CN103194230A - 铕钐掺杂磷酸锂镁光激励发光材料及其制备方法 - Google Patents
铕钐掺杂磷酸锂镁光激励发光材料及其制备方法 Download PDFInfo
- Publication number
- CN103194230A CN103194230A CN2013101423155A CN201310142315A CN103194230A CN 103194230 A CN103194230 A CN 103194230A CN 2013101423155 A CN2013101423155 A CN 2013101423155A CN 201310142315 A CN201310142315 A CN 201310142315A CN 103194230 A CN103194230 A CN 103194230A
- Authority
- CN
- China
- Prior art keywords
- europium
- samarium
- limgpo
- temperature
- crucible
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims abstract description 56
- 229910052693 Europium Inorganic materials 0.000 title claims abstract description 26
- 238000002360 preparation method Methods 0.000 title claims abstract description 8
- CUQSVGNVMULJSV-UHFFFAOYSA-K [Li+].[Mg++].[O-]P([O-])([O-])=O Chemical compound [Li+].[Mg++].[O-]P([O-])([O-])=O CUQSVGNVMULJSV-UHFFFAOYSA-K 0.000 title abstract description 16
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 title abstract description 6
- 229910015355 LiMgPO Inorganic materials 0.000 claims abstract description 57
- 229910052796 boron Inorganic materials 0.000 claims abstract description 48
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 claims abstract description 36
- 229910052772 Samarium Inorganic materials 0.000 claims abstract description 29
- YIXJRHPUWRPCBB-UHFFFAOYSA-N magnesium nitrate Chemical compound [Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YIXJRHPUWRPCBB-UHFFFAOYSA-N 0.000 claims abstract description 26
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 22
- 238000005245 sintering Methods 0.000 claims abstract description 21
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000004327 boric acid Substances 0.000 claims abstract description 14
- 239000002994 raw material Substances 0.000 claims abstract description 14
- FKTOIHSPIPYAPE-UHFFFAOYSA-N samarium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[Sm+3].[Sm+3] FKTOIHSPIPYAPE-UHFFFAOYSA-N 0.000 claims abstract description 14
- LFVGISIMTYGQHF-UHFFFAOYSA-N ammonium dihydrogen phosphate Chemical compound [NH4+].OP(O)([O-])=O LFVGISIMTYGQHF-UHFFFAOYSA-N 0.000 claims abstract description 13
