CN103166400A - 模块化单笼障转子双定子四端口交流电机及其控制方法 - Google Patents

模块化单笼障转子双定子四端口交流电机及其控制方法 Download PDF

Info

Publication number
CN103166400A
CN103166400A CN2013101091342A CN201310109134A CN103166400A CN 103166400 A CN103166400 A CN 103166400A CN 2013101091342 A CN2013101091342 A CN 2013101091342A CN 201310109134 A CN201310109134 A CN 201310109134A CN 103166400 A CN103166400 A CN 103166400A
Authority
CN
China
Prior art keywords
rotor
cage
stator
public
dovetail groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013101091342A
Other languages
English (en)
Other versions
CN103166400B (zh
Inventor
张凤阁
金石
王秀平
朱连成
刘光伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang University of Technology
Original Assignee
Shenyang University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang University of Technology filed Critical Shenyang University of Technology
Priority to CN201310109134.2A priority Critical patent/CN103166400B/zh
Publication of CN103166400A publication Critical patent/CN103166400A/zh
Application granted granted Critical
Publication of CN103166400B publication Critical patent/CN103166400B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

本发明涉及一种模块化单笼障转子双定子四端口交流电机。其特征在于:两个定子分别位于转子内外两侧,每个定子靠近转子的槽内都安放三相对称功率绕组和控制绕组,两个定子共有四个电端口,转子内外表面分别都采用笼障转子模块拼成一个内外两侧都具有凸极型的转子,每个笼障转子模块通过定位槽与套筒相连;笼障转子模块开有多个梯形槽,梯形槽内放入短路笼条,相邻笼障转子模块为阶梯型豁口,拼接后形成公共梯形槽,槽底部的间隙深度达到套筒表面,槽内放入公共笼条;其目的在于提出了一种既便于加工制造,又可使得对定子绕组耦合能力实现最大化,具有高功率密度和优良动态性能的模块化笼障转子耦合的双定子四端口交流电机结构机。

