CN103198175A - Transformer fault diagnosis method based on fuzzy cluster - Google Patents

Transformer fault diagnosis method based on fuzzy cluster Download PDF

Info

Publication number
CN103198175A
CN103198175A CN2013100688040A CN201310068804A CN103198175A CN 103198175 A CN103198175 A CN 103198175A CN 2013100688040 A CN2013100688040 A CN 2013100688040A CN 201310068804 A CN201310068804 A CN 201310068804A CN 103198175 A CN103198175 A CN 103198175A
Authority
CN
China
Prior art keywords
matrix
fuzzy
data
sigma
centerdot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013100688040A
Other languages
Chinese (zh)
Other versions
CN103198175B (en
Inventor
张朝龙
胡绍刚
刘君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
State Grid Liaoning Electric Power Co Ltd
Original Assignee
State Grid Corp of China SGCC
State Grid Liaoning Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, State Grid Liaoning Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN201310068804.0A priority Critical patent/CN103198175B/en
Publication of CN103198175A publication Critical patent/CN103198175A/en
Application granted granted Critical
Publication of CN103198175B publication Critical patent/CN103198175B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开的基于模糊聚类的变压器故障诊断方法,具体照以下步骤实施:1)根据在线监测数据建立原始数据矩阵;2)将原始数据矩阵中的数据进行标准化获得模糊矩阵;3)建立模糊相似矩阵;4)用平方法计算出模糊相似矩阵R的传递闭包矩阵R',即模糊等价矩阵t(R)=R';5)根据t(R)的下三角,将t(R)中的数据从大到小排列;6)将分类阈值λ从大到小取出,模糊等价矩阵t(R)中的数据大于所取的λ时,将对应的模糊等价矩阵t(R)中的数据用1替换,反之用0替换,将模糊等价矩阵t(R)的每一列数据元素相同的列归为一类;7)根据λ得出动态聚类图,结合DGA技术确定变压器故障类型。本发明的变压器故障测试方法建立了基于模糊聚类的变压器故障诊断模型,能提高电力变压器故障诊断的准确性。

Figure 201310068804

The transformer fault diagnosis method based on fuzzy clustering disclosed by the present invention is implemented according to the following steps: 1) establish the original data matrix according to the online monitoring data; 2) standardize the data in the original data matrix to obtain the fuzzy matrix; 3) establish the fuzzy matrix Similarity matrix; 4) Use the square method to calculate the transitive closure matrix R' of the fuzzy similarity matrix R, that is, the fuzzy equivalent matrix t(R)=R'; 5) According to the lower triangle of t(R), the t(R ) are arranged from large to small; 6) The classification threshold λ is taken out from large to small, and when the data in the fuzzy equivalent matrix t(R) is greater than the selected λ, the corresponding fuzzy equivalent matrix t(R) ) is replaced with 1, otherwise replaced with 0, and the columns with the same data elements in each column of the fuzzy equivalent matrix t(R) are classified into one category; 7) According to λ, the dynamic clustering diagram is obtained, and it is determined by combining DGA technology Transformer fault type. The transformer fault testing method of the invention establishes a transformer fault diagnosis model based on fuzzy clustering, which can improve the accuracy of power transformer fault diagnosis.

Figure 201310068804

Description

基于模糊聚类的变压器故障诊断方法Transformer Fault Diagnosis Method Based on Fuzzy Clustering

技术领域technical field

本发明属于变压器故障在线监测技术领域,具体涉及一种基于模糊聚类的变压器故障诊断方法。The invention belongs to the technical field of transformer fault online monitoring, and in particular relates to a transformer fault diagnosis method based on fuzzy clustering.

背景技术Background technique

在我国现阶段,随着国民经济的快速发展,对电力的需求也呈现出快速增长的趋势。由于电力装机容量与电网规模的不断扩大,我国电力工业已经进入了大电网、大机组、高电压及高自动化的发展时期。2009年国家电网公司提出构建以特高压为骨干网架、各级电网协调发展的智能电网以及智能电网发展战略框架的六个环节则更加突显了输变电的重要性。确保智能化变电站的安全可靠运行是实现整个智能电网稳定运行的主要条件之一,而智能化电力变压器又是智能化变电站的重要组成部分,因此及时可靠地对智能化电力变压器潜在的故障进行诊断,对于保障智能电网运行具有深远的意义。At the present stage of our country, with the rapid development of the national economy, the demand for electricity also shows a trend of rapid growth. Due to the continuous expansion of power installed capacity and grid scale, my country's power industry has entered a period of development of large power grids, large units, high voltage and high automation. In 2009, the State Grid Corporation proposed to build a smart grid with UHV as the backbone grid and coordinated development of grids at all levels, and the six links of the smart grid development strategy framework further highlighted the importance of power transmission and transformation. Ensuring the safe and reliable operation of intelligent substations is one of the main conditions for realizing the stable operation of the entire smart grid, and intelligent power transformers are an important part of intelligent substations, so timely and reliable diagnosis of potential faults of intelligent power transformers , which has far-reaching significance for ensuring the operation of the smart grid.

溶解气体分析技术是变压器内部故障诊断的主要手段,它为间接了解变压器内的一般隐患提供了依据;然而油中溶解气体是许多因素共同作用的结果,所以电力变压器绝缘故障类型与油中溶解气体组分含量之间的关系存在一定的模糊性及不确定性的特征。将模糊聚类的分析方法引入变压器的故障诊断中是现阶段一种比较新的研究方向。Dissolved gas analysis technology is the main means of transformer internal fault diagnosis, which provides a basis for indirect understanding of the general hidden dangers in the transformer; however, dissolved gas in oil is the result of many factors, so the type of power transformer insulation fault and dissolved gas in oil There is a certain degree of fuzziness and uncertainty in the relationship between the component contents. Introducing the analysis method of fuzzy clustering into transformer fault diagnosis is a relatively new research direction at this stage.

发明内容Contents of the invention

本发明的目的在于提供一种基于模糊聚类的变压器故障诊断方法,建立了基于模糊聚类的变压器故障诊断模型,能进一步提高电力变压器故障诊断的准确性。The object of the present invention is to provide a transformer fault diagnosis method based on fuzzy clustering, establish a transformer fault diagnosis model based on fuzzy clustering, and further improve the accuracy of power transformer fault diagnosis.

