior art part, a kind of coating method of environment friendly corrosion protection coating is provided, in order to solve the tinsel explosion-proof lamp, especially the protection against corrosion difficult problem of aluminum-copper alloy paper tinsel explosion-proof lamp external coating, and coating aromatic free solvent, do not contain strong oxidizer, do not have poisonous pigment, be fit to various constructional methods.Application is not subject to seasonal restrictions, and construction technology is simple and convenient, and technical costs is cheap, good environmental protection.
The present invention is achieved by the following technical solutions:
(1) prepare following component (mass parts):
A N-(2-amino-ethyl)-3-aminopropyltriethoxywerene werene 1-10;
B propyl alcohol 40-60;
C SiO 2Particle 1-5;
The oxide compound 1-5 of d neodymium;
E deionized water 5-25;
F acetate 1-3;
G carbon fiber 5-7;
H polyimide 1-3;
(2) with carrying out maturation process after the above component mixing, spray, brush or be immersed in explosion-proof substrate surface then, the deposition back forms coating at explosion-proof substrate surface, realizes the surface anticorrosion processing.
Described SiO 2Particle grain size is the 50-100 nanometer.
Described maturation process is to leave standstill at normal temperatures 50-60 hour.
Described explosion-proof base material is the tinsel explosion-proof lamp, preferred aluminum-copper alloy paper tinsel explosion-proof lamp.
Heat in the deposition process after spraying, brushing or dipping, Heating temperature is to heat 1 minute to 1 hour under 50 ℃ to the 150 ℃ temperature.
The thickness of described coating is 1 micron to 10 microns, preferred 1 micron to 5 microns.The preferred method that adopts spraying or brush forms coating at explosion-proof substrate surface.
Embodiment
The present invention relates to a kind of coating method of protective system, after being mixed, the various components of protective system carry out maturation process, again the mixture after the slaking is filtered, spray, brush or be immersed in explosion-proof substrate surface then, the deposition back forms coating at explosion-proof substrate surface, realizes the surface anticorrosion processing.
Protective system coating method disclosed by the invention is simple, convenient, quick, reliable, and raw material is cheap, this method can be simply in conjunction with enter the existing pre-treatment that comprises coating and after in the conventional production line of other postprocessing working procedures of explosion-proof substrate material, substantially need not to carry out other adjustment on the equipment, is the Eco-power production technique of a kind of height.
With embodiment the present invention is elaborated below, but protection scope of the present invention is not limited to following embodiment.
Embodiment 1
(1) prepare following component (mass parts):
A N-(2-amino-ethyl)-3-aminopropyltriethoxywerene werene 1;
B propyl alcohol 40;
C SiO 2Particle 1;
The oxide compound 1 of d neodymium;
E deionized water 5;
F acetate 1;
G carbon fiber 5;
H polyimide 1;
(2) with carrying out maturation process after the above component mixing, spray, brush or be immersed in explosion-proof substrate surface then, the deposition back forms coating at explosion-proof substrate surface, realizes the surface anticorrosion processing.
Embodiment 2
(1) prepare following component (mass parts):
A N-(2-amino-ethyl)-3-aminopropyltriethoxywerene werene 10;
B propyl alcohol 60;
C SiO 2Particle 5;
The oxide compound 5 of d neodymium;
E deionized water 25;
F acetate 3;
G carbon fiber 7;
H polyimide 3;
(2) with carrying out maturation process after the above component mixing, spray, brush or be immersed in tinsel explosion-proof lamp surface then, the deposition back forms coating on the explosion-proof lamp surface, and the realization surface anticorrosion is handled.
Embodiment 3
(1) prepare following component (mass parts):
A N-(2-amino-ethyl)-3-aminopropyltriethoxywerene werene 5;
B propyl alcohol 50;
C SiO 2Particle 3;
The oxide compound 3 of d neodymium;
E deionized water 15;
F acetate 2;
G carbon fiber 6;
H polyimide 2;
(2) with carrying out maturation process after the above component mixing, spray, brush or be immersed in aluminum-copper alloy paper tinsel explosion-proof lamp surface then, the deposition back forms coating on the explosion-proof lamp surface, and the realization surface anticorrosion is handled.

Claims (9)