Description

模块化单笼障转子双定子四端口交流电机及其控制方法
技术领域:
本发明涉及一种交流电机,特别是一种模块化单笼障转子双定子四端口交流电机及其控制方法。该电机既可作电动机运行,又可作发电机运行。
背景技术:
模块化单笼障转子双定子四端口交流电机有2个定子,每个定子上都有2p极的三相对称功率绕组和2q极的三相对称控制绕组(或者2q极的三相对称功率绕组和2p极的三相对称控制绕组),且满足2p-2q≥4,两套绕组之间的耦合是由pr=p+q对极特殊设计的转子来实现的,因此该种电机的转子结构对电机的稳态性能、动态特性和功率密度等将产生重要影响。可用于该种电机的转子结构主要包括绕线式和磁阻式两大类。其中绕线式包括单层同心式短路绕组,齿谐波双层分布绕组;磁阻类包括具有齿槽的径向叠片凸极磁阻转子、轴向叠片磁阻转子。
绕线类转子结构的优点是制造工艺与常规电机类似,缺点是对定子两套绕组的耦合完全是以牺牲转子绕组铜耗为代价的,而且对定子两套绕组耦合能力欠佳,电机的动态性能也较差,而齿谐波双层分布绕组的工艺性欠佳。磁阻类转子的优点是转子上没有任何铜损耗,对定子两套绕组耦合能力和加工复杂程度各异。具有齿槽的径向叠片凸极磁阻转子易于加工,但对定子两套绕组的耦合效果欠佳;轴向叠片磁阻转子的耦合能力强,但制造工艺复杂,在大型定子双绕组交流电机中应用困难。此外,常规定子双绕组交流电机的控制系统受不确定性参数变化和扰动影响较大,具有抗干扰能力差等缺点。
发明内容
发明目的:本发明提供一种模块化单笼障转子双定子四端口交流电机及其控制方法,其目的在于提出了一种既便于加工制造,又可使得对每个定子两套绕组耦合能力实现最大化,从而具有高功率密度和优良稳态与动态性能的新型模块化单笼障转子双定子四端口交流电机结构,同时也大大提高了该种交流电机的抗扰动能力。
技术方案:本发明采用以下技术方案:
模块化单笼障转子双定子四端口交流电机,主要包括内定子、外定子、转子、双向逆变器,其特征在于:电机沿径向由内而外依次为内定子、转子、外定子,内定子通过转轴上的定位销与转轴固定在一起,其中内定子和外定子上都安放2p极的三相对称功率绕组和2q极的三相对称控制绕组,功率绕组的极数和控制绕组的极数亦可互换,且均满足2p-2q≥4;转子内外表面都采用pr个相同的笼障转子模块沿圆周方向拼成一个每个表面都具有pr个凸极型的转子,每个笼障转子模块靠近中心侧通过定位槽与非导磁材料制成的套筒相连;每个笼障转子模块靠近定子的表面开有多个径向梯形槽,径向梯形槽间距可以相等也可以不等,每个梯形槽沿径向具有数个不等的阶梯槽宽,每个梯形槽内放入若干根导体组成短路笼条;相邻笼障转子模块相接处为阶梯型豁口,相邻笼障转子模块拼接后在其相接处形成pr个公共梯形槽,且该槽底部的模块间隙深度一直达到套筒表面,每个公共梯形槽沿径向具有数个不等的阶梯槽宽,每个公共梯形槽内放入若干根导体组成公共笼条;公共笼条和短路笼条分别采用端部导电环连接形成导电回路;笼障转子模块中心处开有多组切向隔磁层,分别与各自两侧嵌放短路笼条的梯形槽组合形成多组径向叠片磁障,在笼障转子模块内形成多个导磁层。
功率绕组与电网相连,控制绕组与双向逆变器的一端相连,双向逆变器另一端与电网相连。
放置公共笼条和短路笼条的梯形槽的槽口处开有内豁口并嵌放槽楔;公共笼条端部链接形式可以为:端部导电环将公共梯形槽内同层的公共笼条两侧端部全部连在一起;也可以将公共梯形槽内单层公共笼条分成两部分,两部分公共笼条分别与相邻公共梯形槽内同层的公共笼条通过端部导电环相连;也可以将公共梯形槽内外层公共笼条与单侧相邻公共梯形槽内的内层公共笼条通过端部导电环相连;也可以在相邻两个公共梯形槽内放置多匝线圈导体;短路笼条端部连接形式可以为:以笼障转子模块径向对称线为中心,将两侧相对应的同层短路笼条端部通过导体相连,形成多组独立的同心式环形导电回路;也可以将外层短路笼条与相对应梯形槽的内层短路笼条通过导体相连,形成多组独立的交叉型同心式环形回路;也可以在相对应的两个同层梯形槽内放置多匝线圈导体,同一转子模块上的多组线圈导体匝数可以相同也可不同。
笼障转子两端装有压板,压板与转子间加绝缘层隔离,压板上钻有与笼障转子定位孔位置相同的定位孔,非导磁材料制成的压紧螺杆沿轴向穿过全部定位孔,在压板两端利用螺母压紧固定。
整个转子安装绕组后余下的公共梯形槽缝隙和模块内磁障缝隙内可浇注耐高温非导磁材料或者不浇筑。
一种如上所述模块化单笼障转子双定子四端口交流电机的控制方法,其特征在于:控制方式采用PIMD控制方法来实现模块化单笼障转子双定子四端口交流电机的转速跟踪,其控制思想是针对模块化单笼障转子双定子四端口交流电机具有不确定性参数变化和扰动影响的特点,利用负延迟方法,通过调整延迟时间来消除不确定干扰信号,并引入了H控制策略,进而提高系统的鲁棒性;具体为:采用功率绕组dq坐标系,则模块化单笼障转子双定子四端口交流电机的电磁转矩方程为
T e = 3 2 ( p p + p c ) Ψ dp i qc = J dω r dt + B ω r + T 1 - - - ( 1 )
