CN103172727A - Recombinant human proinsulin renaturation and purification method - Google Patents
Recombinant human proinsulin renaturation and purification method Download PDFInfo
- Publication number
- CN103172727A CN103172727A CN2013100658153A CN201310065815A CN103172727A CN 103172727 A CN103172727 A CN 103172727A CN 2013100658153 A CN2013100658153 A CN 2013100658153A CN 201310065815 A CN201310065815 A CN 201310065815A CN 103172727 A CN103172727 A CN 103172727A
- Authority
- CN
- China
- Prior art keywords
- mmol
- renaturation
- mol
- mobile phase
- chromatographic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000746 purification Methods 0.000 title claims abstract description 18
- 238000004153 renaturation Methods 0.000 title claims abstract description 17
- 108010076181 Proinsulin Proteins 0.000 title abstract description 31
- 238000000034 method Methods 0.000 title abstract description 18
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims abstract description 35
- 239000004202 carbamide Substances 0.000 claims abstract description 35
- 238000010828 elution Methods 0.000 claims abstract description 16
- 238000011033 desalting Methods 0.000 claims abstract description 7
- PJJJBBJSCAKJQF-UHFFFAOYSA-N guanidinium chloride Chemical compound [Cl-].NC(N)=[NH2+] PJJJBBJSCAKJQF-UHFFFAOYSA-N 0.000 claims abstract description 4
- 238000005406 washing Methods 0.000 claims abstract description 3
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 claims description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 6
- 241000588724 Escherichia coli Species 0.000 claims description 4
- 239000011780 sodium chloride Substances 0.000 claims description 3
- 238000013016 damping Methods 0.000 claims 5
- 239000012530 fluid Substances 0.000 claims 5
- 235000013877 carbamide Nutrition 0.000 claims 3
- 238000002347 injection Methods 0.000 claims 2
- 239000007924 injection Substances 0.000 claims 2
- 238000010612 desalination reaction Methods 0.000 claims 1
- 210000001082 somatic cell Anatomy 0.000 claims 1
- 238000002525 ultrasonication Methods 0.000 claims 1
- 150000003672 ureas Chemical class 0.000 claims 1
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 abstract description 20
- 238000011084 recovery Methods 0.000 abstract description 15
- 102000004877 Insulin Human genes 0.000 abstract description 12
- 108090001061 Insulin Proteins 0.000 abstract description 12
- 238000011993 High Performance Size Exclusion Chromatography Methods 0.000 abstract description 10
- 229940125396 insulin Drugs 0.000 abstract description 10
- 229960000789 guanidine hydrochloride Drugs 0.000 abstract description 3
- PBGKTOXHQIOBKM-FHFVDXKLSA-N insulin (human) Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@H]1CSSC[C@H]2C(=O)N[C@H](C(=O)N[C@@H](CO)C(=O)N[C@H](C(=O)N[C@H](C(N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=3C=CC(O)=CC=3)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=3C=CC(O)=CC=3)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=3C=CC(O)=CC=3)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](C)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=3NC=NC=3)NC(=O)[C@H](CO)NC(=O)CNC1=O)C(=O)NCC(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)O)C(O)=O)C(=O)N[C@@H](CC(N)=O)C(O)=O)=O)CSSC[C@@H](C(N2)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@@H](NC(=O)CN)[C@@H](C)CC)[C@@H](C)CC)[C@@H](C)O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)CC=1C=CC=CC=1)C(C)C)C1=CN=CN1 PBGKTOXHQIOBKM-FHFVDXKLSA-N 0.000 abstract description 3
- 239000000243 solution Substances 0.000 abstract description 3
- 101000976075 Homo sapiens Insulin Proteins 0.000 abstract description 2
- 230000001580 bacterial effect Effects 0.000 abstract description 2
- 238000011031 large-scale manufacturing process Methods 0.000 abstract description 2
- 239000007853 buffer solution Substances 0.000 abstract 1
- 239000003795 chemical substances by application Substances 0.000 abstract 1
- 230000000694 effects Effects 0.000 abstract 1
- 230000006862 enzymatic digestion Effects 0.000 abstract 1
- 102000004169 proteins and genes Human genes 0.000 description 6
- 108090000623 proteins and genes Proteins 0.000 description 6
- 239000000872 buffer Substances 0.000 description 4
- 210000004027 cell Anatomy 0.000 description 3
