CN103213203A - Groove processing tool and method for processing groove - Google Patents
Groove processing tool and method for processing groove Download PDFInfo
- Publication number
- CN103213203A CN103213203A CN2013100256969A CN201310025696A CN103213203A CN 103213203 A CN103213203 A CN 103213203A CN 2013100256969 A CN2013100256969 A CN 2013100256969A CN 201310025696 A CN201310025696 A CN 201310025696A CN 103213203 A CN103213203 A CN 103213203A
- Authority
- CN
- China
- Prior art keywords
- blade
- groove
- groove processing
- edge
- tool
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000012545 processing Methods 0.000 title claims abstract description 46
- 238000000034 method Methods 0.000 title description 9
- 230000001154 acute effect Effects 0.000 claims abstract description 4
- 238000003672 processing method Methods 0.000 claims description 3
- 239000010409 thin film Substances 0.000 abstract description 23
- 239000010410 layer Substances 0.000 description 23
- 238000003754 machining Methods 0.000 description 18
- 239000000758 substrate Substances 0.000 description 15
- 239000010408 film Substances 0.000 description 14
- 238000005520 cutting process Methods 0.000 description 8
- 229910052951 chalcopyrite Inorganic materials 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000001788 irregular Effects 0.000 description 4
- DVRDHUBQLOKMHZ-UHFFFAOYSA-N chalcopyrite Chemical compound [S-2].[S-2].[Fe+2].[Cu+2] DVRDHUBQLOKMHZ-UHFFFAOYSA-N 0.000 description 3
- -1 chalcopyrite compound Chemical class 0.000 description 3
- 238000000224 chemical solution deposition Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000005361 soda-lime glass Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009760 electrical discharge machining Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000013077 scoring method Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67092—Apparatus for mechanical treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Photovoltaic Devices (AREA)
- Milling, Broaching, Filing, Reaming, And Others (AREA)
Abstract
Description
技术领域technical field
本发明有关于一种沟槽加工工具,特别是有关于使用于制造黄铜矿(chalcopyrite)化合物太阳电池或非晶(amorphous)硅太阳电池等积成型薄膜太阳电池时的沟槽加工的沟槽加工工具、以及使用该沟槽加工工具的沟槽加工方法。The present invention relates to a grooving tool, in particular to a grooving tool used for grooving in the manufacture of chalcopyrite compound solar cells or amorphous silicon solar cells. A machining tool, and a groove machining method using the groove machining tool.
在此,所谓的黄铜矿化合物,除了CIGS(Cu(In,Ga)Se2)之外,还包括CIGSS(Cu(In,Ga)(Se,S)2)、CIS(CuInS2)等。Here, the chalcopyrite compound includes CIGSS (Cu(In, Ga)(Se, S) 2 ), CIS (CuInS 2 ) and the like in addition to CIGS (Cu(In, Ga)Se 2 ).
背景技术Background technique
在使用黄铜矿化合物半导体等作为光吸收层的薄膜太阳电池中,一般在基板上串联连接形成有多个单位晶格(unit ce11)的积成型构造。In a thin-film solar cell using a chalcopyrite compound semiconductor or the like as a light-absorbing layer, generally, a plurality of unit cells (unit ce11) are connected in series on a substrate to form an integral structure.
现对现有习知的黄铜矿化合物积成型薄膜太阳电池的制造方法进行说明。图6(a)、图6(b)及图6(c),表示CIGS薄膜太阳电池的制造步骤的示意图。首先,如图6(a)所示,在由碱石灰玻璃(SLG)等构成的绝缘基板1上,借由溅镀法形成有成为正极侧的下部电极的Mo电极层2之后,对形成光吸收层前的薄膜太阳电池基板,借由刻划加工形成下部电极分离用的沟槽S(P1步骤)。A conventionally known method for producing a chalcopyrite compound-integrated thin-film solar cell will now be described. Fig. 6(a), Fig. 6(b) and Fig. 6(c) are schematic diagrams showing the manufacturing steps of CIGS thin film solar cells. First, as shown in FIG. 6(a), on an
之后,如图6(b)所示,在Mo电极层2上,借由蒸着法、溅镀法等形成由化合物半导体(CIGS)薄膜所构成的光吸收层3,在其上,借由CBD法(化学溶液沉积法)形成用以异质接合的由ZnS薄膜等所构成的缓冲(buffer)层4,在其上,形成由ZnO薄膜所构成的绝缘层5。而且,相对于形成透明电极层前的薄膜太阳电池基板,在从下部电极分离用的沟槽S往横方向远离既定距离的位置,借由刻划加工形成到达至Mo电极层2的电极间接触用的沟槽M1(P2步骤)。Afterwards, as shown in FIG. 6(b), on the
接着,如图6(c)所示,从绝缘层5之上形成由ZnO:Al薄膜所构成的作为上部电极的透明电极层6,作为具备有利用光电转换而发电必要的各机能层的太阳电池基板,借由刻划加工形成到达至下部的Mo电极层2的电极分离用的沟槽M2(P3步骤)。Next, as shown in FIG. 6(c), a
在上述的制造积成型薄膜太阳电池的步骤中,作为借由刻划进行沟槽加工沟槽M1及M2的技术,是使用机械式的刻划法。In the above-mentioned steps of manufacturing an integral thin-film solar cell, a mechanical scribing method is used as a technique for grooving the grooves M1 and M2 by scribing.