本发明所采用的技术方案是,基于模糊聚类的变压器故障诊断方法,具体按照以下步骤实施:The technical scheme adopted in the present invention is, based on the transformer fault diagnosis method of fuzzy clustering, specifically implement according to the following steps:

步骤1、根据在线监测数据,输入待分类对象的个数n和特征变量个数m,建立原始数据矩阵Y=(yij)n×mStep 1. According to the online monitoring data, input the number n of objects to be classified and the number m of characteristic variables, and establish the original data matrix Y=(y ij ) n×m :

根据在线监测数据将论域U={y1,y2,y3…,yn}作为待分类的对象,其中每个对象由m个指标表示其性能,即Yi={yi1,yi2…,yim},(i=1,2,…n),建立原始数据矩阵,原始数据矩阵为Y=(yij)n×mAccording to the online monitoring data, the domain of discourse U={y 1 ,y 2 ,y 3 ...,y n } is used as the object to be classified, and each object has m indicators to represent its performance, that is, Y i ={y i1 ,y i2 ..., y im }, (i=1,2,...n), establish the original data matrix, the original data matrix is Y=(y ij ) n×m ;

步骤2、将原始数据矩阵中的数据标准化到[0,1]之间,获得模糊矩阵:Step 2. Standardize the data in the original data matrix to [0, 1] to obtain the fuzzy matrix:

对步骤1建立的原始数据矩阵Y=(yij)n×m中的第i个变量进行标准化,就是将yij通过算法转换成y′ij,具体按照以下算法转换:To standardize the i-th variable in the original data matrix Y=(y ij ) n×m established in step 1 is to convert y ij into y′ ij through an algorithm, specifically according to the following algorithm:

ythe y ijij ′′ == ythe y ijij -- ythe y ii ‾‾ TT ii ,, (( 11 ≤≤ ii ≤≤ nno ,, 11 ≤≤ jj ≤≤ mm )) ;;

其中, y i ‾ = 1 m y ij , T i = Σ j = 1 m ( y ij - y i ‾ ) 2 m - 1 ; in, the y i ‾ = 1 m the y ij , T i = Σ j = 1 m ( the y ij - the y i ‾ ) 2 m - 1 ;

将原始数据矩阵Y=(yij)n×m中的数据进行标准差标准化变换后,若还有个别的则要对这些数据继续进行极差正规化处理,极差正规化处理按照以下算法实施:After the data in the original data matrix Y=(y ij ) n×m is transformed by standard deviation standardization, if there are individual Then the data should continue to be subjected to range normalization processing, and the range normalization processing is implemented according to the following algorithm:

ythe y ijij ′′ ′′ == ythe y ijij -- minmin {{ ythe y ijij ′′ }} maxmax {{ ythe y ijij ′′ }} -- minmin {{ ythe y ijij ′′ }} ;;

经极差正规化处理后,得到的所有的y″ij∈[0,1],并且也不存在纲量矩阵的影响,即得到模糊矩阵Y=(y″ij)n×mAfter the range normalization process, all y″ ij ∈[0,1] are obtained, and there is no influence of the dimension matrix, that is, the fuzzy matrix Y=(y″ ij ) n×m is obtained;

步骤3,采用相似系数法、距离法或贴近度法之一来确定相似系数,建立模糊相似矩阵;Step 3, using one of the similarity coefficient method, the distance method or the closeness method to determine the similarity coefficient, and establish a fuzzy similarity matrix;

步骤4、用平方法计算出经步骤3获得模糊相似矩阵R的传递闭包矩阵R',即模糊等价矩阵t(R)=R';Step 4, calculate the transitive closure matrix R' that obtains fuzzy similarity matrix R through step 3 with square method, namely fuzzy equivalence matrix t(R)=R';

步骤5、观察步骤4获得的模糊等价矩阵t(R)的下三角,再将模糊等价矩阵t(R)中的数据从大到小排列,这些由大到小的数据即为分类阈值λ的取值点;Step 5. Observe the lower triangle of the fuzzy equivalence matrix t(R) obtained in step 4, and then arrange the data in the fuzzy equivalence matrix t(R) from large to small. These data from large to small are the classification thresholds The value point of λ;

步骤6、将步骤5中的分类阈值λ从大到小逐一取出,当模糊等价矩阵t(R)中的数据大于所取的分类阈值λ时,将对应的模糊等价矩阵t(R)中的数据用1替换,反之,用0替换,最终模糊等价矩阵t(R)中只含有0和1两个元素;观察模糊等价矩阵t(R)的每一列,数据元素相同的列归为一类,进而将其进行分类;Step 6. Take the classification threshold λ in step 5 from large to small one by one. When the data in the fuzzy equivalent matrix t(R) is greater than the selected classification threshold λ, the corresponding fuzzy equivalent matrix t(R) The data in is replaced with 1, otherwise, replaced with 0, the final fuzzy equivalent matrix t(R) contains only two elements of 0 and 1; observe each column of the fuzzy equivalent matrix t(R), the columns with the same data elements Classify them into one category, and then classify them;

步骤7、根据步骤5中不同的分类阈值λ,运用MATLAB软件编程仿真,最终得出基于模糊聚类的变压器故障诊断模型的动态聚类图,再结合DGA技术确定变压器故障类型。Step 7. According to the different classification thresholds λ in step 5, use MATLAB software programming simulation, and finally obtain the dynamic clustering diagram of the transformer fault diagnosis model based on fuzzy clustering, and then combine DGA technology to determine the type of transformer fault.

本发明的特点还在于,The present invention is also characterized in that,

步骤2中对原始数据矩阵进行标准化处理的方法还能采用极差标准化处理或最大值标准化处理。The method of standardizing the original data matrix in step 2 can also use range standardization or maximum value standardization.

步骤2中的极差标准化的处理方法具体按照以下算法实施:The processing method of extreme difference standardization in step 2 is specifically implemented according to the following algorithm:

对步骤1中获取的原始数据矩阵进行极差标准化处理的方法,具体按照以下算法实施:The method of performing range standardization processing on the original data matrix obtained in step 1 is specifically implemented according to the following algorithm:

ythe y ijij ′′ == ythe y ijij -- ythe y ii ‾‾ maxmax {{ ythe y ijij }} -- minmin {{ ythe y ijij }} ..

步骤2中的最大值标准化的处理方法具体按照以下算法实施:对步骤1中获取的原始数据矩阵进行最大值标准化处理,具体按照以下算法实施:The processing method of the maximum value standardization in step 2 is specifically implemented according to the following algorithm: the maximum value standardization process is performed on the original data matrix obtained in step 1, specifically according to the following algorithm:

ythe y ijij ′′ == ythe y ijij Mm jj ,,

其中,Mj=max(y1j,y2j…ynj)。Wherein, M j =max(y 1j ,y 2j . . . y nj ).