- 238000003113 dilution method Methods 0.000 description 3
- 238000004255 ion exchange chromatography Methods 0.000 description 3
- 238000010829 isocratic elution Methods 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000030788 protein refolding Effects 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000001042 affinity chromatography Methods 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 239000013578 denaturing buffer Substances 0.000 description 2
- 238000001962 electrophoresis Methods 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 238000001976 enzyme digestion Methods 0.000 description 2
- 210000003000 inclusion body Anatomy 0.000 description 2
- 238000013341 scale-up Methods 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 108010075254 C-Peptide Proteins 0.000 description 1
- 102000003670 Carboxypeptidase B Human genes 0.000 description 1
- 108090000087 Carboxypeptidase B Proteins 0.000 description 1
- 230000005526 G1 to G0 transition Effects 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 239000003398 denaturant Substances 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000003032 molecular docking Methods 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 230000012846 protein folding Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000004366 reverse phase liquid chromatography Methods 0.000 description 1
- 238000001542 size-exclusion chromatography Methods 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
Images
Landscapes
- Peptides Or Proteins (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
本发明公开了一种高效体积排阻色谱(HPSEC)复性与同时纯化重组人胰岛素原的方法。包括(1)将含有胰岛素原的菌体细胞经超声波细胞破碎,缓冲液洗涤和溶解于强变性剂(如8mol/L或6-7mol/L盐酸胍),由此得到粗分离的重组人胰岛素原;(2)在优化的色谱条件下含有胰岛素原的变性抽提液直接进样,采用脲浓度线性梯度洗脱一步色谱所得的目标馏分rhPI的纯度可达到96%以上,质量回收率为56.8%;(3)将含有胰岛素原馏分进一步脱盐,由此得复性与纯化更高纯度和活性的馏分。本发明所述的方法得到的重组人胰岛素原可以经色谱柱上的酶切或溶液中酶切转换为胰岛素,并且该色谱过程操作简单,重复性高,易于规模化生产。The invention discloses a method for renaturation and simultaneous purification of recombinant human proinsulin by high performance size exclusion chromatography (HPSEC). Including (1) disrupting the bacterial cells containing proinsulin by ultrasonic cell, washing with buffer solution and dissolving in strong denaturing agent (such as 8mol/L or 6-7mol/L guanidine hydrochloride), so as to obtain crudely separated recombinant human insulin (2) Under the optimized chromatographic conditions, the denatured extract containing proinsulin was directly injected, and the purity of the target fraction rhPI obtained by one-step chromatographic elution with a linear gradient of urea concentration can reach more than 96%, and the mass recovery rate is 56.8% %; (3) Further desalting the fraction containing proinsulin, thereby obtaining a fraction with higher purity and activity after renaturation and purification. The recombinant human proinsulin obtained by the method of the present invention can be converted into insulin through enzymatic digestion on a chromatographic column or in a solution, and the chromatographic process is simple to operate, has high repeatability, and is easy for large-scale production.
Description
技术领域 technical field
本发明涉及一种利用高效体积排阻色谱(HPSEC或SEC)法复性与纯化重组人胰岛素原的方法,属于生物医药中变性蛋白复性技术领域。 The invention relates to a method for refolding and purifying recombinant human proinsulin by using high-performance size-exclusion chromatography (HPSEC or SEC), and belongs to the technical field of denatured protein refolding in biomedicine.
背景技术 Background technique
胰岛素原(Proinsulin,PI)是由86个氨基酸组成的单链肽,其C肽的两端各自通过两个碱性氨基酸残基与胰岛素A链的N末端和B链的C末端相连。胰岛素原分子的折叠卷曲保证了三对二硫键的正确对接。在胰岛素制备中,采用胰岛素原法直接酶切后获得有活性的胰岛素已经是一种成熟的方法。因此,获得高质量回收率的具有活性重组人胰岛素原(简称:rhPI)是制备重组人胰岛素的前提。 Proinsulin (PI) is a single-chain peptide composed of 86 amino acids, and the two ends of its C peptide are connected to the N-terminal of insulin A chain and the C-terminal of insulin B chain through two basic amino acid residues. The folded coil of the proinsulin molecule ensures the correct docking of the three pairs of disulfide bonds. In the preparation of insulin, it is a mature method to obtain active insulin after direct enzymatic cleavage of proinsulin. Therefore, obtaining active recombinant human proinsulin (abbreviation: rhPI) with high recovery rate is the prerequisite for the preparation of recombinant human insulin.