式中,pp和pc分别表示功率绕组和控制绕组的极对数,Ψdp为功率绕组磁链的d轴分量,iqc为控制绕组电流的q轴分量,ωr为转速输出,J为转子机械惯量,B为转动阻尼系数,Te为总电磁转矩,Tl为负载转矩。
对式(1)两边进行拉氏变换,可得标称模型的传递函数P(s)为
P ( s ) = 1 Js + B - - - ( 2 )
控制器的传递函数可表示为
K ( s ) = U ( s ) E ( s ) = K p + K i s - K d e - T d s - - - ( 3 )
式中,E(或e)为误差,U(或u)为控制输入信号,K(s)为控制器,Kp、Ki、Kd为控制参数,Td为延迟时间。
对式(3)进行拉氏反变换,可得
u ( t ) = K p e ( t ) + K i ∫ 0 t e ( t ) dt - K d e ( t - T d )
= ( K p - K d ) e ( t ) + T d K d e ( t ) - e ( t - T d ) T d + K i ∫ 0 t e ( t ) dt - - - ( 4 )
= K pn e ( t ) + K dn · 1 T d ∫ t - T d t e · ( t ) dt + K i ∫ 0 t e ( t ) dt
式中,
Figure BDA00002990386800034
是e(t)对时间t的导数;Kpn=Kp-Kd,且Kp≥Kd;Kdn=TdKd
设误差e(t)中含有一由外部引起的正弦干扰d为
d=Asin2πft  (5)
式中,A和f分别为干扰输入d的幅值和频率。当e(t)=d(t)时,将其代入式(4)中,则第二项延迟项可写成
1 T d ∫ t - T d t d · ( t ) dt = A T d [ sin 2 πft - sin 2 πf ( t - T d ) ] - - - ( 6 )
如果令Td=N/f,其中N为自然数,那么
sin(2πft-2πfTd)=sin(2πft-2πN)
=sin(2πft)cos(2πN)+cos(2πft)sin(2πN)
=sin(2πft)
则式(6)为零,即
Figure BDA00002990386800036
也就是说,当延迟时间Td趋近于N/f时,式(6)趋近于零,因此,通过调整延迟时间Td,PIMD控制器即可消除微分项干扰输入。
在PIMD控制中加入权值函数,即可将其转化为H控制问题。设权值函数的状态空间形式为
W e ( s ) = A e B e C e D e , W u ( s ) = A u B u C u D u
式中,We(s)和Wu(s)为加权函数,Ae、Be、Ce、De、Au、Bu、Cu、Du为常数矩阵,
权值函数We(s)是由系统的性能要求决定的,由于系统的外部扰动和外部输入信号的频率通常较低,为保证系统能有效地抑制干扰和精确地跟踪信号,We(s)通常具有积分特性或高增益低通特性,再通过仿真实验进行反复试凑,可获得一个较佳的We(s)值;权值函数Wu(s)是使系统在有高频扰动作用下仍能保持稳定,为不增加控制器的阶次,通常取Wu(s)为一常数;权值函数Wd(s)反映负载扰动信号Tl的作用强弱,通常也取为一常数。
系统G(s)描述为
x · = Ax + B 1 w + B 2 u z = C 1 x + D 12 u y = C 2 x + D 21 w
G ( s ) = A B 1 B 2 C 1 0 D 12 C 2 D 21 0
式中,x=[x1 x2 x3]T为状态变量,y为观测输出信号,z=[z1 z2]T为评价信号,w=Tl为干扰输入信号,A、B1、B2、C1、C2、D12、D21为常数矩阵,K=[Kp Ki Kd]为所要求解的控制器。增广被控对象G(s)的状态空间实现为
Figure BDA00002990386800042
再利用MATLAB软件中的hinfsyn函数,反复求解控制器K,直至满足H次优设计指标
||LFT(G,K)||<γ    (8)
式中,||·||为无穷范数,LFT(G,K)为下线性分式变换,γ为很小的常数。
优点效果:本发明提供一种新型模块化单笼障转子双定子四端口交流电机,该种交流电机具有定子两套绕组的耦合能力强、功率密度和机电能量转换效率高、结构模块化、工艺简单、便于制成大型交流电机等显著优点。
本发明的有益效果是:该电机的转子采用径向叠片磁障和多组笼条复合式结构,在进一步改善转子磁耦合能力的同时,可有效降低气隙磁场谐波和损耗,提高电机的功率密度和运行性能;转子叠片沿径向叠压,可以减少转子铁芯中的涡流损耗,提高电机效率;凸极中心线处放置导电笼条,采用分层设计,可有效克服感应电流的集肤效应;沿转子一周由pr个完全相同的叠片组构成,这样的对称结构可实现仅加工一种叠片就可以组装成整个转子,因而大大减少了工艺成本,便于批量生产。该种新型复合转子具有结构新颖、工艺简单、成本低廉、机械强度高、运行可靠、结构模块化、便于产业化等方面的显著优势。