机械式的刻划法,例如,如在专利文献1及2所揭示般,借由将前端成为前端尖细状的金属针(needle)等的沟槽加工工具的刀刃前端,施予既定的压力而按压于基板并同时移动,而加工电极分离用的沟槽的技术。In the mechanical scoring method, for example, as disclosed in
如于专利文献1及2所揭示般的机械式刻划法,将沟槽加工工具的刀刃前端的形状变成为前端尖细的针状,但严格来说,压接薄膜太阳电池的部分为了使接触面积变广而以成为平坦的方式将前端切成大致水平。亦即,如图7所示,将前端部分71成为圆锥梯状,且将底面72成为平坦。将如此形状的沟槽加工工具7,用以形成薄膜太阳电池基板的沟槽的薄膜按压,同时沿着刻划预定线移动,借此进行沟槽加工。In the mechanical scribing method disclosed in
在前端部分使用圆锥梯状的沟槽加工工具的情形,存在沟槽附近的薄膜不规则地大片地剥落,甚至去除了不必要去除的部分,存在太阳电池的性能及良率降低的问题点。此外,一旦随着沟槽加工工具的使用而使刀刃前端产生磨耗,前端部分由于是圆锥梯状,因此刀刃前端的尺径将变大,其结果为,被刻划的沟槽宽度逐渐地变宽。因此,无法长时间地持续使用相同的刀刃前端,或无法进行研磨而重复使用。When a conical trapezoidal groove processing tool is used at the front end, there is a problem that the thin film near the groove peels off in large pieces irregularly, and even unnecessary removal is removed, which has the problem of lowering the performance and yield of the solar cell. In addition, once the front end of the blade is worn with the use of the groove machining tool, the diameter of the front end of the blade will become larger because the front end part is conical and trapezoidal, and as a result, the width of the groove to be carved will gradually become larger. Width. Therefore, it is impossible to continue to use the same blade tip for a long time, or to grind it and reuse it.
在此,有鉴于如此般的问题点,本发明人于先前已提出如专利文献3所示的沟槽加工工具。Here, in view of such a problem, the present inventors have previously proposed a groove processing tool as shown in
图8表示在上述专利文献3所揭示的沟槽加工工具的立体图。该形成沟槽的沟槽加工工具8,由圆柱状的本体81,与一体地形成于该前端部分的刀刃前端区域82所构成,且以超硬合金或烧结钻石等硬质材料制造。刀刃前端区域82,由长方形的底面83、从底面83的短边方向的端边立起成直角的前面84及后面85,与从底面83的长边方向的端边立起成直角而成为相互平行面的左、右侧面88、89所构成。借由底面83与前面84、后面85而形成的角部分别成为刀刃前端86、87。FIG. 8 shows a perspective view of the groove machining tool disclosed in
根据如此的沟槽加工工具8,刀刃前端部分的左右侧面成为平行面,因此刀刃左右宽度的尺寸不会产生变化,即使是磨耗之后,刀刃的左右宽度为固定,能够维持被刻划的沟槽宽度。According to such a
此外,沟槽加工工具的前面84或后面85相对于太阳电池基板的表面往进行方向侧倾斜,借由前面84或后面85与底面83而形成的角部,亦即刀刃前端86或刀刃前端87以近乎点接触的线接触与太阳电池基板接触,而具有能够滑顺地进行薄膜的剥离,且能够形成直线状、美丽的刻划线的优点。In addition, the front side 84 or the
专利文献1:日本专利特开2002-094089号公报Patent Document 1: Japanese Patent Laid-Open No. 2002-094089
专利文献2:日本专利特开2004-115356号公报Patent Document 2: Japanese Patent Laid-Open No. 2004-115356
专利文献3:国际公开W02010/098306号公报Patent Document 3: International Publication No. W02010/098306
在现有习知的一般黄铜矿化合物积成型薄膜太阳电池中,图6C的CIGS光吸收层3的厚度,包含ZnS薄膜缓冲层4及ZnO绝缘层5为2μm左右,其上层的ZnO:Al透明电极层6的厚度约1μm。在最近的黄铜矿化合物积成型薄膜太阳电池,从提高光电转换效率的观点进行膜厚最适化等检讨中,制造的光电转换层的厚度或透明电极层的厚度较习知更为厚。例如,透明电极层6的厚度为2μm,或此以上者亦变多。在透明电极层6的厚度约1μm时,使用图8所示的沟槽加工工具能够毫无问题地进行沟槽部分的剥离,但透明电极层6的厚度成为2μm或以上,则随着用以剥离的沟槽部分的膜厚变更厚,即使使用图8的沟槽加工工具,亦存在沟槽附近薄膜剥离的问题。In the conventionally known general chalcopyrite compound-integrated thin-film solar cells, the thickness of the CIGS light-absorbing
例如,在图6(c)所示的P3步骤,一旦形成沟槽M2时剥离范围扩大,则造成与相邻的沟槽M1间的透明电极层6剥离。为了防止此般的不适当情形,将沟槽M1与沟槽M2的距离充分地取长,即在沟槽M2加工时剥离范围未达沟槽M1即可,但于此情形将减少可实质地利用发电的区域(发电用面积),且无法提高太阳电池的光电转换效率。For example, in step P3 shown in FIG. 6( c ), once the trench M2 is formed, the peeling range expands, causing the