- AEBZCFFCDTZXHP-UHFFFAOYSA-N europium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Eu+3].[Eu+3] AEBZCFFCDTZXHP-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000000126 substance Substances 0.000 claims abstract description 6
- 238000000904 thermoluminescence Methods 0.000 claims description 22
- 238000004020 luminiscence type Methods 0.000 claims description 18
- 238000006243 chemical reaction Methods 0.000 claims description 17
- 230000005284 excitation Effects 0.000 claims description 8
- 229910052573 porcelain Inorganic materials 0.000 claims description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 7
- QMABZEWAQYHYST-UHFFFAOYSA-N europium samarium Chemical compound [Sm][Eu] QMABZEWAQYHYST-UHFFFAOYSA-N 0.000 claims description 7
- 239000004570 mortar (masonry) Substances 0.000 claims description 7
- AXAYSXNZRXEVRD-UHFFFAOYSA-N [Mg].[Li].P(O)(O)(O)=O Chemical compound [Mg].[Li].P(O)(O)(O)=O AXAYSXNZRXEVRD-UHFFFAOYSA-N 0.000 claims description 5
- 230000035484 reaction time Effects 0.000 claims description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims 2
- 238000012856 packing Methods 0.000 claims 2
- 229910052739 hydrogen Inorganic materials 0.000 claims 1
- 239000001257 hydrogen Substances 0.000 claims 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims 1
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 claims 1
- 229910001947 lithium oxide Inorganic materials 0.000 claims 1
- 230000011218 segmentation Effects 0.000 claims 1
- 125000006850 spacer group Chemical group 0.000 claims 1
- 230000005855 radiation Effects 0.000 abstract description 31
- 230000035945 sensitivity Effects 0.000 abstract description 15
- 229910001954 samarium oxide Inorganic materials 0.000 abstract description 12
- 229940075630 samarium oxide Drugs 0.000 abstract description 12
- 229910001940 europium oxide Inorganic materials 0.000 abstract description 11
- -1 samarium phosphate lithium magnesium phosphate Chemical compound 0.000 abstract description 6
- 239000000919 ceramic Substances 0.000 abstract description 4
- 238000005259 measurement Methods 0.000 abstract description 4
- 239000010450 olivine Substances 0.000 abstract description 4
- 229910052609 olivine Inorganic materials 0.000 abstract description 4
- 229910052761 rare earth metal Inorganic materials 0.000 abstract description 4
- 230000008859 change Effects 0.000 abstract description 2