步骤3中的相似系数法包括有以下两种算法:The similarity coefficient method in step 3 includes the following two algorithms:

第一种,夹角余弦法,具体按照以下算法实施:The first one, the angle cosine method, is specifically implemented according to the following algorithm:

rr ijij == || ΣΣ ll == 11 mm ythe y ilil ** ythe y jljl || ΣΣ ll == 11 mm ythe y ilil 22 ** ΣΣ ll == 11 mm ythe y jljl 22 ,, (( ii ,, jj == 1,21,2 ·&Center Dot; ·&Center Dot; ·&Center Dot; nno )) ;;

第二种,相关系数法,具体按照以下算法实施:The second method, the correlation coefficient method, is specifically implemented according to the following algorithm:

rr ijij == ΣΣ ll == 11 mm || ythe y ilil -- ythe y ii ‾‾ || ·&Center Dot; || ythe y jljl -- ythe y jj ‾‾ || ΣΣ ll == 11 mm (( ythe y ilil -- ythe y ii ‾‾ )) 22 ·&Center Dot; ΣΣ ll == 11 mm (( ythe y jljl -- ythe y jj ‾‾ )) 22 ,, (( ii ,, jj == 1,21,2 ·&Center Dot; ·&Center Dot; ·· ,, nno )) ..

步骤3中的距离法包括有以下三种算法:The distance method in step 3 includes the following three algorithms:

第一种距离法,Hamming距离:The first distance method, Hamming distance:

dd (( ythe y ii ,, ythe y jj )) == ΣΣ ll == 11 mm || ythe y ilil -- ythe y jljl || ;;

第二种距离法,Euclid距离:The second distance method, Euclid distance:

dd (( ythe y ii ,, ythe y jj )) == ΣΣ ll == 11 mm (( ythe y ilil -- ythe y jljl )) 22 ;;

第三种距离法,Chebyshev距离:The third distance method, Chebyshev distance:

dd (( ythe y ii ,, ythe y jj )) == maxmax 11 ≤≤ ll ≤≤ nno || ythe y ilil -- ythe y jljl || ..

最大值标准化的处理方法具体按照以下算法实施:对步骤1中获取的原始数据矩阵进行最大值标准化处理,具体按照以下算法实施:The maximum value standardization processing method is specifically implemented according to the following algorithm: the maximum value standardization process is performed on the original data matrix obtained in step 1, specifically according to the following algorithm:

ythe y ijij ′′ == ythe y ijij Mm jj ,,

其中,Mj=max(y1j,y2j…ynj)。Wherein, M j =max(y 1j ,y 2j . . . y nj ).

步骤3中的贴近度法包括有以下三种算法:The proximity method in step 3 includes the following three algorithms:

第一种贴近度法,大最小值法:The first closeness method, the large minimum method:

Figure BDA00002881344400055
Figure BDA00002881344400055

第二种贴近度法,几何平均最小法:The second closeness method, the geometric mean minimum method:

rr ijij == ΣΣ ll == 11 mm (( ythe y ilil ^^ ythe y jljl )) ΣΣ ll == 11 mm ythe y ilil ·&Center Dot; ythe y jljl ,, (( ii ,, jj == 1,21,2 ·&Center Dot; ·&Center Dot; ·&Center Dot; ,, nno )) ;;

第三种贴近度法,算数平均最小法:The third closeness method, arithmetic mean minimum method:

rr ijij == ΣΣ ll == 11 mm (( ythe y ilil ^^ ythe y jljl )) 11 22 ΣΣ ll == 11 mm (( ythe y ilil ++ ythe y jljl )) ,, (( ii ,, jj == 1,21,2 ·&Center Dot; ·· ·&Center Dot; ,, nno )) ..

本发明的有益效果在于:The beneficial effects of the present invention are:

(1)本发明的基于模糊聚类的变压器故障诊断方法是在先前研究的DGA分析方法的基础上而提出了的一种新型变压器故障诊断分析方法,该方法能够依据大量的变压器监测数据进行故障分类,有助于快速诊断变压器的故障类型。(1) The transformer fault diagnosis method based on fuzzy clustering of the present invention is a new type of transformer fault diagnosis and analysis method proposed on the basis of the previously studied DGA analysis method. This method can perform fault diagnosis based on a large number of transformer monitoring data. Classification, which helps to quickly diagnose the fault type of the transformer.

(2)本发明的基于模糊聚类的变压器故障诊断方法的数据来源于变压器在线监测系统实时监测的现场气体数据,不仅能监测变压器出现故障时产生的氢气、甲烷、乙烷、乙烯、乙炔、一氧化碳及二氧化碳的信息,还能根据某些气体的突变预测出变压器的故障。(2) The data of the transformer fault diagnosis method based on fuzzy clustering of the present invention comes from the on-site gas data monitored in real time by the transformer online monitoring system, which can not only monitor the hydrogen, methane, ethane, ethylene, acetylene, The information of carbon monoxide and carbon dioxide can also predict the failure of transformers according to the sudden change of certain gases.

(3)本发明的基于模糊聚类的变压器故障诊断方法是基于传递闭包法的模糊聚类分析法经过对数据的变换处理,再用平方法求出模糊相似矩阵的传递闭包矩阵,即模糊等价矩阵,再将DGA技术与聚类分析相结合,在此基础上建立基于模糊聚类的变压器故障诊断模型,该模型能够进一步提高电力变压器故障诊断的准确性,同时具有重要的理论研究和实际应用价值。(3) The transformer fault diagnosis method based on fuzzy clustering of the present invention is based on the fuzzy clustering analysis method of the transitive closure method after transforming the data, and then using the square method to obtain the transitive closure matrix of the fuzzy similarity matrix, namely Fuzzy equivalent matrix, combined with DGA technology and cluster analysis, on this basis, a transformer fault diagnosis model based on fuzzy clustering is established. This model can further improve the accuracy of power transformer fault diagnosis, and has important theoretical research and practical application value.

附图说明Description of drawings

图1是本发明的基于模糊聚类的变压器故障诊断方法的流程图;Fig. 1 is the flowchart of the transformer fault diagnosis method based on fuzzy clustering of the present invention;

图2是采用本发明的基于模糊聚类的变压器故障诊断方法绘制的动态聚类图。Fig. 2 is a dynamic cluster diagram drawn by using the transformer fault diagnosis method based on fuzzy clustering of the present invention.

具体实施方式Detailed ways

下面结合附图和具体实施方式对本发明进行详细说明。The present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments.