Robert B. M等[Robert B. M, et al, Protein Expres Purif, 1999, 15: 308-313]曾利用离子交换色谱(IEC)法和亲和色谱(AFC)法对rhPI包涵体蛋白进行纯化,之后用稀释法复性、酶切获得产物用RPLC法分析。而 Gusarova V等[Gusarova V, et al, J Chromatogr A. 2007, 1176: 157-162]报道了先利用稀释法复性rhPI,再分别用IEC法和SEC法进行两步纯化后,通过酶切转换为胰岛素。上述方法均利用稀释法复性,难于大规模进行蛋白药物的制备。 Robert B. M et al [Robert B. M, et al, Protein Expres Purif, 1999, 15: 308-313] used ion exchange chromatography (IEC) and affinity chromatography (AFC) to purify rhPI inclusion body protein, Afterwards, the dilution method was used for renaturation, and the product obtained by enzyme digestion was analyzed by RPLC method. However, Gusarova V et al. [Gusarova V, et al, J Chromatogr A. 2007, 1176: 157-162] reported that the rhPI was renatured by the dilution method first, and then purified by the IEC method and the SEC method respectively. converted to insulin. The above methods all use the dilution method for renaturation, which is difficult to prepare protein drugs on a large scale.
发明内容 Contents of the invention
本发明的目的在于提供的一种高效、快速的复性与纯化重组人胰岛素原的方法,能够提高重组人胰岛素原的质量回收率和纯度,并可直接用于酶切为胰岛素,适用于胰岛素的规模化生产。 The purpose of the present invention is to provide an efficient and rapid method for renaturation and purification of recombinant human proinsulin, which can improve the quality recovery and purity of recombinant human proinsulin, and can be directly used for enzymatic cleavage into insulin, suitable for insulin large-scale production.
本发明实现过程如下: The realization process of the present invention is as follows:
重组人胰岛素原的复性与纯化方法,包括以下步骤: The renaturation and purification method of recombinant human proinsulin comprises the following steps:
(1)在大肠杆菌(E.coli)中表达的重组人胰岛素原(rhPI)的菌体细胞经离心、超声破碎后分别用缓冲液I和II洗涤、离心溶解于强变性缓冲液中得到含有重组人胰岛素原的变性抽提液; (1) The bacterial cells of recombinant human proinsulin (rhPI) expressed in Escherichia coli ( E.coli ) were centrifuged, sonicated, washed with buffer I and II respectively, centrifuged and dissolved in strong denaturing buffer to obtain Denatured extract of recombinant human proinsulin;
所述缓冲液I为10~20 mmol/L PBS,0.5~1 mmol/L EDTA,pH 7.0~7.5; The buffer I is 10-20 mmol/L PBS, 0.5-1 mmol/L EDTA, pH 7.0-7.5;
所述缓冲液II为0.5~2.0 mol/L脲,0.5~1 mmol/L EDTA,0.5~1.0 mol/L NaCl,10~20 mmol/L PBS,pH 7.0~7.5; The buffer II is 0.5-2.0 mol/L urea, 0.5-1 mmol/L EDTA, 0.5-1.0 mol/L NaCl, 10-20 mmol/L PBS, pH 7.0-7.5;
所述的强变性缓冲液为6.0~8.0 mol/L脲,10~20 mmol/LDTT,0.5~1 mmol/LEDTA,pH7.0~8.0;或6~7 mol/L盐酸胍,10~20mmol/LDTT,0.5~1mmol/LEDTA,pH7.0~8.0; The strong denaturing buffer is 6.0-8.0 mol/L urea, 10-20 mmol/LDTT, 0.5-1 mmol/LEDTA, pH7.0-8.0; or 6-7 mol/L guanidine hydrochloride, 10-20 mmol/ LDTT, 0.5~1mmol/LEDTA, pH7.0~8.0;
(2)将含有重组人胰岛素原的变性抽提液直接进样到流动相A(20~40 mmol/LPBS,0~8.0 mol/L脲,pH6.0~7.0)平衡的色谱柱,然后用含20~40 mmol/LPBS,pH6.0~7.0的流动相B线性梯度洗脱,流速为0.3~0.7mL/min,收集目标峰色谱馏分得到复性与纯化含重组人胰岛素原的色谱馏分; (2) Inject the denatured extract containing recombinant human proinsulin directly into a chromatographic column equilibrated with mobile phase A (20-40 mmol/LPBS, 0-8.0 mol/L urea, pH6.0-7.0), and then use Containing 20-40 mmol/LPBS, pH 6.0-7.0 mobile phase B linear gradient elution, flow rate 0.3-0.7mL/min, collecting target peak chromatographic fractions to obtain renatured and purified chromatographic fractions containing recombinant human proinsulin;