- 238000003912 environmental pollution Methods 0.000 abstract description 2
- 230000007613 environmental effect Effects 0.000 abstract 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 abstract 1
- 231100000673 dose–response relationship Toxicity 0.000 description 11
- 238000012360 testing method Methods 0.000 description 11
- 229910000387 ammonium dihydrogen phosphate Inorganic materials 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 235000019837 monoammonium phosphate Nutrition 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 8
- 230000003287 optical effect Effects 0.000 description 8
- 229910052771 Terbium Inorganic materials 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 238000000137 annealing Methods 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 239000003814 drug Substances 0.000 description 3
- 238000000695 excitation spectrum Methods 0.000 description 3
- 206010028980 Neoplasm Diseases 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000002284 excitation--emission spectrum Methods 0.000 description 2
- 230000003902 lesion Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000001443 photoexcitation Effects 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000010835 comparative analysis Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004980 dosimetry Methods 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Images
Landscapes
- Luminescent Compositions (AREA)
Abstract
本发明涉及一种铕钐掺杂磷酸锂镁光激励发光材料及其制备方法,该材料的化学式为LiMgPO4:Eu,Sm,B,具体制备方法为将原料氢氧化锂、硝酸镁、磷酸二氢铵、硼酸、氧化铕和氧化钐混合研磨,装入氧化铝材质的瓷坩埚,放入高温烧结炉中分段恒温烧结,再将氧化铝坩埚冷却至室温,即可得到铕钐掺杂磷酸锂镁LiMgPO4:Eu,Sm,B光激励发光材料。该材料为橄榄石型结构,空间群为Pnma,晶格常数为a=10.147?,b=5.909?,c=4.692?,铕钐掺杂并没有改变LiMgPO4材料的基本结构;该材料的热释光性能有了很大提升,灵敏度和辐射剂量信息存储的稳定性得到了有效的改进,氧化钐的加入提升了稀土铕离子的发光性能,该材料对环境污染小,成本低,可应用于环境、医学以及人体辐射剂量的非在线和实时在线测量。
Description
技术领域
本发明涉及一种铕钐掺杂磷酸锂镁光激励发光材料LiMgPO4:Eu,Sm及其制备方法。
背景技术
利用光激励发光材料被激励后发出的荧光强度与先前所吸收的辐射剂量成正比的特性来间接测量辐射剂量的技术是近年来出现的一种新型的辐射剂量测量方法,具有灵敏度高、可测量范围宽、可在线测量等优点,在核电站、重离子加速器、电子加速器、γ辐射源、放射医疗、太空辐射剂量探测以及考古地质中的年代测定等领域,具有很好的应用前景。尤其是目前在放射医疗领域,利用放射性核素治疗肿瘤的技术发展的非常迅速,全世界每年都有数百万人需要接受辐照治疗。需要精确的掌握肿瘤病人的病灶部位所受辐射剂量的大小,以确保能够在治疗过程中杀死癌变细胞,同时又不使病人接受过多的辐照,确保正常的组织细胞器官不受影响;另外,光激励发光医学辐射剂量计在人体内环境(尤其是极狭窄的地方)的使用将会极具优势,比如将极小的X射线管植入血管中。这就需要有一种探测头很小而又能够实时监测多个病灶部位的辐射剂量监测系统来实现。