由此可见,上述现有的沟槽加工工具在结构与使用上,显然仍存在有不便与缺陷,而亟待加以进一步改进。为了解决上述存在的问题,相关厂商莫不费尽心思来谋求解决之道,但长久以来一直未见适用的设计被发展完成,而一般产品又没有适切结构能够解决上述问题,此显然是相关业者急欲解决的问题。It can be seen that the above-mentioned existing groove processing tool obviously still has inconvenience and defects in structure and use, and needs to be further improved urgently. In order to solve the above-mentioned problems, the relevant manufacturers have tried their best to find a solution, but no suitable design has been developed for a long time, and the general products do not have a suitable structure to solve the above-mentioned problems. This is obviously the relevant industry. urgent problem to be solved.
发明内容Contents of the invention
本发明的目的在于提供一种沟槽加工工具,其对积成型薄膜太阳电池等电极膜或光吸收层等薄膜进行沟槽加工时,用以加工的薄膜即使较厚,亦能够直线地形成固定线宽的美丽的刻划线,且能够使图型化的沟槽宽度较小,进行较少剥离的沟槽加工。It is an object of the present invention to provide a grooving tool that can form a groove in a straight line even if the film used for processing is thick when grooving an electrode film such as an integral thin-film solar cell or a thin film such as a light-absorbing layer. Beautiful scribing lines with a wide line width, and can make the patterned groove width smaller, and perform groove processing with less peeling.
本发明的目的及解决其技术问题是采用以下技术方案来实现的。本实用新型一种沟槽加工工具,其由棒状的本体、以及形成于本体前端的刀刃前端区域所构成;该刀刃前端区域,由长方形的底面、从底面长边方向的边相对于底面立起成直角的相互平行的左侧面及右侧面、以及沿着底面宽度方向的边而形成于刀刃前端区域的前面侧或后面侧的至少任一方侧的刀刃前端部所构成;该刀刃前端部,由在底面的端缘朝向斜上方倾斜的第1刀刃面、以及相对于第1刀刃面交叉成锐角的第2刀刃面所形成。The purpose of the present invention and the solution to its technical problems are achieved by adopting the following technical solutions. The utility model relates to a groove processing tool, which is composed of a rod-shaped body and a front end area of a blade formed at the front end of the body; the front end area of the blade is formed by a rectangular bottom surface, and stands upright from the bottom surface in the direction of the long side of the bottom surface. The left side and the right side parallel to each other at right angles, and the blade front end formed on at least either side of the front side or rear side of the blade front end region along the side in the width direction of the bottom surface; the blade front end , formed by a first blade surface inclined obliquely upward at the end edge of the bottom surface, and a second blade surface intersecting at an acute angle with respect to the first blade surface.
本发明的目的及解决其技术问题还可采用以下技术措施进一步实现。The purpose of the present invention and its technical problems can also be further realized by adopting the following technical measures.
较佳的,前述的沟槽加工工具,其中借由该第1刀刃面与第2刀刃面而形成的刀刃前端的角度为30~85度。Preferably, in the aforementioned groove machining tool, the angle of the front end of the blade formed by the first blade surface and the second blade surface is 30-85 degrees.