控制方式采用PIMD控制方法来实现模块化单笼障转子双定子四端口交流电机的转速跟踪,该种控制方法针对模块化单笼障转子双定子四端口交流电机具有不确定性参数变化和扰动影响的特点,利用负延迟方法,通过调整延迟时间来消除不确定干扰信号,并引入了H控制策略,可对系统的不确定负载扰动进行有效抑制,具有较强的鲁棒性,大大提高了该种交流电机的抗干扰能力。
附图说明
图1为本发明模块化单笼障转子双定子四端口交流电机系统结构示意图;
图2为本发明电机定子结构示意图;
图3为本发明电机的一种转子结构示意图;
图4为本发明电机的一种转子模块结构示意图;
图5为本发明电机转子压板结构示意图;
图6为本发明电机公共笼条的一种端部连接方式示意图;
图7为本发明电机公共笼条的一种端部连接方式展开图;
图8为本发明电机公共笼条的第二种连接方式展开图;
图9为本发明电机公共笼条的第三种连接方式端部链接图;
图10为本发明电机短路笼条一种连接方式示意图;
图11为本发明电机短路笼条第二种连接方式端部链接图;
图12为本发明电机公共笼条和短路笼条安装示意图;
图13为本发明电机公共笼条和短路笼条的第二种连接方式展开图;
图14为本发明电机的PIMD控制原理示意图;
图15为本发明PIMD控制器的H控制问题示意图。
附图标记说明:
1.内定子;2.外定子;3.转子;4.双向逆变器;5.电网;6.功率绕组;7.控制绕组;8.转轴;9.隔磁层;10.导磁层;11.公共笼条;12短路笼条;13.定位孔;14.定位槽;15.套筒;16.模块间隙;17.槽楔;18.端部导电环。
具体实施方式
下面结合附图对本发明进行具体说明:
图1为本发明模块化单笼障转子双定子四端口交流电机系统结构示意图,该系统主要包括内定子1、外定子2、转子3、双向逆变器4,电机沿径向由内而外依次为内定子1、转子3、外定子2,内定子与转轴通过转轴8上的定位销与转轴8固定在一起,其中内定子1和外定子2上都安放2p极的三相对称功率绕组6和2q极的三相对称控制绕组7,即为两个电端口,两个定子共四个电端口,功率绕组6和控制绕组7极数亦可互换,且满足2p-2q≥4,可实现定子两套不同极数的绕组电磁耦合最大化。功率绕组6与电网5相连,控制绕组7与双向逆变器4的一端相连,双向逆变器4另一端与电网相连。通过双向逆变器4分别对内定子和外定子的控制绕组7提供特定频率和幅值的电压,可以调节该电机功率绕组6输出电压和功率因数(作为发电机),也可以调节电机输出转速和转矩(作为电动机)。
图2为本发明电机定子结构示意图,图2(a)为外定子结构示意图,图2(b)为内定子结构示意图,两个定子靠近转子的表面均匀开槽,槽内都嵌放了两套极数分别为2p极和2q极的独立对称绕组,即功率绕组6和控制绕组7(或者是控制绕组7和功率绕组6),每个槽内嵌放多层绕组,每层绕组间都有绝缘,两种绕组可以采用双层或单层绕组,节距可以是整距或者短距。
图3为本发明电机的一种转子结构示意图,所述转子内外表面都采用pr个相同的笼障转子模块沿圆周方向拼成一个每个表面都具有pr个凸极型的转子,每个笼障转子模块靠近中心侧通过定位槽14与非导磁材料制成的套筒15相连。
图4为本发明电机一种笼障转子模块示意图,每个模块靠近定子的表面开有多个径向梯形槽,每个梯形槽沿径向具有数个不等的阶梯槽宽,每个梯形槽内放入若干根导体组成短路笼条12,为了节省成本和简化工艺也可以只在部分梯形槽内放入导体;此外,相邻笼障外转子模块相接处为阶梯型豁口,两个相邻笼障外转子模块拼接后在其相接处形成一个公共梯形槽,且该槽底部的模块间隙16深度一直达到套筒15表面,主要目的是隔离相邻模块磁通,使得各模块之间磁路相互独立无耦合,提高相对应侧电机定子两套绕组的耦合性能,整个转子内表面和外表面都有pr个这样的公共梯形槽,将pr个笼障转子模块沿圆周方向磁隔离,由于套筒15为非导磁材料,所以每个笼障转子模块之间也是不导磁的,包括转子内外两侧的笼障模块之间也不导磁,各模块在结构和磁路两方面都相互独立,每个公共梯形槽沿径向具有数个不等的阶梯槽宽,每个公共梯形槽内放入若干根导体组成公共笼条11。放置公共笼条11和短路笼条12的梯形槽的槽口处开有内豁口并嵌放槽楔17,用来固定槽内笼条。梯形槽内靠近定子的槽宽度大于或者等于靠近套筒15的槽宽度,其目的是为了克服感应电流的集肤效应,梯形槽内的笼条层数可以为单层或者多层,根据梯型槽内阶梯的数量选取层数,各层之间、笼条与转子之间均加有绝缘进行隔离,笼条通过端部连接在一起形成回路,本发明附图选取层数都为2。图3中笼障转子模块中心处开有多组切向隔磁层9,分别与各自两侧嵌放短路笼条的梯形槽组合形成多组U型径向叠片磁障,在笼障转子模块内形成多个导磁层10,其目的是增大交轴磁阻,减少直轴磁阻,便于磁通沿着有利于磁场调制的路径流通,另外,所有笼障转子模块之间磁路独立,在加入隔磁层9形成U型径向叠片磁障后,其磁场转换能力明显提高,而且隔磁层数越多,效果就越明显,但隔磁层太多时,其成本又会增大,因此隔磁层应选择为合适层数。此外,各导磁层宽度可以相等或者不等,宽度不等时则嵌放短路笼条的梯形槽间距不等,可以改变气隙磁阻分布,削弱不利磁场谐波幅值,增强有用磁场谐波幅值,提高定子两套绕组的耦合能力,减少附加损耗,改善电机的性能,在对性能要求不高时也可采用宽度相同的导磁层。每个笼障转子模块的内侧隔磁层内部和外侧隔磁层外部有多个定位孔13。