本发明的基于模糊聚类的变压器故障测试方法,其工艺流程如图1所示,具体算法按照以下步骤实施:Transformer fault testing method based on fuzzy clustering of the present invention, its technological process as shown in Figure 1, concrete algorithm is implemented according to the following steps:

步骤1、根据在线监测数据,输入待分类对象的个数n和特征变量个数m,建立原始数据矩阵Y=(yij)n×mStep 1. According to the online monitoring data, input the number n of objects to be classified and the number m of characteristic variables, and establish the original data matrix Y=(y ij ) n×m :

根据在线监测数据将论域U={y1,y2,y3…,yn}作为待分类的对象,其中每个对象由m个指标表示其性能,即Yi={yi1,yi2…,yim},(i=1,2,…n),建立原始数据矩阵,原始数据矩阵为Y=(yij)n×mAccording to the online monitoring data, the domain of discourse U={y 1 ,y 2 ,y 3 ...,y n } is used as the object to be classified, and each object has m indicators to represent its performance, that is, Y i ={y i1 ,y i2 ..., y im }, (i=1,2,...n), establish the original data matrix, the original data matrix is Y=(y ij ) n×m ;

步骤2、将原始数据矩阵中的数据标准化到[0,1]之间,获得模糊矩阵:Step 2. Standardize the data in the original data matrix to [0, 1] to obtain the fuzzy matrix:

在实际问题中,不同数据的纲量一般是不统一的,为了使不同纲量的数据之间进行比较,通常需要将数据进行标准化处理,即通过适当的数据变换使原始数据矩阵中的数据满足模糊聚类的要求,具体按照以下几种算法对步骤1建立的原始数据矩阵Y=(yij)n×m中的数据进行标准化处理:In practical problems, the dimensions of different data are generally not uniform. In order to compare data of different dimensions, it is usually necessary to standardize the data, that is, to make the data in the original data matrix meet the requirements of According to the requirements of fuzzy clustering, standardize the data in the original data matrix Y=(y ij ) n×m established in step 1 according to the following algorithms:

第一种标准化处理的方法是标准差标准化处理,即对步骤1建立的原始数据矩阵Y=(yij)n×m中的数据进行标准差标准化处理,获得模糊矩阵,具体方法如下:The method of first kind of standardization processing is standard deviation standardization processing, promptly carries out standard deviation standardization processing to the data in the original data matrix Y=(y ij ) n×m that step 1 establishes, obtains fuzzy matrix, concrete method is as follows:

对步骤1建立的原始数据矩阵Y=(yij)n×m中的第i个变量进行标准化,就是将yij通过算法转换成y′ij,具体按照以下算法转换:To standardize the i-th variable in the original data matrix Y=(y ij ) n×m established in step 1 is to convert y ij into y′ ij through an algorithm, specifically according to the following algorithm:

ythe y ijij ′′ == ythe y ijij -- ythe y ii ‾‾ TT ii ,, (( 11 ≤≤ ii ≤≤ nno ,, 11 ≤≤ jj ≤≤ mm )) ;;

其中, y i ‾ = 1 m y ij , T i = Σ j = 1 m ( y ij - y i ‾ ) 2 m - 1 ; in, the y i ‾ = 1 m the y ij , T i = Σ j = 1 m ( the y ij - the y i ‾ ) 2 m - 1 ;

将原始数据矩阵Y=(yij)n×m中的数据进行标准差标准化变换后,若还有个别的

Figure BDA00002881344400087
则要对这些数据继续进行极差正规化处理,极差正规化处理按照以下算法实施:After the data in the original data matrix Y=(y ij ) n×m is transformed by standard deviation standardization, if there are individual
Figure BDA00002881344400087
Then the data should continue to be subjected to range normalization processing, and the range normalization processing is implemented according to the following algorithm:

ythe y ijij ′′ ′′ == ythe y ijij -- minmin {{ ythe y ijij ′′ }} maxmax {{ ythe y ijij ′′ }} -- minmin {{ ythe y ijij ′′ }} ;;

经极差正规化处理后,得到的所有的y″ij∈[0,1],并且也不存在纲量矩阵的影响,即得到模糊矩阵Y=(y″ij)n×mAfter the range normalization process, all y″ ij ∈[0,1] are obtained, and there is no influence of the dimension matrix, that is, the fuzzy matrix Y=(y″ ij ) n×m is obtained;

第二种标准化处理的方法是极差标准化处理,即对步骤1中获取的原始数据矩阵Y=(yij)n×m中的数据进行极差标准化处理,获得模糊矩阵Y=(y′ij)n×m,具体按照以下算法实施:The second normalization method is the range standardization process, that is, the range standardization process is performed on the data in the original data matrix Y=(y ij ) n×m obtained in step 1 to obtain the fuzzy matrix Y=(y′ ij ) n×m , specifically implemented according to the following algorithm:

ythe y ijij ′′ == ythe y ijij -- ythe y ii ‾‾ maxmax {{ ythe y ijij }} -- minmin {{ ythe y ijij }} ;;

第三种标准化处理的方法是最大值标准化处理,即对步骤1中获取的原始数据矩阵Y=(yij)n×m中的数据进行最大值标准化处理,获得模糊矩阵Y=(y′ij)n×m,具体按照以下算法实施:The third standardization method is the maximum value standardization process, that is, the data in the original data matrix Y=(y ij ) n×m obtained in step 1 is subjected to the maximum value standardization process to obtain the fuzzy matrix Y=(y′ ij ) n×m , specifically implemented according to the following algorithm:

ythe y ijij ′′ == ythe y ijij Mm jj ,,

其中,Mj=max(y1j,y2j…ynj);Among them, M j =max(y 1j ,y 2j ... y nj );

步骤3,确定相似系数,建立模糊相似矩阵:Step 3, determine the similarity coefficient and establish the fuzzy similarity matrix:

根据步骤1建立的原始数据矩阵Y=(yij)n×m,yi与yj的相似程度为rij=R(yi,yj),称之为相似系数,根据相似系数建立模糊相似矩阵,确定相似系数采用的方法有:相似系数法、距离法或贴近度法;According to the original data matrix Y=(y ij ) n×m established in step 1, the degree of similarity between y i and y j is r ij =R(y i , y j ), which is called the similarity coefficient, and the blur is established according to the similarity coefficient Similarity matrix, the methods used to determine the similarity coefficient are: similarity coefficient method, distance method or closeness method;

采用相似系数法来确定相似系数,建立模糊相似矩阵,相似系数法主要包括以下两种算法:The similarity coefficient method is used to determine the similarity coefficient and establish a fuzzy similarity matrix. The similarity coefficient method mainly includes the following two algorithms:

第一种方法,夹角余弦法,具体按照以下算法实施:The first method, the included angle cosine method, is specifically implemented according to the following algorithm:

rr ijij == || ΣΣ ll == 11 mm ythe y ilil ** ythe y jljl || ΣΣ ll == 11 mm ythe y ilil 22 ** ΣΣ ll == 11 mm ythe y jljl 22 ,, (( ii ,, jj == 1,21,2 ·&Center Dot; ·· ·&Center Dot; nno )) ;;