作为光激励发光辐射剂量测试方法的核心,光激励发光材料的性能一直深刻的影响着这一技术的发展进程和应用领域。但是,只有相对较少的材料能够满足应用于辐射剂量测试的要求,这需要具备对辐射的高灵敏度、高光激发效率、快退火特性以及良好的热释光性能。Bhushan Dhabekar等人报道了一种综合性能优异的光激励发光材料LiMgPO4:Tb,B,它的激发光谱和放射光谱的区分度良好,基本没有重叠。它的光激励发光灵敏度是目前研究最深入已经投入商用的Al2O3:C光激励发光材料的1.8倍,其在1 μGy-1 kGy的9个数量级剂量范围内呈良好的线性关系。但由于LiMgPO4:Tb,B光激励发光材料的退火时间较长,在激励光退火90秒后,光激励发光强度信号才降低到初始强度的10%以下,而且材料的热释光性能不稳定,材料在室温下的测试信号容易失真。所以LiMgPO4:Tb,B暂时还不适用于实时在线的辐射剂量测试系统。
本发明提供了一种用马弗炉以氢氧化锂、硝酸镁、磷酸二氢铵、硼酸、氧化铕和氧化钐为原料合成LiMgPO4:Eu,Sm,B材料。
发明内容
本发明的目的是提供一种铕钐掺杂磷酸锂镁光激励发光材料及其制备方法,该材料的化学式为LiMgPO4:Eu,Sm,B,采用将原料氢氧化锂、硝酸镁、磷酸二氢铵、硼酸、氧化铕和氧化钐混合研磨,装入氧化铝材质的瓷坩埚,放入高温烧结炉中恒温烧结,反应结束后,将氧化铝坩埚冷却至室温,即可得到铕钐掺杂磷酸锂镁LiMgPO4:Eu,Sm,B光激励发光材料,该材料为橄榄石型结构,空间群为Pnma,晶格常数 a = 10.147 ?, b = 5.909 ?, c = 4.692 ?,用X射线衍射仪、荧光分光光度计和TL/OSL-DA-15光释光/热释光两用读出仪等设备进行测试分析制成,本发明的特点是对环境污染小,成本低,同时氧化钐的加入提高了稀土铕离子的发光性能,其中材料的热释光性能得到了很大提升(热释光主峰值发生迁移82℃→354℃),有效缩短了材料的光激励激发时间,在可测量的辐射剂量响应线性范围0.1-540 Gy内,敏感度是LiMgPO4:Tb,B的7倍。可以应用于环境、医学以及人体的辐射剂量的非在线和实时在线测量。
本发明所述的一种铕钐掺杂磷酸锂镁光激励发光材料,该材料的化学式为LiMgPO4:Eu,Sm,B,采用将原料氢氧化锂、硝酸镁、磷酸二氢铵、硼酸、氧化铕和氧化钐混合研磨,装入氧化铝材质的瓷坩埚,放入高温烧结炉中分段恒温烧结,再将氧化铝坩埚冷却至室温,即可得到铕钐掺杂磷酸锂镁LiMgPO4:Eu,Sm,B光激励发光材料制成,该材料为橄榄石型结构,空间群为Pnma,晶格常数 a = 10.147 ?, b = 5.909 ?, c = 4.692 ?,热释光曲线主峰达到温度354℃。
所述铕钐掺杂磷酸锂镁光激励发光材料的制备方法,按下列步骤进行:
a、在玛瑙研钵中,将原料按摩尔比氢氧化锂:硝酸镁:磷酸二氢铵:硼酸:氧化铕:氧化钐=1:0.91:0.87:0.0065-0.011:0.0035-0.006:0.003-0.0055混合研磨1h,装入氧化铝材质的瓷坩埚,放入高温烧结炉中先加热至温度250℃恒温2小时,再加热至温度500-℃恒温2小时,最后在反应温度为900-1050 -℃,反应时间为15-25 h恒温烧结;
b、反应结束后,将氧化铝坩埚冷却至室温,取出坩埚内原料,即可得到铕钐掺杂磷酸锂镁LiMgPO4:Eu,Sm,B光激励发光材料。
本发明所述的一种铕钐掺杂磷酸锂镁光激励发光材料,该材料的化学式为LiMgPO4:Eu,Sm,B,采用将原料氢氧化锂、硝酸镁、磷酸二氢铵、硼酸、氧化铕和氧化钐混合研磨,装入氧化铝材质的瓷坩埚,放入高温烧结炉中分段恒温烧结,反应结束后,将氧化铝坩埚冷却至室温,即可得到铕钐掺杂磷酸锂镁LiMgPO4:Eu,Sm,B光激励发光材料。用X射线衍射仪进行物相分析,得到该材料为橄榄石型结构,空间群为Pnma,晶格常数 a = 10.147 ?, b = 5.909 ?, c = 4.692 ?,掺杂并未改变其结构;用TL/OSL-DA-15光释光/热释光两用读出仪进行分析表征,该材料在可测量的辐射剂量响应线性范围0.1-540 Gy内线性关系良好,灵敏度是LiMgPO4:Tb,B的7倍。
本发明所述一种铕钐掺杂磷酸锂镁光激励发光材料,该材料与现有技术相比,其实质性特点为:
1)反应产物性能稳定,LiMgPO4:Eu,Sm,B在可测量的辐射剂量响应线性范围0.1-540 Gy内,对辐射粒子的灵敏度是LiMgPO4:Tb,B的7倍;
2)稀土钐离子的加入提高了铕粒子的光激励发光性能,显著提高了材料的热释光性能(热释光主峰值354℃);提高了材料对辐射(如β粒子)的敏感度,有助于改进材料的辐射剂量响应线性范围;
3)制备成本低,反应条件温和。
由于Eu,Sm离子相对于锂的离子半径而言偏差较明显,进入基质的晶体格位时需要较高的温度环境;添加硼酸有助于提供一个半流动态的环境,有利于反应物间的互扩散和产物的晶化,也就间接降低了掺杂所需要的高温环境要求;较长的烧结时间有利于基质成相,生成较完美的晶格并使掺杂的稀土离子分布均匀,但温度太高又会造成粒径过大而降低材料的发光性能;Eu,Sm的离子掺杂浓度在一定范围内,材料的发光性能会随掺杂浓度的增加而增加,然而超过此范围就会发生浓度猝灭。