较佳的,前述的沟槽加工工具,其中该第1刀刃面相对于底面的倾斜角度为1~30度。Preferably, in the aforementioned groove processing tool, the inclination angle of the first cutting edge surface relative to the bottom surface is 1-30 degrees.
借由较佳的,前述的沟槽加工工具,其中该刀刃前端区域的底面以及刀刃前端部的宽度为30~5000μm,第1刀刃面的长度为5~40μm。Preferably, in the aforementioned groove processing tool, the width of the bottom surface of the front end region of the blade and the front end of the blade is 30-5000 μm, and the length of the first blade surface is 5-40 μm.
本发明的目的及解决其技术问题还采用以下技术方案来实现的。本发明一种沟槽加工方法,其包括以下步骤:使用本发明沟槽加工工具;使该沟槽加工工具的第1刀刃面与加工对象的薄膜表面接触,使该沟槽加工工具沿着薄膜的表面移动。The purpose of the present invention and the solution to its technical problems are also achieved by the following technical solutions. A groove processing method of the present invention comprises the following steps: using the groove processing tool of the present invention; bringing the first blade surface of the groove processing tool into contact with the film surface of the processing object, and making the groove processing tool along the film surface movement.
借由上述技术方案,本发明沟槽加工工具至少具有下列优点及有益效果:With the above technical solution, the groove processing tool of the present invention has at least the following advantages and beneficial effects:
(一)根据本发明的沟槽加工工具,设置于刀刃前端区域前面侧(或后面侧)的刀刃前端部形成有锐角的刀刃前端,因此能够使刀刃前端滑顺地侵入薄膜,并且,存在于刀刃前端上面侧的第2刀刃面为斜面,能够使已剥离的部分往上方掠过而离去。借此,即使用以加工的薄膜较厚,亦不会产生刻划线中断或不规则薄膜的剥离,且能够形成固定线宽的美丽刻划线。(1) According to the grooving tool of the present invention, the front end portion of the blade provided on the front side (or rear side) of the front end region of the blade is formed with an acute-angled blade front end, so that the front end of the blade can smoothly penetrate into the film, and there is The second blade surface on the upper side of the blade front end is a bevel, and the peeled-off part can be swept upwards and left. Thereby, even if the film used for processing is thick, there will be no scribe line interruption or irregular film peeling, and beautiful scribe lines with a fixed line width can be formed.
(二)刀刃前端的第1刀刃面,由于是从底面的一端缘往斜上方倾斜而形成,因此在沟槽加工时,该第1刀刃面与太阳电池的表面进行面接触,使沟槽加工工具倾斜而进行,借此能够抑制对被加工面的刀刃前端过度的侵入。亦即,一旦将锐利的刀刃前端以线接触按压于被加工面,则施加于接触部位压力的调整将是困难的,但如上述般,使第1刀刃面与被加工面进行面接触,借此能够抑制过度的侵入,并且能够容易地配合薄膜形状而进行微调整按压压力。此外,第1刀刃面由于其长度较短,因此能够一边抑制如上述般的过度侵入,一边确保适度的切削性能。(2) The first blade surface at the front end of the blade is formed by inclining upward from one end edge of the bottom surface. Therefore, during groove processing, the first blade surface is in surface contact with the surface of the solar cell, making the groove processing The tool is tilted to suppress excessive intrusion of the tip of the cutting edge into the surface to be processed. That is, once the sharp blade front end is pressed on the processed surface with line contact, it will be difficult to adjust the pressure applied to the contact part, but as mentioned above, the first blade surface is surface-contacted with the processed surface, and by This suppresses excessive intrusion, and makes it easy to finely adjust the pressing pressure according to the shape of the film. In addition, since the length of the first blade surface is relatively short, moderate cutting performance can be secured while suppressing the above-mentioned excessive penetration.
(三)沟槽加工工具的刀刃前端区域的左右侧面,以从底面长边方向的端边立起成直角而成为相互地大致平行的方式而形成,因此刀刃前端即使磨耗,刀刃前端的左右宽度的尺寸亦不会产生变化。借此,即使刀刃前端磨耗,亦能够使刻划的沟槽宽度维持为相同。(3) The left and right side surfaces of the front end region of the groove processing tool are formed so as to stand at right angles from the end sides in the longitudinal direction of the bottom surface and become approximately parallel to each other. Therefore, even if the front end of the blade is worn, the left and right width of the front end of the blade size will not change. Thereby, even if the tip of the blade is worn, the width of the scribed groove can be maintained to be the same.