整个转子安装绕组后余下的公共梯形槽缝隙和模块内磁障缝隙内可浇注环氧树脂或者耐高温非导磁材料,其目是增强转子整体强度,减少噪声振动,也对笼条进行紧固定位;也可不进行浇注利用缝隙通风散热,降低电机的温升,提高电机性能,且这样依然可使各模块间的磁路没有耦合。笼障转子模块采用叠片轴向叠压而成,其目的可以减少转子铁芯中的涡流损耗,提高电机效率。转子采用模块化形式,使得仅加工一种转子模块就可以组装成整个转子,大大减少了工艺成本,生产电机外径较大的大功率电机,亦有益于该电机产业化。
图5为本发明电机转子压板结构示意图,转子压板位于转子轴向两端,与转子外轮廓形状相同,压板与转子间加绝缘层隔离,压板上钻有与笼障转子定位孔13(见图3)位置相同定位孔13,非导磁材料制成的压紧螺杆沿轴向穿过全部定位孔13,压紧螺杆与转子模块间加绝缘隔离,在压板两端利用螺母压紧固定,外侧定位孔内穿过的压紧螺杆对笼障转子模块起到了轴向压紧作用,也用以抵抗转子模块旋转时所承受的离心力。压板外侧与转子梯形槽相同位置和形状相同的梯形缝隙,公共笼条11和短路笼条12从该缝隙穿过,进行端部链接。
本发明电机转子可以只安装公共笼条,此外也可采用只安装短路笼条或者不安装任何笼条,转子内外两侧可以相同也可以不同。公共笼条和短路笼条都能起到磁场调制作用,由于公共笼条位于凸极中心处,所以其磁场调制效果比短路笼条明显,因此采用公共笼条和短路笼条的形式电机性能最佳,以后依次为只采用公共笼条的形式、只采用短路笼条的形式、不安装任何笼条的形式。
图6为本发明电机公共笼条的一种端部连接方式示意图,采用端部导电环18将公共梯形槽内同层的公共笼条11两侧端部连接在一起,形成pr个网孔型导电回路,当外部磁通穿过导电回路的网孔中心时,会在其中感应出电动势,从而在回路中形成电流,该电流产生的磁场方向与外部磁通方向相反,从而影响流经转子的主磁通路径,使得主磁通从凸极处进入转子,起到了隔磁和改变磁通路径的作用,改善磁场调制效果,内层和外层的端部导电环18之间采用绝缘隔离,因此各层之间无电流流过,使得公共笼条11和端部导电环18的铜耗降低且磁场调制效果更佳。
图7为图6中公共笼条的端部连接方式展开图。
图8为本发明电机公共笼条的第二种连接方式展开图,将公共梯形槽内单层公共笼条11分成两部分,且相互绝缘隔离,两部分公共笼条分别与相邻公共梯形槽内的公共笼条通过端部导电环18相连,可将同一层公共笼条11连接成pr个独立环形导电回路,其隔磁作用与图7相同,但内外两层也相互绝缘隔离,可以进一步减小公共笼条内电流,降低公共笼条11和端部导电环18的铜耗,提高磁场调制效果;也可以在相邻两个公共梯形槽内放置多匝线圈导体,其连接示意与图8相同,采用多匝绕组线圈,可以减小集肤效应,由于匝数较多其隔磁效果更加明显,使得电机磁场调制效果更好。
图9为本发明电机本发明电机公共笼条的第三种连接方式端部链接图,外层公共笼条11与单侧相邻倒梯形槽内的内层公共笼条11通过端部导电环18相连,形成pr个不同层独立环形导电回路,其连接方式展开图与图8相同,所达到的效果也相同。
图10为本发明电机短路笼条一种连接方式示意图,每个笼障转子模块中,以笼障转子模块径向对称线为中心,将两侧相对应的同层短路笼条端部通过导体相连,形成多组独立的同心式环形导电回路,同样具有与公共笼条相似的隔磁作用,可以进一步改善磁场调制效果,每个环形回路相互绝缘隔离,内层短路笼条和外层短路笼条形成的环形回路也相互绝缘隔离。也可以在相对应的两个同层梯形槽内放置多匝线圈导体,形成多组独立的同心式环形多匝导电回路,采用多匝绕组线圈,可以减小集肤效应,由于匝数较多其隔磁效果更加明显,磁场调制效果好,同一转子模块上所形成的多组独立的同心式环形导电回路匝数可以相等也可以不等,不等式可以削弱磁场中不利的谐波磁场,提高定子两套绕组的耦合能力,减少附加损耗,进一步改善电机的性能。
图11为本发明电机短路笼条第二种连接方式端部链接图,外层短路笼条与相应梯形槽的内层短路笼条通过导体相连,形成多组独立的交叉型同心式环形回路,所达到的效果与图10中所述连接方式相同。
图12为本发明电机公共笼条和短路笼条安装示意图,图中公共笼条采用图6中的连接方式,短路笼条采用图10的连接方式。不论采用何种形式,所有公共笼条与短路笼条之间都采用绝缘隔离。
图13为第二种公共笼条和短路笼条连接方式展开图,图中同一侧端部的同层的公共笼条与短路笼条通过同一个端部导电环连接在一起。这样在不影响效果的前提下,不仅减少了端部连接环的数量,简化了电机端部结构,降低了电机重量,而且由于所有笼条一侧连接在一起,各导电环路内感应电势减少,流过的电流也减少,电机铜耗降低,效率提高。
上述连接方式可以分别应用于转子内侧和转子外侧的公共笼条和短路笼条的连接。