(3)将步骤(2)含人胰岛素原的色谱馏分直接进样,用0~10 mmol/LPBS,pH6.0~7.0的流动相平衡的色谱柱进一步脱盐,持续洗脱20~40 min,流速0.5~1 mL/min,得到重组人胰岛素原。 (3) Directly inject the chromatographic fraction containing human proinsulin in step (2), further desalt the chromatographic column equilibrated with mobile phase of 0-10 mmol/LPBS, pH 6.0-7.0, and continue elution for 20-40 min, The flow rate was 0.5-1 mL/min to obtain recombinant human proinsulin.
上述步骤(2)中色谱柱为TSK gel G2000SWXL型(7.8mm×300mm)或Superde×200 10/300GL型(10 mm×300 mm)。 The chromatographic column in the above step (2) is TSK gel G2000SWXL type (7.8mm×300mm) or Superde×200 10/300GL type (10 mm×300 mm).
上述步骤(2)中所述洗脱方式可以采用流动相A平衡后,用流动相B线性梯度洗脱20~40 min,延长5~10 min。 The elution method described in the above step (2) can be equilibrated with mobile phase A, followed by linear gradient elution with mobile phase B for 20-40 min, and extended for 5-10 min.
上述步骤(3)中所述色谱柱为HiTrap Desalting column。 The chromatographic column described in the above step (3) is HiTrap Desalting column.
本发明的优点:本发明提供的利用脲浓度梯度体积排阻色谱对重组人胰岛素原复性与纯化的方法,解决了蛋白分子直接从高浓度变性剂扩散到与流动相中,而不能提供一个缓和的蛋白再折叠环境的问题,同时也克服了其他色谱方法成本高,难于放大的缺点。本发明在流动相中添加了小分子脲之后,在洗脱过程中,为蛋白再折叠提供了一个温和的环境,促进蛋白折叠成紧密的结构,保留时间延长,复性效率和质量回收率也得到提高。并且经过脱盐柱后更加利于后续酶切而得到胰岛素,操作简单成熟、稳定,固定相成本较低,易于控制和放大 Advantages of the present invention: the method for refolding and purifying recombinant human proinsulin by using urea concentration gradient size exclusion chromatography provided by the present invention solves the problem of directly diffusing protein molecules from high-concentration denaturants into the mobile phase, and cannot provide a It alleviates the problem of protein refolding environment, and also overcomes the disadvantages of high cost and difficult scale-up of other chromatographic methods. In the present invention, after adding small molecule urea to the mobile phase, a mild environment is provided for protein refolding during the elution process, which promotes protein folding into a compact structure, prolongs retention time, and improves renaturation efficiency and mass recovery rate. get improved. Moreover, it is more conducive to the subsequent enzyme digestion to obtain insulin after passing through the desalting column, the operation is simple, mature and stable, the cost of the stationary phase is low, and it is easy to control and scale up
附图说明 Description of drawings
图1 复性与纯化前后rhPI的SDS-PAGE分析 Figure 1 SDS-PAGE analysis of rhPI before and after renaturation and purification
条带M:蛋白质分子量标准;条带1:未诱导表达的重组人胰岛素原;条带2:重组人胰岛素原诱导表达5 h后;条带3:8.0 mol/L urea抽提液;条带4:脲浓度梯度SEC法对rhPI的纯化与复性;条带5:对一步馏分脱盐的二次纯化;条带6:标准胰岛素;条带7:酶切转化的胰岛素; Band M: Protein molecular weight standard; Band 1: Uninduced expression of recombinant human proinsulin; Band 2: Induced expression of recombinant human proinsulin for 5 h; Band 3: 8.0 mol/L urea extract; Band 4: Purification and renaturation of rhPI by urea concentration gradient SEC method; Band 5: Secondary purification of desalted fraction; Band 6: Standard insulin; Band 7: Enzymatically converted insulin;
图2 添加不同的脲浓度时对rhPI的复性与纯化色谱图(A )和质量回收率(B) Figure 2 Refolding and purification chromatograms (A ) and mass recovery (B) of rhPI when different urea concentrations were added