本发明提供一种新型的铕钐掺杂磷酸锂镁光激励发光材料LiMgPO4:Eu,Sm,B,它与LiMgPO4:Tb,Sm,B相比并不是简单的掺杂替换。该材料的剂量响应线性范围比LiMgPO4:Tb,Sm,B(CN102863958A)剂量响应线性范围宽很多。在0.1Gy-540Gy这一剂量线性范围内,其对辐射粒子的灵敏度是LiMgPO4:Tb,B的7倍。它的激励激发谱和激励发射谱具有很好的区分(如图4),这一特点使得LiMgPO4:Eu,Sm,B材料适合于以光纤为基的辐射剂量实时在线测试平台。另外,LiMgPO4:Eu,Sm,B具有很好的热释光性能。在相同测试条件下,LiMgPO4:Eu,Sm,B热释光主峰值的强度是LiMgPO4:Tb,Sm,B的10倍以上,其热释光主发光峰在温度354℃,相对于LiMgPO4:Tb,Sm,B的热释光发光主峰温度78℃,可以更好的保存材料先前所存储的信息在常温下不受损失,这一优越性能使其更有望被产业化。从图3还可以看出,LiMgPO4:Eu,Sm,B光激励退火不完全,初始光激励发光信号衰减到10%后就不再继续衰减,由于使用的TL/OSL-DA-15光释光/热释光两用读出仪(丹麦RISO国家实验室生产),其紫外区的激励波长恒定为470nm,是由强度为50mW/cm2 的紫光LED提供。而LiMgPO4:Eu,Sm,B的最佳激励激发波长为395nm(如图4),可以通过选择400nm左右,具有更高功率的激光器作为激励源,以进一步提高材料的光激励发光性能和灵敏度。
附图说明
图1为本发明LiMgPO4标准谱(a)和LiMgPO4:Eu,Sm,B(b)物相对比分析图;
图2为本发明LiMgPO4:Eu,Sm,B(a), LiMgPO4:Tb,B(b) 和
LiMgPO4-:Tb,Sm,B(c)剂量响应线性关系对比图;
图3为本发明LiMgPO4:Tb,Sm,B(a)和LiMgPO4:Eu,Sm,B(b)热释光性能对比图(归一化后);
图4为本发明LiMgPO4:Eu,Sm,B光激励激发谱(a)和发射谱(b)图;
图5为本发明LiMgPO4:Tb,Sm,B(a) LiMgPO4:Eu,Sm,B(b)光释光发光衰减曲线图。
具体实施方式:
实施例 1
a、在玛瑙研钵中,按摩尔比为氢氧化锂:硝酸镁:磷酸二氢铵:硼酸:氧化铕:氧化钐=1:0.91:0.87:0.0065:0.0035:0.0030混合,研磨1h,装入氧化铝材质的瓷坩埚,放入高温烧结炉中先加热至温度250-℃恒温2小时,再加热至温度500-℃恒温2小时,最后在反应温度为900-℃,反应时间为25 h恒温烧结;
b、反应结束后,将氧化铝坩埚冷却至室温,取出坩埚内原料,即可得到铕钐掺杂磷酸锂镁LiMgPO4:Eu,Sm,B光激励发光材料;
用TL/OSL-DA-15光释光/热释光两用读出仪进行测试分析,LiMgPO4:Eu,Sm,B的辐射剂量响应线性范围在0.1-300Gy,灵敏度是LiMgPO4:Tb,B的3倍,热释光主峰在温度314℃。
实施例 2
a、在玛瑙研钵中,按摩尔比为氢氧化锂:硝酸镁:磷酸二氢铵:硼酸:氧化铕:氧化钐=1:0.91:0.87:0.0073:0.004:0.0038混合,研磨1h,装入氧化铝材质的瓷坩埚,放入高温烧结炉中先加热至温度250-℃恒温2小时,再加热至温度500-℃恒温2小时,最后在反应温度为950-℃,反应时间为18 h恒温烧结;
b、反应结束后,将氧化铝坩埚冷却至室温,取出坩埚内原料,即可得到铕钐掺杂磷酸锂镁LiMgPO4:Eu,Sm,B光激励发光材料;
用TL/OSL-DA-15光释光/热释光两用读出仪进行测试分析, LiMgPO4:Eu,Sm,B的辐射剂量响应线性范围在0.1-400 Gy,灵敏度是LiMgPO4:Tb,B的5倍,热释光主峰在温度355℃。
实施例 3
a、在玛瑙研钵中,按摩尔比为氢氧化锂:硝酸镁:磷酸二氢铵:硼酸:氧化铕:氧化钐=1:0.91:0.87:0.008:0.0043:0.0047混合,研磨1h,装入氧化铝材质的瓷坩埚,放入高温烧结炉中先加热至温度250-℃恒温2小时,再加热至温度500-℃恒温2小时,最后在反应温度为950 -℃,反应时间为15 h恒温烧结;
b、反应结束后,将氧化铝坩埚冷却至室温,取出坩埚内原料,即可得到铕钐掺杂磷酸锂镁LiMgPO4:Eu,Sm,B光激励发光材料;
用TL/OSL-DA-15光释光/热释光两用读出仪等设备进行测试分析, LiMgPO4:Eu,Sm,B的辐射剂量响应线性范围在0.1-540 Gy,灵敏度是LiMgPO4:Tb,B的7倍,热释光主峰在温度354℃。
实施例 4
a、在玛瑙研钵中,按摩尔比为氢氧化锂:硝酸镁:磷酸二氢铵:硼酸:氧化铕:氧化钐=1:0.91:0.87:0.0097:0.005:0.005混合,研磨1h,装入氧化铝材质的瓷坩埚,放入高温烧结炉中先加热至温度250-℃恒温2小时,再加热至温度500-℃恒温2小时,最后在反应温度为1000 -℃,反应时间为15 h恒温烧结;
b、反应结束后,将氧化铝坩埚冷却至室温,取出坩埚内原料,即可得到铕钐掺杂磷酸锂镁LiMgPO4:Eu,Sm,B光激励发光材料;
用TL/OSL-DA-15光释光/热释光两用读出仪等设备进行测试分析, LiMgPO4:Eu,Sm,B的辐射剂量响应线性范围在0.1-500 Gy,灵敏度是LiMgPO4:Tb,B的4倍,热释光主峰在温度354℃。
实施例 5