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其他目的、特征和优点能够更明显易懂,以下特举较佳实施例,并配合附图,详细说明如下。The above description is only an overview of the technical solution of the present invention. In order to better understand the technical means of the present invention, it can be implemented according to the contents of the description, and in order to make the above and other purposes, features and advantages of the present invention more obvious and understandable , the following preferred embodiments are specifically cited below, and are described in detail as follows in conjunction with the accompanying drawings.
附图说明Description of drawings
图1:表示本发明的沟槽加工工具实施例的立体图。Fig. 1: A perspective view showing an embodiment of a grooving tool of the present invention.
图2:表示在图1所示的沟槽加工工具的刀刃前端部的放大侧视图。Fig. 2: An enlarged side view showing the front end of the cutting edge of the grooving tool shown in Fig. 1 .
图3:表示在图1所示的沟槽加工工具在沟槽加工时状态的侧视图。Fig. 3: A side view showing the state of the groove machining tool shown in Fig. 1 during groove machining.
图4:表示图3的刀刃前端部的放大侧视图。Fig. 4: An enlarged side view showing the front end of the blade in Fig. 3 .
图5:表示本发明的沟槽加工工具的另一实施例的立体图。Fig. 5: A perspective view showing another embodiment of the grooving tool of the present invention.
图6(a)、图6(b)及图6(c):表示一般的CIGS薄膜太阳电池的制造步骤的示意图。Fig. 6(a), Fig. 6(b) and Fig. 6(c): schematic diagrams showing the manufacturing steps of a general CIGS thin film solar cell.
图7:表示现有习知的沟槽加工工具实施例的立体图。Fig. 7: A perspective view showing an embodiment of a conventional groove machining tool.
图8:表示现有习知的沟槽加工工具的另一实施例的立体图。Fig. 8: A perspective view showing another embodiment of a conventional groove machining tool.
图9(a)、图9(b)及图9(c):表示3种类的沟槽加工工具的加工例图式。Fig. 9(a), Fig. 9(b) and Fig. 9(c): Diagrams showing machining examples of three types of groove machining tools.
【主要元件符号说明】[Description of main component symbols]
W:太阳电池基板 A:沟槽加工工具W: Solar cell substrate A: Grooving tool
10:本体 11:刀刃前端区域10: Body 11: Front end area of blade
12:刀刃前端区域的底面 13:刀刃前端区域的左侧面12: Bottom surface of the front end area of the blade 13: Left side of the front end area of the blade
14:刀刃前端区域的右侧面 15:刀刃前端区域的前面14: Right side of the front end area of the blade 15: Front of the front end area of the blade
16:刀刃前端部 18:第1刀刃面16: Front end of blade 18: 1st blade surface
19:第2刀刃面 20:刀刃前端19: Second blade side 20: Front end of the blade
具体实施方式Detailed ways
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合附图及较佳实施例,对依据本发明提出的一种沟槽加工工具的具体实施方式、结构、特征及其功效,详细说明如后。In order to further explain the technical means and effects of the present invention to achieve the intended purpose of the invention, the specific implementation, structure, characteristics and features of a groove machining tool proposed according to the present invention will be described below in conjunction with the accompanying drawings and preferred embodiments. Its effect is described in detail below.
请参阅图1及图2,表示本发明沟槽加工工具的实施例。图1是从上方观察的立体图,图2是放大沟槽加工工具的刀刃前端部的侧视图。该沟槽加工工具A实质上由对应刻划装置(图示外)安装部的四角柱状的本体10、以及在其前端部借由放电加工等加工成一体的刀刃前端区域11所构成。刀刃前端区域11,是以超硬合金或烧结钻石等硬质材料制造。刀刃前端区域11,是由细长地延伸的长方形的底面12、从底面12长边方向的边立起成直角而成为相互平行的一对左,右侧面13,14、沿着底面12宽度方向的边而形成于刀刃前端区域11的前面(朝向沟槽加工工具的移动方向的面)15侧的刀刃前端部16、以及从底面的后端缘立起成直角的后面17所构成。刀刃前端部16,如于图2详细地表示般,是由在底面12的端缘附近朝向斜上方倾斜的第1刀刃面18、相对于第1刀刃面18交叉成锐角的第2刀刃面19、以及借由该第1刀刃面18与第2刀刃面19而形成的刀刃前端20而形成。Please refer to FIG. 1 and FIG. 2 , which show an embodiment of the groove processing tool of the present invention. FIG. 1 is a perspective view seen from above, and FIG. 2 is an enlarged side view of the front end portion of the blade of the grooving tool. The grooving tool A is substantially composed of a quadrangular pillar-shaped
第12刃面18相对于底面12的倾斜角度α1,在1~30度的范围内且较佳为10度左右。使倾斜角度α1比1度大的理由,是为了使第1刀刃面18与底面12为不同的面。使倾斜角度α1比30度小的理由,是为了防止一旦倾斜角α1比后述角度α2的最小角度30度大,则越远离刀刃前端部16,底面12与第2刀刃面19越接近,且变得容易折毁。The inclination angle α1 of the
此外,借由第1刀刃面18与第2刀刃面19而形成的刀刃前端20的角度α2,是30~85度的范围内,且更佳为考虑强度与切削性能的平衡而形成为接近60度的角度。In addition, the angle α2 of the blade
进一步地,刀刃前端区域11的底面12的左右宽度L1,较佳为30~80μm,但可配合所要求的刻划沟槽宽度而为30~5000μm。与该底面的端缘相连而形成的第1刀刃面18的长度L2,较佳为5~40μm。另外,沟槽加工工具A的本体10并不限定于四角柱,以圆柱状或多角形而形成亦可。Furthermore, the left-right width L1 of the
使用上述的沟槽加工工具A而进行加工的情形,如图3及图4所示,使刀刃前端部16朝向移动方向的状态,且相对于太阳电池基板W,刀刃前端部16的第1刀刃面18与太阳电池基板W的表面进行面接触的方式,使沟槽加工工具A倾斜,亦即以第1刀刃面的倾斜角度仅为10度,使沟槽加工工具A往移动方向侧倾斜而安装于刻划装置(图示外)。之后,使沟槽加工工具A往太阳电池基板W的表面按压,并同时相对于太阳电池基板W而相对地移动,借此加工于先前所述的沟槽M1或沟槽M2。When processing using the above-mentioned groove processing tool A, as shown in FIG. 3 and FIG. The
在该沟槽加工时,为了较佳地进行使加工的沟槽宽度亦即刻划线的线宽维持为固定,而制品的设计上预定的品质(光电转换效率等)可实现以及品质的均一性,有必要使薄膜的剥离比例为固定。In this groove processing, in order to maintain the processed groove width, that is, the line width of the scribe line, at a constant level, the quality (photoelectric conversion efficiency, etc.) predetermined in the design of the product can be realized and the uniformity of quality can be achieved. , it is necessary to make the stripping ratio of the film constant.
本发明的上述沟槽加工工具A,由于设置于刀刃前端区域11前面的刀刃前端20以锐角而形成,因此存在于刀刃前端20上面侧的第2刀刃面19成为斜面,而能够使已剥离部分如以图4的箭头所示般往上方掠过而离去。借此,透明电极层6即使是2μm或以上厚度的沟槽加工(即使是较此为薄的膜厚的沟槽加工),亦能够抑制刻划线中断或不规则薄膜的剥离发生,而可直线地形成固定线宽的美丽刻划线。In the above-mentioned grooving tool A of the present invention, since the blade
此外,由于刀刃前端部16的第1刀刃面18,从底面12的一端缘往斜上方倾斜而形成,因此在沟槽加工时,该第1刀刃面18与太阳电池基板W的表面进行面接触,使沟槽加工工具A倾斜而进行,借此使第1刀刃面18与被加工面进行面接触,能够容易地微调整按压的压力,且能够防止施加过度的集中负载。此外,第1刀刃面18由于其长度仅为5~40μm,较短,因此能够施加适度的压力而确保切削性能。In addition, since the
此外,沟槽加工工具A的刀刃前端区域的左、右侧面13,14,从底面12长边方向的端缘立起成直角而成为相互平行的方式,因此刀刃前端20即使磨耗,亦不会使刀刃前端20左右宽度的尺寸产生变化。借此,即使是刀刃前端磨耗或研磨之后,亦能够使刻划的沟槽宽度维持为相同。In addition, the left and right side surfaces 13, 14 of the cutting edge front end region of the grooving tool A are erected at right angles from the end edges in the longitudinal direction of the
图9(a)、图9(b)及图9(c)表示使用3种类的沟槽加工工具的图6(c)所示P3步骤的加工例图式,图9(a)表示图7所示的前端尖细的圆锥梯状沟槽加工工具的加工状态的图式,图9(b)表示图8所示的沟槽加工工具的加工状态的图式,图9(c)表示图1所示本发明的沟槽加工工具A的加工状态的图式。在图式中,黑色部分是透明电极层6,白色带状部分是M2沟槽部分,不规则斑状部分是透明电极层6已剥离的部分。Fig. 9(a), Fig. 9(b) and Fig. 9(c) show the processing examples of the P3 step shown in Fig. 6(c) using three types of groove processing tools, and Fig. Figure 9 (b) shows a schematic diagram of the processing state of the conical trapezoidal groove processing tool shown in Figure 8, and Figure 9 (c) shows 1 is a diagram showing a machining state of the groove machining tool A of the present invention. In the drawing, the black part is the
测定不规则斑状的剥离部分最大宽度时,最大剥离宽度在图9(a)是206μm,在图9(b)是157μm,在图9(c)是79μm,且根据本发明的沟槽加工工具A能够抑制剥离。When measuring the maximum width of the peeling part of the irregular patch, the maximum peeling width is 206 μm in Fig. 9 (a), 157 μm in Fig. 9 (b), and 79 μm in Fig. 9 (c), and the groove processing tool according to the present invention A can suppress peeling.