图14为本发明模块化单笼障转子双定子四端口交流电机的PIMD控制原理示意图,其中,ωr*为转速给定,ωr为转速输出,e为误差,u为控制输入信号,K(s)为控制器,Kp、Ki、Kd为控制参数,Td为延迟时间,J为转子机械惯量,B为转动阻尼系数,Kf为转矩系数,Tl为负载转矩,P(s)为被控对象的标称模型。
控制方式采用PIMD控制方法来实现模块化单笼障转子双定子四端口交流电机的转速跟踪,其控制思想是针对模块化单笼障转子双定子四端口交流电机具有不确定性参数变化和扰动影响的特点,利用负延迟方法,通过调整延迟时间来消除不确定干扰信号,并引入了H∞控制策略,进而提高系统的鲁棒性。
采用功率绕组dq坐标系,则模块化单笼障转子双定子四端口交流电机的电磁转矩方程为
T e = 3 2 ( p p + p c ) Ψ dp i qc = J dω r dt + B ω r + T 1 - - - ( 1 )
式中,pp和pc分别表示功率绕组和控制绕组的极对数,Ψdp为功率绕组磁链的d轴分量,iqc为控制绕组电流的q轴分量,Te为总电磁转矩。
对式(1)两边进行拉氏变换,可得标称模型的传递函数为
P ( s ) = 1 Js + B - - - ( 2 )
控制器的传递函数可表示为
K ( s ) = U ( s ) E ( s ) = K p + K i s - K d e - T d s - - - ( 3 )
对式(3)进行拉氏反变换,可得
u ( t ) = K p e ( t ) + K i ∫ 0 t e ( t ) dt - K d e ( t - T d )
= ( K p - K d ) e ( t ) + T d K d e ( t ) - e ( t - T d ) T d + K i ∫ 0 t e ( t ) dt - - - ( 4 )
= K pn e ( t ) + K dn · 1 T d ∫ t - T d t e · ( t ) dt + K i ∫ 0 t e ( t ) dt
式中,
Figure BDA00002990386800087
是e(t)对时间t的导数;Kpn=Kp-Kd,且Kp≥Kd;Kdn=TdKd
设误差e(t)中含有一由外部引起的正弦干扰d为
d=Asin2πft    (5)
式中,A和f分别为干扰输入d的幅值和频率。当e(t)=d(t)时,将其代入式(4)中,则第二项延迟项可写成
1 T d ∫ t - T d t d · ( t ) dt = A T d [ sin 2 πft - sin 2 πf ( t - T d ) ] - - - ( 6 )
如果令Td=N/f,其中N为自然数,那么
sin(2πft-2πfTd)=sin(2πft-2πN)
=sin(2πft)cos(2πN)+cos(2πft)sin(2πN)
=sin(2πft)
则式(6)为零,即
Figure BDA00002990386800091
也就是说,当延迟时间Td趋近于N/f时,式(6)趋近于零,因此,通过调整延迟时间Td,PIMD控制器即可消除微分项干扰输入。
图15为本发明PIMD控制器的H∞控制问题示意图,是在图14所示的PIMD控制原理示意图中加入权值函数,即可将其转化为H∞控制问题。设权值函数的状态空间形式为
W e ( s ) = A e B e C e D e , W u ( s ) = A u B u C u D u
式中,We(s)和Wu(s)为加权函数,Ae、Be、Ce、De、Au、Bu、Cu、Du为常数矩阵,
权值函数We(s)是由系统的性能要求决定的,由于系统的外部扰动和外部输入信号的频率通常较低,为保证系统能有效地抑制干扰和精确地跟踪信号,We(s)通常具有积分特性或高增益低通特性,再通过仿真实验进行反复试凑,可获得一个较佳的We(s)值;权值函数Wu(s)是使系统在有高频扰动作用下仍能保持稳定,为不增加控制器的阶次,通常取Wu(s)为一常数;权值函数Wd(s)反映负载扰动信号Tl的作用强弱,通常也取为一常数。
图15中的系统G(s)描述为
x · = Ax + B 1 w + B 2 u z = C 1 x + D 12 u y = C 2 x + D 21 w
G ( s ) = A B 1 B 2 C 1 0 D 12 C 2 D 21 0
式中,x=[x1 x2 x3]T为状态变量,y为观测输出信号,z=[z1 z2]T为评价信号,w=Tl为干扰输入信号,A、B1、B2、C1、C2、D12、D21为常数矩阵,K=[Kp Ki Kd]为所要求解的控制器。由图15可得增广被控对象G(s)的状态空间实现为
Figure BDA00002990386800096
再利用MATLAB软件中的hinfsyn函数,反复求解控制器K,直至满足H次优设计指标
||LFT(G,K)||<γ    (8)
式中,||·||为无穷范数,LFT(G,K)为下线性分式变换,γ为很小的常数。
所提出采用的PIMD控制方法可实现模块化单笼障转子双定子四端口交流电机的转速跟踪,有效地抑制了系统的不确定负载扰动,具有较强的鲁棒性,大大提高了该种交流电机的抗干扰能力。