1. the coating method of a protective system comprises:
(1) prepare following component (mass parts):
A N-(2-amino-ethyl)-3-aminopropyltriethoxywerene werene 1-10;
B propyl alcohol 40-60;
C SiO 2Particle 1-5;
The oxide compound 1-5 of d neodymium;
E deionized water 5-25;
F acetate 1-3;
G carbon fiber 5-7;
H polyimide 1-3;
(2) with carrying out maturation process after the said components mixing, spray, brush or be immersed in explosion-proof substrate surface then, the deposition back forms coating at explosion-proof substrate surface, realizes the surface anticorrosion processing.
2. coating method according to claim 1 is characterized in that, described SiO 2Particle grain size is the 50-100 nanometer.
3. coating method according to claim 1 is characterized in that, described maturation process is to leave standstill at normal temperatures 50-60 hour.
4. coating method according to claim 1 is characterized in that, described explosion-proof base material is the tinsel explosion-proof lamp.
5. coating method according to claim 1 is characterized in that, described explosion-proof base material is an aluminum-copper alloy paper tinsel explosion-proof lamp.
6. coating method according to claim 1 is characterized in that, heats in described deposition process, and Heating temperature is 50 ℃ to 150 ℃, 1 minute to 1 hour heat-up time.
7. coating method according to claim 1 is characterized in that, described coat-thickness is 1 micron to 10 microns.
8. coating method according to claim 7 is characterized in that, described coat-thickness is 1 micron to 5 microns.
9. coating method according to claim 1 is characterized in that, adopts the method for spraying or brushing to form coating at explosion-proof substrate surface in the described step (2).
CN2013101057411A 2013-03-29 2013-03-29 Method for coating aluminum-copper alloy foil explosion-proof material Pending CN103214964A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2013101057411A CN103214964A (en) 2013-03-29 2013-03-29 Method for coating aluminum-copper alloy foil explosion-proof material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2013101057411A CN103214964A (en) 2013-03-29 2013-03-29 Method for coating aluminum-copper alloy foil explosion-proof material

Publications (1)

Publication Number Publication Date
CN103214964A true CN103214964A (en) 2013-07-24

Family

ID=48813148

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2013101057411A Pending CN103214964A (en) 2013-03-29 2013-03-29 Method for coating aluminum-copper alloy foil explosion-proof material

Country Status (1)

Country Link
CN (1) CN103214964A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101747835A (en) * 2008-12-01 2010-06-23 中国科学院过程工程研究所 Elastic anti-corrosion coating
CN102604448A (en) * 2012-01-20 2012-07-25 北京北矿锌业有限责任公司 Material used for metal anti-corrosion coating
CN102942866A (en) * 2012-12-10 2013-02-27 青岛中科英泰商用系统有限公司 Non-aromatic corrosion prevention method for metal structure
CN102942847A (en) * 2012-12-13 2013-02-27 青岛天鹅针织有限公司 Corrosion prevention process of metal structure
CN102977780A (en) * 2012-12-13 2013-03-20 青岛海诺水务科技股份有限公司 Coating scheme for anticorrosive paint

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101747835A (en) * 2008-12-01 2010-06-23 中国科学院过程工程研究所 Elastic anti-corrosion coating
CN102604448A (en) * 2012-01-20 2012-07-25 北京北矿锌业有限责任公司 Material used for metal anti-corrosion coating
CN102942866A (en) * 2012-12-10 2013-02-27 青岛中科英泰商用系统有限公司 Non-aromatic corrosion prevention method for metal structure
CN102942847A (en) * 2012-12-13 2013-02-27 青岛天鹅针织有限公司 Corrosion prevention process of metal structure
CN102977780A (en) * 2012-12-13 2013-03-20 青岛海诺水务科技股份有限公司 Coating scheme for anticorrosive paint

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李建祥等: "《血液毒理学》", 31 August 2011, article "稀土及其化合物", pages: 191 *

Similar Documents

Publication Publication Date Title
CN103232809A (en) Coating process of copper alloy foil explosion-proof material
CN103214938A (en) Coating method of anticorrosion coating material
CN103214955A (en) Anticorrosion technology of metal surface
CN103214964A (en) Method for coating aluminum-copper alloy foil explosion-proof material
CN103214884A (en) Coating technology of anticorrosion coating material
CN103214965A (en) Method for coating magnesium alloy foil explosion-proof material
CN103214962A (en) Method for coating zinc-copper alloy foil explosion-proof material
CN103214949A (en) Method for coating copper alloy foil explosion-proof material
CN103214963A (en) Method for coating tin-copper alloy foil explosion-proof material
CN103214942A (en) Method for coating titanium alloy foil explosion-proof material
CN103214961A (en) Method for coating silicon-copper alloy foil explosion-proof material
CN103214939A (en) Method for coating zinc-copper alloy foil explosion-proof material
CN103214940A (en) Method for coating manganese-copper alloy foil explosion-proof material
CN103214889A (en) Method for coating nickel-aluminum alloy foil explosion-proof material
CN103232807A (en) Coating process of aluminum alloy foil explosion-proof material
CN103214966A (en) Method for coating dual-phase stainless steel band explosion-proof material
CN103214943A (en) Method for coating ferrite stainless steel band explosion-proof material
CN103214945A (en) Method for coating martensite-stainless-steel-band explosion-proof material
CN103214944A (en) Method for coating austenite-stainless-steel-band explosion-proof material
CN103232806A (en) Coating process of magnesium alloy foil explosion-proof material
CN103232812A (en) Coating technology of titanium alloy foil explosion-proof material
CN103232811A (en) Coating technique of titanium-magnesium alloy foil explosion-proof material
CN103232805A (en) Coating process for nickel-aluminium alloy foil explosion-proof material
CN103254772A (en) Coating process of aluminium-copper alloy foil explosion-proof material
CN103254775A (en) Coating process of zinc-copper alloy foil explosion-proof material

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20130724