在本发明中,上述实施例表示了刀刃前端部16设置于刀刃前端区域的前面(或后面)的情况,但如图5所示般即使在刀刃前端区域11的前后两方形成刀刃前端部16亦可。借此,若一方磨耗或破损,则能够借由改变沟槽加工工具A的安装方向而使另一方的刀刃前端作为新品而使用。In the present invention, the above-mentioned embodiment has shown the situation that the blade
本发明可适用于薄膜太阳电池或有机EL面板等基板表面薄膜的沟槽加工。The invention can be applied to groove processing of thin films on the surface of substrates such as thin film solar cells or organic EL panels.
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。The above description is only a preferred embodiment of the present invention, and does not limit the present invention in any form. Although the present invention has been disclosed as above with preferred embodiments, it is not intended to limit the present invention. Anyone familiar with this field Those skilled in the art, without departing from the scope of the technical solution of the present invention, can use the technical content disclosed above to make some changes or modify equivalent embodiments with equivalent changes, but all the content that does not depart from the technical solution of the present invention, according to the present invention Any simple modifications, equivalent changes and modifications made to the above embodiments by the technical essence still belong to the scope of the technical solutions of the present invention.
Claims (7)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012007996A JP2013146811A (en) | 2012-01-18 | 2012-01-18 | Groove machining tool and groove machining method |
JP2012-007996 | 2012-01-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103213203A true CN103213203A (en) | 2013-07-24 |
Family
ID=48811520
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2013100256969A Pending CN103213203A (en) | 2012-01-18 | 2013-01-16 | Groove processing tool and method for processing groove |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP2013146811A (en) |
KR (1) | KR101529966B1 (en) |
CN (1) | CN103213203A (en) |
TW (1) | TW201331138A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108453906A (en) * | 2018-03-29 | 2018-08-28 | 中钢集团新型材料(浙江)有限公司 | A kind of graphite material fracture toughness test grooving tool, equipment and grooving method |
CN110394491A (en) * | 2019-07-22 | 2019-11-01 | 河南北方红阳机电有限公司 | A kind of coaxial double-point tool oblique cutting processing tool and processing method |
CN112091298A (en) * | 2020-09-16 | 2020-12-18 | 中国航发贵州黎阳航空动力有限公司 | Straight groove machining tool and machining method |
CN112620762A (en) * | 2020-12-18 | 2021-04-09 | 贵州华烽电器有限公司 | Shell keyway cutting process device |
CN113698085A (en) * | 2021-07-05 | 2021-11-26 | 维达力实业(赤壁)有限公司 | Processing method of clearance groove and 3D substrate product |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI513671B (en) * | 2013-12-06 | 2015-12-21 | Ind Tech Res Inst | Cutting tool and glass cutting device using the same |
JP7010621B2 (en) * | 2017-08-02 | 2022-01-26 | 住友化学株式会社 | Synthetic resin film, separator for power storage device and power storage device |
JP7578997B2 (en) | 2022-07-26 | 2024-11-07 | 三星ダイヤモンド工業株式会社 | Groove machining tool and groove machining method |
CN117774040B (en) * | 2024-02-26 | 2024-05-14 | 山东山科蓝芯太阳能科技有限公司 | PVT photovoltaic photo-thermal plate cutting integrated equipment |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002331413A (en) * | 2001-05-02 | 2002-11-19 | Pascal:Kk | Fine cutting tool for correcting printed wiring board |
WO2010098306A1 (en) * | 2009-02-24 | 2010-09-02 | 三星ダイヤモンド工業株式会社 | Slotting tool, and thin film solar cell slotting method and scribing device using same |
CN102130217A (en) * | 2010-01-08 | 2011-07-20 | 三星钻石工业股份有限公司 | Grooving Tool for Thin Film Solar Cells |
CN102832116A (en) * | 2011-06-13 | 2012-12-19 | 聚日(苏州)科技有限公司 | Thin film strip structure, solar cell and manufacturing method of thin film strip structure |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100526010B1 (en) * | 2002-10-17 | 2005-11-08 | 주식회사 광신기업 | Tool for cutting name plate made of synthetic resin |
-
2012
- 2012-01-18 JP JP2012007996A patent/JP2013146811A/en active Pending
- 2012-12-03 TW TW101145242A patent/TW201331138A/en unknown
-
2013
- 2013-01-08 KR KR1020130002015A patent/KR101529966B1/en not_active Expired - Fee Related
- 2013-01-16 CN CN2013100256969A patent/CN103213203A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002331413A (en) * | 2001-05-02 | 2002-11-19 | Pascal:Kk | Fine cutting tool for correcting printed wiring board |
WO2010098306A1 (en) * | 2009-02-24 | 2010-09-02 | 三星ダイヤモンド工業株式会社 | Slotting tool, and thin film solar cell slotting method and scribing device using same |
CN102130217A (en) * | 2010-01-08 | 2011-07-20 | 三星钻石工业股份有限公司 | Grooving Tool for Thin Film Solar Cells |
CN102832116A (en) * | 2011-06-13 | 2012-12-19 | 聚日(苏州)科技有限公司 | Thin film strip structure, solar cell and manufacturing method of thin film strip structure |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108453906A (en) * | 2018-03-29 | 2018-08-28 | 中钢集团新型材料(浙江)有限公司 | A kind of graphite material fracture toughness test grooving tool, equipment and grooving method |
CN108453906B (en) * | 2018-03-29 | 2019-03-26 | 中钢集团新型材料(浙江)有限公司 | A kind of graphite material fracture toughness test grooving tool, equipment and grooving method |
CN110394491A (en) * | 2019-07-22 | 2019-11-01 | 河南北方红阳机电有限公司 | A kind of coaxial double-point tool oblique cutting processing tool and processing method |
CN110394491B (en) * | 2019-07-22 | 2024-08-02 | 河南北方红阳机电有限公司 | Coaxial double-edge cutter oblique insertion machining tool and machining method |
CN112091298A (en) * | 2020-09-16 | 2020-12-18 | 中国航发贵州黎阳航空动力有限公司 | Straight groove machining tool and machining method |
CN112620762A (en) * | 2020-12-18 | 2021-04-09 | 贵州华烽电器有限公司 | Shell keyway cutting process device |
CN113698085A (en) * | 2021-07-05 | 2021-11-26 | 维达力实业(赤壁)有限公司 | Processing method of clearance groove and 3D substrate product |
CN113698085B (en) * | 2021-07-05 | 2022-05-20 | 维达力实业(赤壁)有限公司 | Method for processing clearance groove and 3D substrate product |
Also Published As
Publication number | Publication date |
---|---|
JP2013146811A (en) | 2013-08-01 |
KR20130084990A (en) | 2013-07-26 |
TW201331138A (en) | 2013-08-01 |
KR101529966B1 (en) | 2015-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103213203A (en) | Groove processing tool and method for processing groove | |
CN102325621B (en) | Groove processing instrument and use the groove processing method of thin film solar cell and the chalker of this groove processing instrument | |
TWI417260B (en) | Set | |
CN113093445A (en) | Electroactive device and method of manufacturing an electroactive device | |
TW201101525A (en) | Method for manufacturing integrated thin-film solar cell | |
TWI472050B (en) | Production of integrated thin film solar cells | |
CN104396015A (en) | Laser-etched stacks of thin layers for photovoltaic cell connections | |
CN103367535B (en) | Groove machining tool, method and the grooving apparatus of thin film solar cell | |
CN106328728B (en) | A laser scribing method for copper indium gallium selenide thin film power generation glass | |
US12062733B2 (en) | Substrate for solar cell, solar cell, and solar cell manufacturing method | |
JP2020107795A (en) | Groove processing tool, and grooving method and grooving apparatus for thin film solar cell using the same | |
JP2020107800A (en) | Groove processing tool, and grooving method and grooving apparatus for thin film solar cell using the same | |
JP2020107796A (en) | Groove processing tool, and grooving method and grooving apparatus for thin film solar cell using the same | |
JP2020107797A (en) | Grooving tool, and thin film solar cell grooving method and grooving device using the same | |
JP2012089559A (en) | Manufacturing method of nitride compound semiconductor element | |
JP2020107798A (en) | Groove processing tool, and grooving method and grooving apparatus for thin film solar cell using the same | |
WO2011021615A1 (en) | Solar cell module and method for manufacturing same | |
JP2012044226A (en) | Solar cell module | |
JP2013071884A (en) | Glass substrate, and method for producing the same | |
TW201340357A (en) | Method for forming solar cell chip |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20130724 |