a、在玛瑙研钵中,按摩尔比为氢氧化锂:硝酸镁:磷酸二氢铵:硼酸:氧化铕:氧化钐=1:0.91:0.87:0.011:0.006:0.0055混合,研磨1h,装入氧化铝材质的瓷坩埚,放入高温烧结炉中先加热至温度250-℃恒温2小时,再加热至温度500-℃恒温2小时,最后在反应温度为1050-℃,反应时间为15 h恒温烧结;
b、反应结束后,将氧化铝坩埚冷却至室温,取出坩埚内原料,即可得到铕钐掺杂磷酸锂镁LiMgPO4:Eu,Sm,B光激励发光材料;
用TL/OSL-DA-15光释光/热释光两用读出仪进行测试分析, LiMgPO4:Eu,Sm,B的辐射剂量响应线性范围在0.1-200 Gy,灵敏度是LiMgPO4:Tb,B的1.5倍,热释光主峰在温度318℃。
Claims (2)
1.一种铕钐掺杂磷酸锂镁光激励发光材料,其特征在于该材料的化学式为LiMgPO4:Eu,Sm,B,采用将原料氢氧化锂、硝酸镁、磷酸二氢铵、硼酸、氧化铕和氧化钐混合研磨,装入氧化铝材质的瓷坩埚,放入高温烧结炉中分段恒温烧结,再将氧化铝坩埚冷却至室温,即可得到铕钐掺杂磷酸锂镁LiMgPO4:Eu,Sm,B光激励发光材料制成,该材料为橄榄石型结构,空间群为Pnma,晶格常数 a = 10.147 ?, b = 5.909 ?, c = 4.692 ?,热释光曲线主峰达到温度354℃。
2.根据权利要求1所述的铕钐掺杂磷酸锂镁光激励发光材料的制备方法,其特征在于按下列步骤进行:
a、在玛瑙研钵中,将原料按摩尔比氢氧化锂:硝酸镁:磷酸二氢铵:硼酸:氧化铕:氧化钐=1:0.91:0.87:0.0065-0.011: 0.0035-0.006: 0.003-0.0055
混合研磨1h,装入氧化铝材质的瓷坩埚,放入高温烧结炉中先加热至温度250℃恒温2小时,再加热至温度500-℃恒温2小时,最后在反应温度为900-1050 -℃,反应时间为15-25 h恒温烧结;
b、反应结束后,将氧化铝坩埚冷却至室温,取出坩埚内原料,即可得到铕钐掺杂磷酸锂镁LiMgPO4:Eu,Sm,B光激励发光材料。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310142315.5A CN103194230B (zh) | 2013-04-23 | 2013-04-23 | 铕钐掺杂磷酸锂镁光激励发光材料及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310142315.5A CN103194230B (zh) | 2013-04-23 | 2013-04-23 | 铕钐掺杂磷酸锂镁光激励发光材料及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103194230A true CN103194230A (zh) | 2013-07-10 |
CN103194230B CN103194230B (zh) | 2014-09-10 |
Family
ID=48717053
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310142315.5A Expired - Fee Related CN103194230B (zh) | 2013-04-23 | 2013-04-23 | 铕钐掺杂磷酸锂镁光激励发光材料及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103194230B (zh) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103555323A (zh) * | 2013-10-29 | 2014-02-05 | 昆明理工大学 | 一种光激励荧光粉及其制备方法 |
CN106811193A (zh) * | 2017-01-04 | 2017-06-09 | 中国地质大学(北京) | 一种Mg2SiO4:Tb热释光剂量片的制备方法 |
CN107099292A (zh) * | 2017-05-03 | 2017-08-29 | 中国科学院新疆理化技术研究所 | 铽掺杂磷酸镁锂光激励发光剂量片的制备方法 |
CN107474837A (zh) * | 2017-08-15 | 2017-12-15 | 中国科学院新疆理化技术研究所 | 一种铕掺杂磷酸镁锂光激励发光剂量片的制备方法 |
RU2724763C1 (ru) * | 2020-02-06 | 2020-06-25 | Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук | Дозиметрический материал |
CN113321499A (zh) * | 2021-06-16 | 2021-08-31 | 杭州电子科技大学 | 一种微波介质陶瓷复合材料及其制备方法 |
RU2760455C1 (ru) * | 2021-05-13 | 2021-11-25 | Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук | Дозиметрический материал |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102643644A (zh) * | 2012-04-16 | 2012-08-22 | 重庆大学 | 近紫外激发的单基质白光led荧光粉及其制备方法 |