图(A)中横坐标为保留时间(time),纵坐标为波长280nm处紫外吸收值(mAU); In Figure (A), the abscissa is the retention time (time), and the ordinate is the UV absorption value (mAU) at a wavelength of 280nm;
图(B)中横坐标为添加脲浓度(Urea concentration),纵坐标为质量回收率(Mass recovery); In Figure (B), the abscissa is the concentration of urea added (Urea concentration), and the ordinate is the mass recovery (Mass recovery);
曲线 1: 0.0 mol/L脲; 曲线 2: 2.0 mol/L脲; 曲线3: 4.0 mol/L脲; 曲线 4: 6.0 mol/L脲; 曲线 5: 8.0 mol/L脲; Curve 1: 0.0 mol/L urea; Curve 2: 2.0 mol/L urea; Curve 3: 4.0 mol/L urea; Curve 4: 6.0 mol/L urea; Curve 5: 8.0 mol/L urea;
图3为不同洗脱模式下对rhPI的复性与纯化 Figure 3 shows the renaturation and purification of rhPI in different elution modes
图中横坐标为保留时间(time),纵坐标为波长280nm处紫外吸收值(mAU); The abscissa in the figure is the retention time (time), and the ordinate is the ultraviolet absorption value (mAU) at a wavelength of 280nm;
曲线1: 在流动相A中添加 0.0 mol/L 脲等度洗脱;曲线2: 在流动相A中添加2.0 mol/L 脲等度洗脱;曲线3: 在流动相A中添加2.0 mol/L 脲梯度洗脱。 Curve 1: Add 0.0 mol/L urea to mobile phase A for isocratic elution; Curve 2: Add 2.0 mol/L urea to mobile phase A for isocratic elution; Curve 3: Add 2.0 mol/L urea to mobile phase A L urea gradient elution.
具体实施方式 Detailed ways
下面结合实施例和附图详细说明本发明的技术方案,但保护范围不被此限制。实施例中所用设备或原料皆可从市场获得。 The technical solutions of the present invention will be described in detail below in conjunction with the embodiments and drawings, but the scope of protection is not limited thereto. The equipment or raw materials used in the examples are all available from the market.
实施例1 Example 1
(1)重组人胰岛素原变性抽提液的准备 (1) Preparation of denatured extract of recombinant human proinsulin
用E.coli作为宿主细胞表达重组人胰岛素原(rhPI)蛋白,再将发酵菌液经离心、细胞破碎和分别用缓冲液I(20 mmol/L PBS,1 mmol/L EDTA,pH 7.4)和II(2.0 mol/L脲,1 mmol/L EDTA,1.0 mol/L NaCl,20 mmol/L PBS,pH 7.4)洗涤、并离心的粗纯化后,得到的包涵体溶于8.0mol/L脲,20 mmol/LDTT,1.0 mmol/LEDTA,pH 8.0(或6~7 mol/L盐酸胍,10~20mmol/LDTT,0.5~1mmol/LEDTA,pH7.0~8.0)的变性剂中,变性抽提液浓度为9.92 mg/mL,rhPI纯度为65.7 %以上,电泳见图1中条带3。
E.coli was used as the host cell to express recombinant human proinsulin (rhPI) protein, and then the fermentation liquid was centrifuged, the cells were broken, and buffer I (20 mmol/L PBS, 1 mmol/L EDTA, pH 7.4) and II (2.0 mol/L urea, 1 mmol/L EDTA, 1.0 mol/L NaCl, 20 mmol/L PBS, pH 7.4) washing and centrifugation for crude purification, the obtained inclusion bodies were dissolved in 8.0 mol/L urea, 20 mmol/LDTT, 1.0 mmol/LEDTA, pH 8.0 (or 6-7 mol/L guanidine hydrochloride, 10-20 mmol/LDTT, 0.5-1 mmol/LEDTA, pH 7.0-8.0), denatured extract The concentration was 9.92 mg/mL, and the purity of rhPI was above 65.7%, as shown in
(2)高效体积排阻色谱复性与纯化重组人胰岛素原 (2) Refolding and Purification of Recombinant Human Proinsulin by High Performance Size Exclusion Chromatography
用流动相A(20 mmol/ LPBS,4.0mol/L 脲,pH6.5)平衡 HPSEC柱(TSK gel G2000SWXL,300 ×7.8 mm I.D.),变性抽提液直接进样200 μL,在流速0.3 mL/min下进行30 min的线性梯度洗脱, 直至流动相B(20 mmol/L PBS,pH 6.5)为100%, 延长10 min。rhPI质量回收率为42.5%,纯度达到95%以上,色谱图见图2(A)的曲线3,质量回收率见图2(B)中。
HPSEC column (TSK gel G2000SWXL, 300 × 7.8 mm I.D.) was equilibrated with mobile phase A (20 mmol/ LPBS, 4.0 mol/L urea, pH6.5), and 200 μL of denatured extract was injected directly at a flow rate of 0.3 mL/ Perform a linear gradient elution for 30 min at 1 min until the mobile phase B (20 mmol/L PBS, pH 6.5) is 100%, and extend for 10 min. The mass recovery rate of rhPI was 42.5%, and the purity reached over 95%. The chromatogram is shown in
(3)用脱盐色谱柱二次纯化重组人胰岛素原 (3) Secondary purification of recombinant human proinsulin by desalting chromatographic column
用0-10 mmol/LPBS,pH6.0-7.0的流动相平衡的脱盐色谱柱(HiTrap Desalting column),对复性与纯化得到的含人胰岛素原的色谱馏分I直接进样,持续洗脱30 min,流速1.0ml/min。rhPI的纯度达到了99%以上。见图1中条带5。
Using a desalting chromatographic column (HiTrap Desalting column) equilibrated with a mobile phase of 0-10 mmol/LPBS, pH 6.0-7.0, directly inject the chromatographic fraction I containing human proinsulin obtained from renaturation and purification, and continue to elute for 30 min, flow rate 1.0ml/min. The purity of rhPI reached more than 99%. See
实施例2 Example 2
与实施例1类似,不同的是步骤(2)用未添加脲100% 流动相A平衡TSK gel G2000SWXL型HPSEC柱 (300 ×7.8 mm I.D.),变性抽提液直接进样200 μL,在流速0.5 mL/min下进行30 min线性梯度洗脱, 直至流动相B(20.0 mmol/L PBS,pH 6.5)为100%, 延长10min。rhPI质量回收率为39.7%,纯度可达到95%以上。色谱图见图2(A)的曲线1,质量回收率见图2(B)。
Similar to Example 1, the difference is that in step (2) equilibrate the TSK gel G2000SWXL HPSEC column (300 × 7.8 mm I.D.) with 100% mobile phase A without urea added, inject 200 μL of the denatured extract directly, and inject 200 μL of the denatured extract at a flow rate of 0.5 Perform linear gradient elution at mL/min for 30 min until the mobile phase B (20.0 mmol/L PBS, pH 6.5) is 100%, and extend for 10 min. The mass recovery rate of rhPI is 39.7%, and the purity can reach more than 95%. The chromatogram is shown in
实施例3 Example 3
与实施例1类似,不同的是步骤(2)在流动相中脲浓度和色谱条件优化的条件下,用100% 流动相A(20.0 mmol/ LPBS,2.0 mol/L 脲,pH7.0)平衡TSK gel G2000SWXL型HPSEC柱 (300 ×7.8 mm I.D.),变性抽提液直接进样200 μL,在流速0.5 mL/min下进行30 min脲浓度线性梯度洗脱, 直至流动相B(20.0 mmol/L PBS,pH 7.0)为100%, 延长10 min。rhPI质量回收率为56.8%,纯度可达到96%以上。色谱图见图2(A)的曲线2,质量回收率见图2(B)。
Similar to Example 1, the difference is that step (2) is equilibrated with 100% mobile phase A (20.0 mmol/ LPBS, 2.0 mol/L urea, pH7.0) under the condition of optimizing the urea concentration in the mobile phase and the chromatographic conditions TSK gel G2000SWXL type HPSEC column (300 × 7.8 mm I.D.), directly injected 200 μL of denatured extract, and carried out linear gradient elution of urea concentration for 30 min at a flow rate of 0.5 mL/min until mobile phase B (20.0 mmol/L PBS, pH 7.0) was 100%, extended for 10 min. The mass recovery rate of rhPI is 56.8%, and the purity can reach more than 96%. The chromatogram is shown in
实施例4 Example 4
与实施例1类似,不同的是步骤(2)在流动相中脲浓度和色谱条件优化的条件下,用100% 流动相A(20.0 mmol/ LPBS,2.0 mol/L 脲,pH7.0)平衡 Superde×200 10/300GL型的SEC柱(10×300 mm I.D.),变性抽提液直接进样200 μL,在流速0.5 mL/min下进行30 min脲浓度线性梯度洗脱, 直至流动相B (20.0 mmol/L PBS,pH 7.0)为100%, 延长10min。rhPI质量回收率为51.7%,纯度可达到96%以上。 Similar to Example 1, the difference is that step (2) is equilibrated with 100% mobile phase A (20.0 mmol/ LPBS, 2.0 mol/L urea, pH7.0) under the condition of optimizing the urea concentration in the mobile phase and the chromatographic conditions Superde×200 10/300GL SEC column (10×300 mm I.D.), inject 200 μL of the denatured extract directly, and carry out linear gradient elution of urea concentration for 30 min at a flow rate of 0.5 mL/min until mobile phase B ( 20.0 mmol/L PBS, pH 7.0) was 100%, extended for 10min. The mass recovery rate of rhPI is 51.7%, and the purity can reach more than 96%.
实施例5 Example 5
与实施例1类似,不同的是步骤(2)用100% 流动相A(20.0 mmol/ LPBS,2.0 mol/L 脲,pH7.5)平衡 TSK gel G2000SWXL型HPSEC柱 (300 ×7.8 mm I.D.),变性抽提液直接进样200 μL,改变流速为0.5 mL/min时,分别进行脲浓度等度洗脱或脲浓度线性梯度洗脱,后者rhPI质量回收率可以提高10%。色谱图见图3曲线2和曲线3。
Similar to Example 1, the difference is that step (2) uses 100% mobile phase A (20.0 mmol/ LPBS, 2.0 mol/L urea, pH7.5) to equilibrate the TSK gel G2000SWXL HPSEC column (300 × 7.8 mm I.D.), Inject 200 μL of the denatured extract directly, change the flow rate to 0.5 mL/min, and perform isocratic elution with urea concentration or linear gradient elution with urea concentration, respectively, and the mass recovery rate of rhPI in the latter can be increased by 10%. The chromatogram is shown in Fig. 3
实施例6 胰岛素原转化为胰岛素 Example 6 Proinsulin is converted into insulin
将得到的高纯度重组人胰岛素原在37℃溶液中或控制HPSEC柱37℃柱温的条件下,用胰蛋白酶和羧肽酶B协同酶切30 min,使rhPI转化为hI。电泳见图1中条带7。
The obtained high-purity recombinant human proinsulin was cleaved with trypsin and carboxypeptidase B for 30 min in a solution at 37°C or under the condition of controlling the column temperature of the HPSEC column at 37°C to convert rhPI into hI. Electrophoresis shows
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013100658153A CN103172727A (en) | 2013-03-04 | 2013-03-04 | Recombinant human proinsulin renaturation and purification method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013100658153A CN103172727A (en) | 2013-03-04 | 2013-03-04 | Recombinant human proinsulin renaturation and purification method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103172727A true CN103172727A (en) | 2013-06-26 |
Family
ID=48632974
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2013100658153A Pending CN103172727A (en) | 2013-03-04 | 2013-03-04 | Recombinant human proinsulin renaturation and purification method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103172727A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104479029A (en) * | 2014-12-22 | 2015-04-01 | 中国人民解放军第四军医大学 | Purification and renaturation method of Notch ligand Delta-like1 fusion protein |
CN104841375A (en) * | 2015-05-08 | 2015-08-19 | 西北大学 | Preparation and application of high performance hydrophobic interaction chromatography packing material taking cholesterol as aglucon |
CN105732820A (en) * | 2016-03-17 | 2016-07-06 | 通化东宝药业股份有限公司 | Renaturation method of restructured human insulin prokaryotic-fusion protein |
CN114994192A (en) * | 2022-04-29 | 2022-09-02 | 南京汉欣医药科技有限公司 | Liquid phase analysis method for quantitatively detecting precursor content in insulin and analogues thereof |
-
2013
- 2013-03-04 CN CN2013100658153A patent/CN103172727A/en active Pending
Non-Patent Citations (4)
Title |
---|
周慧芳 等: "高效体积排阻色谱法对重组人胰岛素原的复性与同时纯化", 《全国生物医药色谱及相关技术学术交流会(2012)会议手册》 * |
李晓红 等: "重组人胰岛素制备工艺", 《四川大学学报(工程科学版)》 * |
耿信笃 等: "色谱法分离胰岛素类化合物的新进展", 《西北大学学报》 * |
陈阳: "重组人胰岛素在大肠杆菌中表达及分离纯化", 《中国优秀硕士学位论文全文数据库 基础科学辑》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104479029A (en) * | 2014-12-22 | 2015-04-01 | 中国人民解放军第四军医大学 | Purification and renaturation method of Notch ligand Delta-like1 fusion protein |
CN104841375A (en) * | 2015-05-08 | 2015-08-19 | 西北大学 | Preparation and application of high performance hydrophobic interaction chromatography packing material taking cholesterol as aglucon |
CN105732820A (en) * | 2016-03-17 | 2016-07-06 | 通化东宝药业股份有限公司 | Renaturation method of restructured human insulin prokaryotic-fusion protein |
CN114994192A (en) * | 2022-04-29 | 2022-09-02 | 南京汉欣医药科技有限公司 | Liquid phase analysis method for quantitatively detecting precursor content in insulin and analogues thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Jungbauer et al. | Folding and refolding of proteins in chromatographic beds | |
KR101831300B1 (en) | Method of purifying human granulocyte-colony stimulating factor from recombinant e. coli | |
Geng et al. | Protein folding liquid chromatography and its recent developments | |
CN101173006B (en) | Method for producing recombined insulin human | |
CN104211769B (en) | A kind of small molecular antibody affinity peptide and its application | |
JP7671370B2 (en) | Methods for Producing Polypeptides | |
CN103172727A (en) | Recombinant human proinsulin renaturation and purification method | |
CN115785237B (en) | Recombinant botulinum toxin and preparation method thereof | |
Dong et al. | Refolding and purification of histidine-tagged protein by artificial chaperone-assisted metal affinity chromatography | |
CN103087150B (en) | Small-molecular affinity peptide and application thereof | |
CN101260145B (en) | A separation and purification process of recombinant human serum albumin and its fusion protein | |
CN102407098A (en) | A preparation method of immunoaffinity chromatography medium and its application in purifying tetrodotoxin | |
Wang et al. | Refolding and purification of recombinant human granulocyte colony-stimulating factor using hydrophobic interaction chromatography at a large scale | |
CN104163850B (en) | A kind of small molecular antibody affinity peptide and its application | |
CN105061558B (en) | Tuna cooking liquor active peptide, preparation method thereof and application of tuna cooking liquor active peptide in treatment of diabetes | |
Liu et al. | One‐step on‐column purification and refolding of a single‐chain variable fragment (scFv) antibody against tumour necrosis factor α | |
CN104725464A (en) | Protein product reuse method | |
US20080051555A1 (en) | Support Having Affinity for Antibody | |
WO2020234742A1 (en) | Granulocyte colony stimulating factor purification | |
CN108355618B (en) | Bovine-derived hyaluronidase affinity medium and its adsorption method | |
Wang et al. | Protein renaturation with simultaneous purification by protein folding liquid chromatography: recent developments | |
Fursova et al. | Refolding of scFv mini-antibodies using size-exclusion chromatography via arginine solution layer | |
Dixson et al. | Recombinant expression of His-tagged saposin B and pH-dependent binding to the lipid coenzyme Q10 | |
Chen et al. | Large‐scale purification and characterization of recombinant human stem cell factor in Escherichia coli | |
CN112175063B (en) | Process for preparing high-purity recombinant epidermal growth factor by high performance liquid chromatography |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20130626 |