Claims (7)

1.模块化单笼障转子双定子四端口交流电机,主要包括内定子(1)、外定子(2)、转子(3)、双向逆变器(4),其特征在于:电机沿径向由内而外依次为内定子(1)、转子(3)、外定子(2),内定子(1)通过转轴(8)上的定位销与转轴固定在一起,其中内定子(1)和外定子(2)上都安放2p极的三相对称功率绕组(6)和2q极的三相对称控制绕组(7),或者功率绕组(6)的极数和控制绕组(7)的极数互换,且均满足2p-2q≥4;转子(3)内外表面都采用pr个相同的笼障转子模块沿圆周方向拼成一个每个表面都具有pr个凸极型的转子,每个笼障转子模块靠近中心侧通过定位槽(14)与非导磁材料制成的套筒(15)相连;每个笼障转子模块靠近定子的表面开有多个径向梯形槽,径向梯形槽间距相等或者不等,每个梯形槽沿径向具有数个不等的阶梯槽宽,每个梯形槽内放入若干根导体组成短路笼条(12);相邻笼障转子模块相接处为阶梯型豁口,相邻笼障转子模块拼接后在其相接处形成pr个公共梯形槽,且该槽底部的模块间隙(16)深度一直达到套筒(15)表面,每个公共梯形槽沿径向具有数个不等的阶梯槽宽,每个公共梯形槽内放入若干根导体组成公共笼条(11);公共笼条(11)和短路笼条(12)分别采用端部导电环(18)连接形成导电回路;笼障转子模块中心处开有多组切向隔磁层(9),分别与各自两侧嵌放短路笼条(12)的梯形槽组合形成多组径向叠片磁障,在笼障转子模块内形成多个导磁层(10)。
2.权利要求1所述模块化单笼障转子双定子四端口交流电机,其特征在于:功率绕组(6)与电网(5)相连,控制绕组(7)与双向逆变器(4)的一端相连,双向逆变器(4)另一端与电网(5)相连。
3.权利要求1所述模块化单笼障转子双定子四端口交流电机,其特征在于:放置公共笼条(11)和短路笼条(12)的梯形槽的槽口处开有内豁口并嵌放槽楔(17);公共笼条(11)端部链接形式可以为:端部导电环(18)将公共梯形槽内同层的公共笼条(11)两侧端部全部连在一起;也可以将公共梯形槽内单层公共笼条(11)分成两部分,两部分公共笼条(11)分别与相邻公共梯形槽内同层的公共笼条(11)通过端部导电环(18)相连;也可以将公共梯形槽内外层公共笼条(11)与单侧相邻公共梯形槽内的内层公共笼条(11)通过端部导电环(18)相连;也可以在相邻两个公共梯形槽内放置多匝线圈导体;短路笼条(12)端部连接形式可以为:以笼障转子模块径向对称线为中心,将两侧相对应的同层短路笼条(12)端部通过导体相连,形成多组独立的同心式环形导电回路;也可以将外层短路笼条与相对应梯形槽的内层短路笼条通过导体相连,形成多组独立的交叉型同心式环形回路;也可以在相对应的两个同层梯形槽内放置多匝线圈导体,同一转子模块上的多组线圈导体匝数可以相同也可不同。
4.权利要求1所述模块化单笼障转子双定子四端口交流电机,其特征在于:笼障转子两端装有压板,压板与转子间加绝缘层隔离,压板上钻有与笼障转子定位孔(13)位置相同的定位孔(13),非导磁材料制成的压紧螺杆沿轴向穿过全部定位孔(13),在压板两端利用螺母压紧固定。
5.权利要求1所述模块化单笼障转子双定子四端口交流电机,其特征在于:整个转子安装绕组后余下的公共梯形槽缝隙和模块内磁障缝隙内可浇注耐高温非导磁材料或者不浇筑。
6.一种如权利要求1所述模块化单笼障转子双定子四端口交流电机的控制方法,其特征在于:控制方式采用PIMD控制方法来实现模块化单笼障转子双定子四端口交流电机的转速跟踪,其控制思想是针对模块化单笼障转子双定子四端口交流电机具有不确定性参数变化和扰动影响的特点,利用负延迟方法,通过调整延迟时间来消除不确定干扰信号,并引入了H控制策略,进而提高系统的鲁棒性;具体为:采用功率绕组dq坐标系,则模块化单笼障转子双定子四端口交流电机的电磁转矩方程为
T e = 3 2 ( p p + p c ) Ψ dp i qc = J dω r dt + B ω r + T 1 - - - ( 1 )
式中,pp和pc分别表示功率绕组和控制绕组的极对数,Ψdp为功率绕组磁链的d轴分量,iqc为控制绕组电流的q轴分量,ωr为转速输出,J为转子机械惯量,B为转动阻尼系数,Te为总电磁转矩,Tl为负载转矩,
对式(1)两边进行拉氏变换,可得标称模型的传递函数P(s)为
P ( s ) = 1 Js + B - - - ( 2 )
控制器的传递函数可表示为
K ( s ) = U ( s ) E ( s ) = K p + K i s - K d e - T d s - - - ( 3 )
式中,E(或e)为误差,U(或u)为控制输入信号,K(s)为控制器,Kp、Ki、Kd为控制参数,Td为延迟时间,
对式(3)进行拉氏反变换,可得
u ( t ) = K p e ( t ) + K i ∫ 0 t e ( t ) dt - K d e ( t - T d )
= ( K p - K d ) e ( t ) + T d K d e ( t ) - e ( t - T d ) T d + K i ∫ 0 t e ( t ) dt - - - ( 4 )
= K pn e ( t ) + K dn · 1 T d ∫ t - T d t e · ( t ) dt + K i ∫ 0 t e ( t ) dt
式中,
Figure FDA00002990386700027
是e(t)对时间t的导数;Kpn=Kp-Kd,且Kp≥Kd;Kdn=TdKd
设误差e(t)中含有一由外部引起的正弦干扰d为
d=Asin2πft    (5)
式中,A和f分别为干扰输入d的幅值和频率,当e(t)=d(t)时,将其代入式(4)中,则第二项延迟项可写成
1 T d ∫ t - T d t d · ( t ) dt = A T d [ sin 2 πft - sin 2 πf ( t - T d ) ] - - - ( 6 )
如果令Td=N/f,其中N为自然数,那么
sin(2πft-2πfTd)=sin(2πft-2πN)
=sin(2πft)cos(2πN)+cos(2πft)sin(2πN)
=sin(2πft)
则式(6)为零,即也就是说,当延迟时间Td趋近于N/f时,式(6)趋近于零,因此,通过调整延迟时间Td,PIMD控制器即可消除微分项干扰输入。
7.根据权利要求8所述的模块化单笼障转子双定子四端口交流电机的控制方法,其特征在于:在PIMD控制中加入权值函数,即可将其转化为H控制问题,设权值函数的状态空间形式为
W e ( s ) = A e B e C e D e , W u ( s ) = A u B u C u D u
式中,We(s)和Wu(s)为加权函数,Ae、Be、Ce、De、Au、Bu、Cu、Du为常数矩阵,
权值函数We(s)是由系统的性能要求决定的,由于系统的外部扰动和外部输入信号的频率通常较低,为保证系统能有效地抑制干扰和精确地跟踪信号,We(s)通常具有积分特性或高增益低通特性,再通过仿真实验进行反复试凑,可获得一个较佳的We(s)值;权值函数Wu(s)是使系统在有高频扰动作用下仍能保持稳定,为不增加控制器的阶次,通常取Wu(s)为一常数;权值函数Wd(s)反映负载扰动信号Tl的作用强弱,通常也取为一常数,
系统G(s)描述为
x · = Ax + B 1 w + B 2 u z = C 1 x + D 12 u y = C 2 x + D 21 w
G ( s ) = A B 1 B 2 C 1 0 D 12 C 2 D 21 0
式中,x=[x1 x2 x3]T为状态变量,y为观测输出信号,z=[z1 z2]T为评价信号,w=Tl为干扰输入信号,A、B1、B2、C1、C2、D12、D21为常数矩阵,K=[Kp Ki Kd]为所要求解的控制器,增广被控对象G(s)的状态空间实现为
Figure FDA00002990386700035
再利用MATLAB软件中的hinfsyn函数,反复求解控制器K,直至满足H次优设计指标
||LFT(G,K)||<γ    (8)
式中,||·||为无穷范数,LFT(G,K)为下线性分式变换,γ为很小的常数。
CN201310109134.2A 2013-03-29 2013-03-29 模块化单笼障转子双定子四端口交流电机及其控制方法 Active CN103166400B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310109134.2A CN103166400B (zh) 2013-03-29 2013-03-29 模块化单笼障转子双定子四端口交流电机及其控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310109134.2A CN103166400B (zh) 2013-03-29 2013-03-29 模块化单笼障转子双定子四端口交流电机及其控制方法