-
2013
- 2013-04-23 CN CN201310142315.5A patent/CN103194230B/zh not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102643644A (zh) * | 2012-04-16 | 2012-08-22 | 重庆大学 | 近紫外激发的单基质白光led荧光粉及其制备方法 |
Non-Patent Citations (2)
Title |
---|
A.GOñI ET AL: "Magnetic properties of the LiMPO4(M=Co,Ni)compounds", 《JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS》, vol. 164, 31 December 1996 (1996-12-31), pages 251 - 255 * |
BHUSHAN DHABEKAR ET AL: "LiMgPO4:Tb,B-A new sensitive OSL phosphor for dosimetry", 《NUCLEAR INSTRUMENTS AND METHODS IN PHYSICS RESEARCH B》, vol. 269, 8 May 2011 (2011-05-08), pages 1844 - 1848 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103555323A (zh) * | 2013-10-29 | 2014-02-05 | 昆明理工大学 | 一种光激励荧光粉及其制备方法 |
CN106811193A (zh) * | 2017-01-04 | 2017-06-09 | 中国地质大学(北京) | 一种Mg2SiO4:Tb热释光剂量片的制备方法 |
CN106811193B (zh) * | 2017-01-04 | 2018-02-23 | 中国地质大学(北京) | 一种Mg2SiO4:Tb热释光剂量片的制备方法 |
CN107099292A (zh) * | 2017-05-03 | 2017-08-29 | 中国科学院新疆理化技术研究所 | 铽掺杂磷酸镁锂光激励发光剂量片的制备方法 |
CN107474837A (zh) * | 2017-08-15 | 2017-12-15 | 中国科学院新疆理化技术研究所 | 一种铕掺杂磷酸镁锂光激励发光剂量片的制备方法 |
RU2724763C1 (ru) * | 2020-02-06 | 2020-06-25 | Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук | Дозиметрический материал |
RU2760455C1 (ru) * | 2021-05-13 | 2021-11-25 | Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук | Дозиметрический материал |
CN113321499A (zh) * | 2021-06-16 | 2021-08-31 | 杭州电子科技大学 | 一种微波介质陶瓷复合材料及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN103194230B (zh) | 2014-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103194230B (zh) | 铕钐掺杂磷酸锂镁光激励发光材料及其制备方法 | |
Minqiang et al. | Synthesis and luminescence in LiMgPO4: Tb, Sm, B phosphors with possible applications in real-time dosimetry | |
Tang et al. | High-sensitivity and wide-linear-range thermoluminescence dosimeter LiMgPO4: Tm, Tb, B for detecting high-dose radiation | |
Palan et al. | Synthesis and luminescence properties of Tb 3+-doped LiMgPO 4 phosphor | |
Zhydachevskyy et al. | Band gap engineering and trap depths of intrinsic point defects in ralo3 (r= y, la, gd, yb, lu) perovskites | |
Sharma et al. | Dynamics of charges in superlong blacklight-emitting CaB2O4: Ce3+ persistent phosphor | |
Nikiforov et al. | Thermal quenching of luminescence in nanostructured monoclinic zirconium dioxide | |
Bedyal et al. | Investigation of thermoluminescence response and trapping parameters of 120 MeV Ag9+ and γ-ray exposed NaSrBO3: Dy3+ phosphor for dosimetry | |
Reddy et al. | Mechanism of thermoluminescence in high energy carbon ion irradiated Tb3+ doped Al2O3 phosphor for carbon ion beam dosimetry | |
Balci-Yegen et al. | Thermoluminescence dose and heating rate dependence and kinetic analysis of ZnB2O4: 0.05 Dy3+ phosphor | |
Palan et al. | Synthesis and TL/OSL properties of a novel high-sensitive blue-emitting LiSrPO 4: Eu 2+ phosphor for radiation dosimetry | |
CN102863958B (zh) | 稀土掺杂磷酸锂镁光激励发光材料及其制备方法 | |
Tang et al. | Evaluation of SrAl2O4: Eu, Dy phosphor for potential applications in thermoluminescent dosimetry | |
Sahare et al. | TL characteristics of Ce 3+-doped NaLi 2 PO 4 TLD phosphor | |
Maurizio et al. | Investigating the fundamental material properties that influence the radioluminescence of lanthanide-doped nanoparticles | |
Rzyski et al. | Luminescence studies of rare earth doped lithium tetraborate | |
Lin et al. | Low-dose X-ray activated self-luminous bone cement with NIR-to-NIR pseudo-upconverted persistent luminescence sensitized by Nd | |
Palan et al. | Luminescence properties of terbium-doped Li 3 PO 4 phosphor for radiation dosimetry | |
Bedyal et al. | Investigation of thermoluminescence characteristics of NaSrBO3: Sm3+ phosphor against 120 MeV Ag9+ ion and γ-ray irradiation prepared by different methods | |
Fu et al. | The effect of boron co-doping on thermoluminescence and optically stimulated luminescence properties of LiMgPO4: Tb, Sm | |
Mehare et al. | Luminescence characteristics of O6+ ion beam and γ-ray irradiated Ca9La (PO4) 5 (SiO4) F2: Eu phosphor | |
Oza et al. | Luminescence study of Dy or Ce activated LiCaBO3 phosphor for γ‐ray and C5+ ion beam irradiation | |
CN107099292A (zh) | 铽掺杂磷酸镁锂光激励发光剂量片的制备方法 | |
Boontueng et al. | Synthesis and characterization of Ce3+-doped barium-gadolinium-fluoroborate glasses for proton beam diagnostic | |
Kadam et al. | Nanophosphors for radiation dosimetry |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140910 Termination date: 20210423 |