第二种方法,相关系数法,具体按照以下算法实施:The second method, the correlation coefficient method, is specifically implemented according to the following algorithm:

rr ijij == ΣΣ ll == 11 mm || ythe y ilil -- ythe y ii ‾‾ || ·&Center Dot; || ythe y jljl -- ythe y jj ‾‾ || ΣΣ ll == 11 mm (( ythe y ilil -- ythe y ii ‾‾ )) 22 ·· ΣΣ ll == 11 mm (( ythe y jljl -- ythe y jj ‾‾ )) 22 ,, (( ii ,, jj == 1,21,2 ·· ·· ·&Center Dot; ,, nno )) ;;

采用距离法来确定相似系数,建立模糊相似矩阵,距离法主要包括有以下三种算法:The distance method is used to determine the similarity coefficient and establish the fuzzy similarity matrix. The distance method mainly includes the following three algorithms:

一般地,取rij=1-α(d(yi,yj))β,其中α,β为适当选取的参数,使得0≤rij≤1,常用的距离法主要有三种:Generally, take r ij =1-α(d(y i ,y j )) β , where α, β are properly selected parameters, so that 0≤r ij ≤1, and there are three commonly used distance methods:

第一种距离法,Hamming距离,具体按照以下算法实施:The first distance method, Hamming distance, is implemented according to the following algorithm:

dd (( ythe y ii ,, ythe y jj )) == ΣΣ ll == 11 mm || ythe y ilil -- ythe y jljl || ;;

第二种距离法,Euclid距离,具体按照以下算法实施:The second distance method, Euclid distance, is implemented according to the following algorithm:

dd (( ythe y ii ,, ythe y jj )) == ΣΣ ll == 11 mm (( ythe y ilil -- ythe y jljl )) 22 ;;

第三种距离法,Chebyshev距离,具体按照以下算法实施:The third distance method, Chebyshev distance, is implemented according to the following algorithm:

dd (( ythe y ii ,, ythe y jj )) == maxmax 11 ≤≤ ll ≤≤ nno || ythe y ilil -- ythe y jljl || ;;

采用贴近度法来确定相似系数,建立模糊相似矩阵,主要包括有以下三种算法::The closeness method is used to determine the similarity coefficient and establish the fuzzy similarity matrix, mainly including the following three algorithms:

第一种贴近度法,大最小值法:The first closeness method, the large minimum method:

Figure BDA00002881344400103
Figure BDA00002881344400103

第二种贴近度法,几何平均最小法:The second closeness method, the geometric mean minimum method:

rr ijij == ΣΣ ll == 11 mm (( ythe y ilil ^^ ythe y jljl )) ΣΣ ll == 11 mm ythe y ilil ·· ythe y jljl ,, (( ii ,, jj == 1,21,2 ·· ·· ·&Center Dot; ,, nno )) ;;

第三种贴近度法,算数平均最小法:The third closeness method, arithmetic mean minimum method:

rr ijij == ΣΣ ll == 11 mm (( ythe y ilil ^^ ythe y jljl )) 11 22 ΣΣ ll == 11 mm (( ythe y ilil ++ ythe y jljl )) ,, (( ii ,, jj == 1,21,2 ·&Center Dot; ·&Center Dot; ·&Center Dot; ,, nno )) ;;

在这三种算法中优选贴近度法来建立模糊矩阵的模糊相似矩阵;Among the three algorithms, the closeness method is preferred to establish the fuzzy similarity matrix of the fuzzy matrix;

步骤4、用平方法计算出经步骤3获得模糊相似矩阵R的传递闭包矩阵R',即模糊等价矩阵t(R)=R';Step 4, calculate the transitive closure matrix R' that obtains fuzzy similarity matrix R through step 3 with square method, namely fuzzy equivalence matrix t(R)=R';

步骤5、观察步骤4获得的模糊等价矩阵t(R)的下三角,再将模糊等价矩阵t(R)中的数据从大到小排列,这些由大到小的数据即为分类阈值λ的取值点;Step 5. Observe the lower triangle of the fuzzy equivalence matrix t(R) obtained in step 4, and then arrange the data in the fuzzy equivalence matrix t(R) from large to small. These data from large to small are the classification thresholds The value point of λ;

步骤6、将步骤5中的分类阈值λ从大到小逐一取出,当模糊等价矩阵t(R)中的数据大于所取的分类阈值λ时,将对应的模糊等价矩阵t(R)中的数据用1替换,反之用0替换,最终模糊等价矩阵t(R)中只含有0和1两个元素;观察模糊等价矩阵t(R)的每一列,其中数据元素相同的列归为一类,进而将其进行分类;Step 6. Take the classification threshold λ in step 5 from large to small one by one. When the data in the fuzzy equivalent matrix t(R) is greater than the selected classification threshold λ, the corresponding fuzzy equivalent matrix t(R) The data in is replaced with 1, otherwise replaced with 0, the final fuzzy equivalence matrix t(R) only contains two elements of 0 and 1; observe each column of the fuzzy equivalence matrix t(R), the columns with the same data elements Classify them into one category, and then classify them;

步骤7、根据步骤5中不同的分类阈值λ,运用MATLAB软件编程仿真,最终得出基于模糊聚类的变压器故障诊断模型的动态聚类图,再结合DGA技术确定变压器故障类型。Step 7. According to the different classification thresholds λ in step 5, use MATLAB software programming simulation to finally obtain the dynamic cluster diagram of the transformer fault diagnosis model based on fuzzy clustering, and then determine the type of transformer fault by combining DGA technology.

实施例Example

原始数据矩阵如下表1所示:The original data matrix is shown in Table 1 below:

表1原始数据Table 1 Raw data

Figure BDA00002881344400111
Figure BDA00002881344400111

采用极差正规化方法对表1中的7组数据进行数据标准化,统一纲量后的数据如表2所示:The seven groups of data in Table 1 were standardized using the range normalization method, and the data after the unified dimensions are shown in Table 2:

表2标准化后数据Table 2 Data after normalization

11 22 33 44 55 66 77 H2 H 2 00 0.04420.0442 0.02840.0284 0.37540.3754 11 0.03150.0315 0.50160.5016 CH4 CH 4 0.05690.0569 0.05690.0569 0.07720.0772 11 0.19920.1992 0.00720.0072 00 C2H6 C 2 H 6 0.15630.1563 0.20310.2031 0.07810.0781 11 00 0.07810.0781 0.06250.0625 C2H4 C 2 H 4 0.01630.0163 0.20610.2061 00 11 0.12860.1286 00 0.01430.0143 C2H2 C 2 H 2 00 0.10770.1077 00 0.04620.0462 11 00 0.83080.8308

在求取模糊关系矩阵rij时,采用贴近度法,即如表3所示:When calculating the fuzzy relationship matrix r ij , the closeness method is used, as shown in Table 3:

表3模糊关系矩阵rij Table 3 fuzzy relationship matrix r ij

Figure BDA00002881344400121
Figure BDA00002881344400121

由平方法求得的传递闭包矩阵t(R)如表4所示。The transitive closure matrix t(R) obtained by the square method is shown in Table 4.

表4传递闭包矩阵t(R)Table 4 transitive closure matrix t(R)

Figure BDA00002881344400122
Figure BDA00002881344400122

将t(R)中的数据由小到大排列如下:Arrange the data in t(R) from small to large as follows:

0.7465<0.8828<0.9474<0.9557<0.99990.7465<0.8828<0.9474<0.9557<0.9999

当λ=0.7465时,得When λ=0.7465, we get

tt (( RR )) 11 == 11 00 11 00 00 11 00 00 11 00 11 11 00 11 11 00 11 00 00 11 00 00 11 00 11 11 00 11 00 11 00 11 11 00 11 11 00 11 00 00 11 00 00 11 00 11 11 00 11

Y被分成2类:{1,3,6},{2,4,5,7}Y is divided into 2 classes: {1, 3, 6}, {2, 4, 5, 7}

依次类推,当λ=0.8828时,Y被分成3类:{1,3,6},{2},{4,5,7};By analogy, when λ=0.8828, Y is divided into 3 categories: {1, 3, 6}, {2}, {4, 5, 7};

当λ=0.9474时,Y被分成4类:{1,3,6},{2},{4},{5,7};When λ=0.9474, Y is divided into 4 categories: {1, 3, 6}, {2}, {4}, {5, 7};

当λ=0.9557时,Y被分成4类:{1,3,6},{2},{4},{5,7};When λ=0.9557, Y is divided into 4 categories: {1, 3, 6}, {2}, {4}, {5, 7};

当λ=0.9999时,Y被分成5类:{1},{2},{3,6},{4},{5},{7};When λ=0.9999, Y is divided into 5 categories: {1}, {2}, {3, 6}, {4}, {5}, {7};

动态聚类图如图2所示;The dynamic clustering diagram is shown in Figure 2;

结合DGA技术确定变压器故障类型如下表5所示:Combined with DGA technology to determine the transformer fault type as shown in Table 5 below:

Figure BDA00002881344400141
Figure BDA00002881344400141

Claims (7)

1. The transformer fault diagnosis method based on fuzzy clustering is characterized by being implemented according to the following steps:
step 1, inputting the number n and the number m of characteristic variables of objects to be classified according to online monitoring data, and establishing an original data matrix Y (Y ═ Y)ij)n×m
Discourse domain U is { y ═ y according to online monitoring data1,y2,y3…,ynAs objects to be classified, where each object has its performance represented by m indices, i.e. Yi={yi1,yi2…,yimAnd (i ═ 1,2, … n), establishing an original data matrix, wherein the original data matrix is Y ═ Yij)n×m
Step 2, standardizing the data in the original data matrix to be between [0, 1] to obtain a fuzzy matrix:
for the original data matrix Y established in step 1 ═ Yij)n×mIs normalized by normalizing yijConversion to y 'by algorithm'ijSpecifically, the conversion is performed according to the following algorithm:
y ij &prime; = y ij - y i &OverBar; T i , ( 1 &le; i &le; n , 1 &le; j &le; m ) ;
wherein, y i &OverBar; = 1 m y ij , T i = &Sigma; j = 1 m ( y ij - y i &OverBar; ) 2 m - 1 ;
the original data matrix Y is equal to (Y)ij)n×mAfter standard deviation normalization transformation of the data in (1), if any, the data in (1)
Figure FDA00002881344300015
Then the data is subjected to a range normalization process, which is implemented according to the following algorithm:
y ij &prime; &prime; = y ij - min { y ij &prime; } max { y ij &prime; } - min { y ij &prime; } ;
all y' obtained after range normalizationij∈[0,1]And the fuzzy matrix Y ═ (Y ″) can be obtained without the influence of the dimensional matrixij)n×m
Step 3, determining a similarity coefficient by adopting one of a similarity coefficient method, a distance method or a proximity method, and establishing a fuzzy similarity matrix;
step 4, calculating a transfer closure matrix R 'of the fuzzy similar matrix R obtained in the step 3 by using a flat method, namely the fuzzy equivalent matrix t (R) is R';
step 5, observing the lower triangle of the fuzzy equivalent matrix t (R) obtained in the step 4, and then arranging the data in the fuzzy equivalent matrix t (R) from large to small, wherein the data from large to small are the value-taking points of the classification threshold lambda;
step 6, taking out the classification threshold value lambda in the step 5 from large to small one by one, and when the data in the fuzzy equivalent matrix t (R) is larger than the taken classification threshold value lambda, replacing the data in the corresponding fuzzy equivalent matrix t (R) with 1, otherwise, replacing the data with 0, and finally, only containing two elements of 0 and 1 in the fuzzy equivalent matrix t (R); observing each column of the fuzzy equivalent matrix t (R), classifying the columns with the same data elements into one class, and further classifying the columns;
and 7, according to the different classification threshold values lambda in the step 5, programming and simulating by using MATLAB software to finally obtain a dynamic cluster map of the transformer fault diagnosis model based on fuzzy clustering, and determining the fault type of the transformer by combining a DGA technology.
2. The transformer fault diagnosis method based on fuzzy clustering according to claim 1, wherein the method of normalizing the raw data matrix in step 2 further adopts range normalization or maximum normalization.
3. The transformer fault diagnosis method based on fuzzy clustering according to claim 2, wherein the range standardization processing method is specifically implemented according to the following algorithm:
the method for performing range standardization processing on the original data matrix obtained in the step 1 is implemented according to the following algorithm:
y ij &prime; = y ij - y i &OverBar; max { y ij } - min { y ij } .
4. the transformer fault diagnosis method based on fuzzy clustering according to claim 2, characterized in that the maximum value normalization processing method is specifically implemented according to the following algorithm: carrying out maximum value standardization processing on the original data matrix obtained in the step 1, and specifically implementing the maximum value standardization processing according to the following algorithm:
y ij &prime; = y ij M j ,
wherein M isj=max(y1j,y2j…ynj)。
5. The transformer fault diagnosis method based on fuzzy clustering according to claim 1, wherein the similarity coefficient method in step 3 comprises the following two algorithms:
the first method, the cosine method of the included angle, is implemented according to the following algorithm:
r ij = | &Sigma; l = 1 m y il * y jl | &Sigma; l = 1 m y il 2 * &Sigma; l = 1 m y jl 2 , ( i , j = 1,2 &CenterDot; &CenterDot; &CenterDot; n ) ;
the second kind, the correlation coefficient method is implemented according to the following algorithm:
r ij = &Sigma; l = 1 m | y il - y i &OverBar; | &CenterDot; | y jl - y j &OverBar; | &Sigma; l = 1 m ( y il - y i &OverBar; ) 2 &CenterDot; &Sigma; l = 1 m ( y jl - y j &OverBar; ) 2 , ( i , j = 1,2 &CenterDot; &CenterDot; &CenterDot; , n ) .
6. the transformer fault diagnosis method based on fuzzy clustering according to claim 1, wherein the distance method in step 3 comprises the following three algorithms:
first distance method, Hamming distance:
d ( y i , y j ) = &Sigma; l = 1 m | y il - y jl | ;
second distance method, euclidd distance:
d ( y i , y j ) = &Sigma; l = 1 m ( y il - y jl ) 2 ;
third distance method, Chebyshev distance:
d ( y i , y j ) = max 1 &le; l &le; n | y il - y jl | .
7. the transformer fault diagnosis method based on fuzzy clustering according to claim 1, wherein the closeness method in step 3 comprises the following three algorithms:
the first closeness method, the maximum-minimum method:
Figure FDA00002881344300044
second closeness method, geometric mean minimization method:
r ij = &Sigma; l = 1 m ( y il ^ y jl ) &Sigma; l = 1 m y il &CenterDot; y jl , ( i , j = 1,2 &CenterDot; &CenterDot; &CenterDot; , n ) ;
the third closeness method, the number average minimum method:
r ij = &Sigma; l = 1 m ( y il ^ y jl ) 1 2 &Sigma; l = 1 m ( y il + y jl ) , ( i , j = 1,2 &CenterDot; &CenterDot; &CenterDot; , n ) .
CN201310068804.0A 2013-03-04 2013-03-04 Based on the Diagnosis Method of Transformer Faults of fuzzy clustering Expired - Fee Related CN103198175B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310068804.0A CN103198175B (en) 2013-03-04 2013-03-04 Based on the Diagnosis Method of Transformer Faults of fuzzy clustering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310068804.0A CN103198175B (en) 2013-03-04 2013-03-04 Based on the Diagnosis Method of Transformer Faults of fuzzy clustering

Publications (2)

Publication Number Publication Date
CN103198175A true CN103198175A (en) 2013-07-10
CN103198175B CN103198175B (en) 2016-01-13

Family

ID=48720730

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310068804.0A Expired - Fee Related CN103198175B (en) 2013-03-04 2013-03-04 Based on the Diagnosis Method of Transformer Faults of fuzzy clustering

Country Status (1)

Country Link
CN (1) CN103198175B (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104360195A (en) * 2014-11-17 2015-02-18 国网河南省电力公司 Smart power grid on-line fault diagnosis method based on GEP algorithm
CN104809328A (en) * 2014-10-09 2015-07-29 许继电气股份有限公司 Transformer fault diagnosis method based on information bottleneck
CN105279315A (en) * 2015-09-29 2016-01-27 昆明理工大学 Related analysis and Mahalanobis distance based transformer online monitoring information aggregation analysis method
CN105718733A (en) * 2016-01-21 2016-06-29 福建师范大学 Fault predicting method based on fuzzy nearness and particle filter
CN106325067A (en) * 2016-08-01 2017-01-11 合肥燃气集团有限公司 Natural gas internet monitoring device and monitoring method
CN106569069A (en) * 2016-11-04 2017-04-19 广州供电局有限公司 Power transformer fault diagnosis method
CN106650113A (en) * 2016-12-26 2017-05-10 招商局重庆交通科研设计院有限公司 Method for recognizing abnormal condition of bridge monitoring data based on fuzzy clustering
CN107008671A (en) * 2017-03-29 2017-08-04 北京新能源汽车股份有限公司 Power battery classification method and device
CN107239651A (en) * 2017-04-17 2017-10-10 国网辽宁省电力有限公司电力科学研究院 A kind of method that power network birds droppings class failure risk grade is assessed
CN107420725A (en) * 2017-04-27 2017-12-01 上海喆之信息科技有限公司 Lubricating oil environmental protection pumping system with new overpressure protection apparatus
CN109442685A (en) * 2018-10-26 2019-03-08 安城甫 A kind of human comfort control system based on Android intelligent terminal
CN109507517A (en) * 2018-12-07 2019-03-22 国网辽宁省电力有限公司鞍山供电公司 The distribution transformer running state analysis method compared based on two-sided power big data
CN110110809A (en) * 2019-05-16 2019-08-09 郑州轻工业学院 The construction method of fuzzy automata based on Machine Fault Diagnosis
CN110781494A (en) * 2019-10-22 2020-02-11 武汉极意网络科技有限公司 Data abnormity early warning method, device, equipment and storage medium
CN111306572A (en) * 2020-04-13 2020-06-19 辽宁汇德电气有限公司 Intelligent combustion optimizing energy-saving control system for boiler
CN112508055A (en) * 2020-11-12 2021-03-16 东风汽车集团有限公司 Vehicle overall performance parameter comparison method and related equipment
CN112861430A (en) * 2021-01-20 2021-05-28 合肥工业大学 Transformer state evaluation method under FCA-RST-multidimensional state cloud model
CN114247735A (en) * 2021-11-10 2022-03-29 山西新科联环境技术有限公司 Resource treatment method and device for mixed solid waste
CN116840671A (en) * 2023-06-09 2023-10-03 东禾电气有限公司 Fault early warning and accurate positioning method based on intelligent fusion circuit breaker

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100198521A1 (en) * 2007-07-24 2010-08-05 Technion Research And Development Foundation Ltd. Chemically sensitive field effect transistors and uses thereof in electronic nose devices
CN102221655A (en) * 2011-06-16 2011-10-19 河南省电力公司济源供电公司 Random-forest-model-based power transformer fault diagnosis method
CN102680817A (en) * 2012-04-28 2012-09-19 辽宁省电力有限公司朝阳供电公司 Transformer fault diagnosis method based on fuzzy Petri net

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100198521A1 (en) * 2007-07-24 2010-08-05 Technion Research And Development Foundation Ltd. Chemically sensitive field effect transistors and uses thereof in electronic nose devices
CN102221655A (en) * 2011-06-16 2011-10-19 河南省电力公司济源供电公司 Random-forest-model-based power transformer fault diagnosis method
CN102680817A (en) * 2012-04-28 2012-09-19 辽宁省电力有限公司朝阳供电公司 Transformer fault diagnosis method based on fuzzy Petri net

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DONG-HUI LIU ETC.: "STUDY ON POWER TRANSFORMERS FAULT DIAGNOSIS BASED ON FUZZY KERNEL C-MEANS CLUSTERING AND DEMPSTER-SHAFER THEORY FUSION METHOD", 《PROCEEDINGS OF THE NINTH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS》 *
GUANJUN ZHANG ETC.: "Application of Fuzzy Equivalent Matrix for Fault Diagnosis of Oil-immersed Insulation", 《PROCEEDINGS OF 13TH INTERNATIONAL CONFERENCE ON DIELECTRIC LIQUIDS》 *
李俭 等: "灰色聚类与模糊聚类集成诊断变压器内部故障的方法研究", 《中国电机工程学报》 *
杜文霞 等: "基于模糊聚类算法的变压器故障诊断研究", 《变压器》 *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104809328A (en) * 2014-10-09 2015-07-29 许继电气股份有限公司 Transformer fault diagnosis method based on information bottleneck
CN104360195A (en) * 2014-11-17 2015-02-18 国网河南省电力公司 Smart power grid on-line fault diagnosis method based on GEP algorithm
CN105279315A (en) * 2015-09-29 2016-01-27 昆明理工大学 Related analysis and Mahalanobis distance based transformer online monitoring information aggregation analysis method
CN105279315B (en) * 2015-09-29 2018-11-27 昆明理工大学 A kind of transformer online monitoring information fusion analysis method based on correlation analysis and mahalanobis distance
CN105718733B (en) * 2016-01-21 2018-04-13 福建师范大学 Fault prediction method based on fuzzy nearness and particle filter
CN105718733A (en) * 2016-01-21 2016-06-29 福建师范大学 Fault predicting method based on fuzzy nearness and particle filter
CN106325067A (en) * 2016-08-01 2017-01-11 合肥燃气集团有限公司 Natural gas internet monitoring device and monitoring method
CN106569069A (en) * 2016-11-04 2017-04-19 广州供电局有限公司 Power transformer fault diagnosis method
CN106650113A (en) * 2016-12-26 2017-05-10 招商局重庆交通科研设计院有限公司 Method for recognizing abnormal condition of bridge monitoring data based on fuzzy clustering
CN107008671A (en) * 2017-03-29 2017-08-04 北京新能源汽车股份有限公司 Power battery classification method and device
CN107239651A (en) * 2017-04-17 2017-10-10 国网辽宁省电力有限公司电力科学研究院 A kind of method that power network birds droppings class failure risk grade is assessed
CN107420725A (en) * 2017-04-27 2017-12-01 上海喆之信息科技有限公司 Lubricating oil environmental protection pumping system with new overpressure protection apparatus
CN107420725B (en) * 2017-04-27 2019-04-23 南京创新机油泵制造有限公司 Lubricating oil environmental protection pumping system with novel overpressure protection apparatus
CN109442685A (en) * 2018-10-26 2019-03-08 安城甫 A kind of human comfort control system based on Android intelligent terminal
CN109507517A (en) * 2018-12-07 2019-03-22 国网辽宁省电力有限公司鞍山供电公司 The distribution transformer running state analysis method compared based on two-sided power big data
CN110110809A (en) * 2019-05-16 2019-08-09 郑州轻工业学院 The construction method of fuzzy automata based on Machine Fault Diagnosis
CN110110809B (en) * 2019-05-16 2021-03-16 郑州轻工业学院 Fuzzy automaton construction method based on machine fault diagnosis
CN110781494A (en) * 2019-10-22 2020-02-11 武汉极意网络科技有限公司 Data abnormity early warning method, device, equipment and storage medium
CN111306572A (en) * 2020-04-13 2020-06-19 辽宁汇德电气有限公司 Intelligent combustion optimizing energy-saving control system for boiler
CN112508055A (en) * 2020-11-12 2021-03-16 东风汽车集团有限公司 Vehicle overall performance parameter comparison method and related equipment
CN112861430A (en) * 2021-01-20 2021-05-28 合肥工业大学 Transformer state evaluation method under FCA-RST-multidimensional state cloud model
CN114247735A (en) * 2021-11-10 2022-03-29 山西新科联环境技术有限公司 Resource treatment method and device for mixed solid waste
CN114247735B (en) * 2021-11-10 2023-12-19 山西新科联环境技术有限公司 Mixed solid waste recycling treatment method
CN116840671A (en) * 2023-06-09 2023-10-03 东禾电气有限公司 Fault early warning and accurate positioning method based on intelligent fusion circuit breaker
CN116840671B (en) * 2023-06-09 2024-01-19 东禾电气有限公司 Fault early warning and accurate positioning method based on intelligent fusion circuit breaker

Also Published As

Publication number Publication date
CN103198175B (en) 2016-01-13

Similar Documents

Publication Publication Date Title
CN103198175B (en) Based on the Diagnosis Method of Transformer Faults of fuzzy clustering
CN101464964B (en) Pattern recognition method capable of holding vectorial machine for equipment fault diagnosis
Wang et al. China’s city-level energy-related CO2 emissions: Spatiotemporal patterns and driving forces
Niu et al. Study of degradation of fuel cell stack based on the collected high-dimensional data and clustering algorithms calculations
CN114397526B (en) Power transformer fault prediction method and system driven by state holographic perception data
CN108664010A (en) Generating set fault data prediction technique, device and computer equipment
CN105303468A (en) Comprehensive evaluation method of smart power grid construction based on principal component cluster analysis
CN102611101B (en) A Security Assessment Method for Interconnected Grid Operation
CN103488869A (en) A method for short-term load forecasting of wind power generation based on least squares support vector machine
CN112147432A (en) BiLSTM module based on attention mechanism, transformer state diagnosis method and system
CN102693452A (en) Multiple-model soft-measuring method based on semi-supervised regression learning
CN104700321A (en) Analytical method of state running tendency of transmission and distribution equipment
CN111401476B (en) Transient safety assessment method based on boundary area importance sampling and kernel vector machine
CN103389701B (en) Based on the level of factory procedure fault Detection and diagnosis method of distributed data model
CN107918830A (en) A kind of distribution Running State assessment system and method based on big data technology
CN103065202A (en) Wind power plant ultrashort term wind speed prediction method based on combination kernel function
Altıntas et al. Multivariate granger causality between electricity generation, exports, prices and economic growth in Turkey
CN105868887A (en) Building comprehensive energy efficiency analysis method based on subentry measure
CN113051851B (en) Sensitivity analysis method under mixed uncertainty
CN113782113A (en) Method for identifying gas fault in transformer oil based on deep residual error network
CN112231971B (en) Blast furnace fault diagnosis method based on relative integral trend diffusion fault sample generation
CN105162413A (en) Method for evaluating performances of photovoltaic system in real time based on working condition identification
Li et al. An intelligent monitoring approach for urban natural gas pipeline leak using semi-supervised learning generative adversarial networks
CN114693175A (en) Unit state analysis method and system based on network source network-related test
CN105939014A (en) Wind power station correlation index acquisition method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160113

CF01 Termination of patent right due to non-payment of annual fee