Publications (2)

Publication Number Publication Date
CN103166400A true CN103166400A (zh) 2013-06-19
CN103166400B CN103166400B (zh) 2014-12-31

Family

ID=48589209

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310109134.2A Active CN103166400B (zh) 2013-03-29 2013-03-29 模块化单笼障转子双定子四端口交流电机及其控制方法

Country Status (1)

Country Link
CN (1) CN103166400B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110127619A (zh) * 2019-05-31 2019-08-16 温州市康之本制氧科技有限公司 矩阵式一体化psa高效制氧系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030201686A1 (en) * 2002-04-30 2003-10-30 Fujitsu General Limited Induction motor
CN101621276A (zh) * 2008-07-01 2010-01-06 沈阳工业大学 大功率无刷双馈电动机变频调速系统及启动方法
CN202334220U (zh) * 2011-12-08 2012-07-11 沈阳工业大学 一种混合型转子无刷同步电机

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030201686A1 (en) * 2002-04-30 2003-10-30 Fujitsu General Limited Induction motor
CN101621276A (zh) * 2008-07-01 2010-01-06 沈阳工业大学 大功率无刷双馈电动机变频调速系统及启动方法
CN202334220U (zh) * 2011-12-08 2012-07-11 沈阳工业大学 一种混合型转子无刷同步电机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张凤阁,王凤翔: "磁阻和笼型转子无刷双馈电机的统一等效电路和转矩公式", 《中国电机工程学报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110127619A (zh) * 2019-05-31 2019-08-16 温州市康之本制氧科技有限公司 矩阵式一体化psa高效制氧系统

Also Published As

Publication number Publication date
CN103166400B (zh) 2014-12-31

Similar Documents

Publication Publication Date Title
US8154167B2 (en) Induction motor lamination design
CN103151887B (zh) 模块化笼障转子定子自励磁同步电机及其控制方法
Wang et al. A magnetic continuously variable transmission device
US10326322B2 (en) Double-rotor flux-switching machine
CN103166395B (zh) 具有双笼障转子的定子自励磁同步电机及其控制方法
CN203151344U (zh) 一种模块化混合转子定子双馈电交流电机
CN101834506B (zh) 具有双径向气隙的电机
CN202334220U (zh) 一种混合型转子无刷同步电机
US20220045559A1 (en) Segmented stator for a permanent magnet electric machine having a fractional-slot concentrated winding
CN103166399B (zh) 模块化单笼障转子双定子自励磁同步电机及其控制方法
Yu et al. Design and multiobjective optimization of a double-stator axial flux SRM with full-pitch winding configuration
CN102097913B (zh) 双馈无刷电机转子及其制造方法
Yousefnejad et al. Analysis and design of novel structured high torque density magnetic-geared permanent magnet machine
CN103166396B (zh) 具有双笼障转子的定子双绕组交流电机及其控制方法
CN103390946A (zh) 高功率密度无刷双馈风力发电机
CN203339911U (zh) 一种双笼障转子定子双绕组交流电机
CN1787336A (zh) 用于同步电机的并绕超导线圈
CN203261211U (zh) 一种双笼障转子定子自励磁同步电机
Li et al. A phase-decoupled flux-reversal linear generator for low-speed oscillatory energy conversion using impedance matching strategy
CN103166405B (zh) 笼障拼装外转子定子双绕组交流电机及其控制方法
CN103166400B (zh) 模块化单笼障转子双定子四端口交流电机及其控制方法
CN203135667U (zh) 一种双定子四端口笼障拼装单转子交流电机
CN207150384U (zh) 一种双定子周向错位角电励磁直流电机
CN203135670U (zh) 一种笼障组合外转子定子双馈电交流电机
US20230268815A1 (en) Winding arrangement for modulated pole machines

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant