CN103163877A - 用于系统级故障的根本原因分析和质量监控的方法和系统 - Google Patents

用于系统级故障的根本原因分析和质量监控的方法和系统 Download PDF

Info

Publication number
CN103163877A
CN103163877A CN2012105538401A CN201210553840A CN103163877A CN 103163877 A CN103163877 A CN 103163877A CN 2012105538401 A CN2012105538401 A CN 2012105538401A CN 201210553840 A CN201210553840 A CN 201210553840A CN 103163877 A CN103163877 A CN 103163877A
Authority
CN
China
Prior art keywords
vehicle
model
failure code
cause
failure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012105538401A
Other languages
English (en)
Other versions
CN103163877B (zh
Inventor
S.辛赫
J.V.鲍曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GM Global Technology Operations LLC
Original Assignee
GM Global Technology Operations LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GM Global Technology Operations LLC filed Critical GM Global Technology Operations LLC
Publication of CN103163877A publication Critical patent/CN103163877A/zh
Application granted granted Critical
Publication of CN103163877B publication Critical patent/CN103163877B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0259Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
    • G05B23/0275Fault isolation and identification, e.g. classify fault; estimate cause or root of failure
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/08Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle or waiting time
    • G07C5/0816Indicating performance data, e.g. occurrence of a malfunction

Abstract

本发明涉及用于系统级故障的根本原因分析和质量监控的方法和系统。系统故障代码、部件故障代码、和失效模式可在系统处被接收。可产生第一级模型,该第一级模型包括该系统故障代码与该部件故障代码之间的第一级因果关系和第一级因果权重。可产生第二级模型,该第二级模型包括该部件故障代码与该失效模式之间的第二级因果关系和第二级因果权重。该第一级模型和该第二级模型可被合并以产生诸如图形模型的模型。一个或多个因果概率可使用该图形模型来确定。

Description

用于系统级故障的根本原因分析和质量监控的方法和系统
技术领域
本发明涉及使用例如使用车队范围的车辆诊断历史的基于概率的方法进行系统级故障的根本原因分析和质量监控。
背景技术
汽车、航空和航天、重型装置、制造、以及其它工业试图通过将故障诊断和预后特征合并到车辆或在技术中心处的场外监控来提高车辆的质量和可靠性。例如,故障代码(例如,诊断故障代码(DTC))可由技师(例如,车辆技师、航空器技师、制造技师)、质量工程师(例如,车辆质量工程师、航空和航天质量工程师等)、诊断工程师以及其它方使用以识别和诊断车辆、航空器、航空交通工具、重型装置、机械、或其它装置失灵。故障代码可例如包含诊断故障代码,其可用于车辆诊断。诊断故障代码可例如为诊断方法或系统的输出,其连续地监控特定部件(例如,与车辆部件、系统、电路或其它装置相关联的传感器),并且可被存储在车辆电子控制单元(ECU)中。诊断故障代码可指示系统、部件、电路或其它电气装置中的失效、失灵、或缺陷。诊断故障代码可例如包含系统级诊断代码(SDTC)、部件或电路级DTC、以及其它类型的DTC。诊断故障代码可例如指示车辆系统的失效、失灵、或缺陷(例如,发动机不发火、蒸发系统性能、电池失效、或其它车辆系统失效)。部件或电路级DTC可例如指示车辆部件(例如,燃料喷射器、质量空气流量(MAF)传感器等)的失效、失灵、或缺陷。通常,部件是系统和/或子系统的一部分;例如,燃料喷射器可为发动机系统的一部分。在一些情况下,系统可为更大的系统的部件。系统级故障可例如归因于在该系统中的部件或电路级相关故障中的任一种被触发。例如,发动机不发火系统级故障可能归因于喷射器电路失效、质量空气流量电路失效、燃料泵失灵等被触发。
在一些情况下,系统故障码(例如,系统DTC)可潜在地起因于多个失效模式或根本原因。失效模式可例如包含零件名称信息以及可能地描述或表示失灵或失效的其它信息。失效模式或根本原因可与部件故障代码(例如部件DTC)、系统故障代码(例如,系统DTC)、和/或其它信息的多种独特组合相关联。现有技术无法识别具有相同或相似故障代码或DTC签名(例如,系统DTC、部件DTC、和/或其它DTC的组合)的失效模式。因此,可能难以基于系统故障代码或系统故障代码、部件故障代码和/或其它故障代码的组合来确定车辆失灵的失效模式和根本原因。因此,对于车辆技师、质量工程师等来说,使用现有技术来确定车辆失灵根本原因、车队范围的车辆失灵趋势、以及其它信息可能是困难的。
发明内容
系统故障代码、部件故障代码、和失效模式可在系统处被接收。可产生第一级模型,该第一级模型包括该系统故障代码与该部件故障代码之间的第一级因果关系和第一级因果权重。可产生第二级模型,该第二级模型包括该部件故障代码与该失效模式之间的第二级因果关系和第二级因果权重。该第一级模型和该第二级模型可被合并以产生诸如图形模型的模型。一个或多个因果概率可使用该图形模型来确定。
本发明还提供如下方案:
1. 一种方法,包括:
接收系统故障代码、部件故障代码、以及失效模式;
产生第一级模型,所述第一级模型包括所述系统故障代码与所述部件故障代码之间的第一级因果关系和第一级因果权重;
产生第二级模型,所述第二级模型包括所述部件故障代码与所述失效模式之间的第二级因果关系和第二级因果权重;
合并所述第一级模型和所述第二级模型以产生图形模型;以及
使用所述图形模型确定一个或多个概率推理。
2. 根据方案1所述的方法,其特征在于:
所述第一级因果权重包括给定所述部件故障代码下的所述系统故障代码的条件概率;并且
所述第二级因果权重包括给定所述失效代码下的所述部件故障代码的条件概率。
3. 根据方案1所述的方法,其特征在于,包括:
接收一个或多个车辆特定系统故障代码和一个或多个车辆特定部件故障代码;
基于所述概率推理确定一个或多个高概率失效模式,其中使用所述图形模型确定一个或多个概率推理包括:基于所述车辆特定系统故障代码、所述车辆特定部件故障代码和所述图形模型来确定条件概率;以及
向用户输出高概率失效模式。
4. 根据方案1所述的方法,其特征在于,包括:
接收车辆失灵记录,所述车辆失灵记录包括一个或多个车队车辆系统故障代码、一个或多个车队车辆部件故障代码、以及一个或多个车队车辆失效模式;
基于所述概率推理对所述车辆失灵记录分类,其中使用所述图形模型确定一个或多个概率推理包括:基于所述车队车辆系统故障代码、所述车队车辆部件故障代码、以及所述车辆失效模式来确定边际概率;以及
向用户输出已分类的车辆失灵。
5. 根据方案4所述的方法,其特征在于,向用户输出所述已分类的车辆失灵记录包括:如果所述已分类的车辆失灵记录包括低或中等概率,则向质量管理员输出一个或多个车辆故障记录。
6. 根据方案4所述的方法,其特征在于,向用户输出一个或多个已分类的车辆故障记录包括:如果所述已分类的车辆失灵记录包括低于阈值的概率,则向诊断工程师输出所述一个或多个车辆故障记录。
7. 根据方案1所述的方法,其特征在于,包括:
接收一个或多个车辆失灵记录,所述一个或多个车辆失灵记录包括一个或多个车队车辆系统故障代码、一个或多个车队车辆部件故障代码、以及一个或多个车队车辆失效模式;并且
更新所述图形模型以包括在先前图形模型中没有的一个或多个车辆失灵记录。
8. 根据方案1所述的方法,其特征在于,所述图形模型包括概率分级模型。
9. 一种系统,包括:
存储器;以及
处理器,其用以:
接收系统故障代码、部件故障代码、以及失效模式;
产生第一级模型,所述第一级模型包括所述系统故障代码与所述部件故障代码之间的第一级因果关系和第一级因果权重;
产生第二级模型,所述第二级模型包括所述部件故障代码与所述失效模式之间的第二级因果关系和第二级因果权重;
合并所述第一级模型和所述第二级模型以产生图形模型;和
使用所述图形模型确定一个或多个因果概率。
10. 根据方案9所述的系统,其特征在于:
所述第一级因果权重包括给定所述部件故障代码下的所述系统故障代码的条件概率;并且
所述第二级因果权重包括给定所述失效代码下的所述部件故障代码的条件概率。
11. 根据方案9所述的系统,其特征在于,所述处理器用以:
接收一个或多个车辆特定系统故障代码和一个或多个车辆特定部件故障代码;
基于所述因果概率确定一个或多个高概率失效模式,其中使用所述图形模型来确定一个或多个因果概率,所述处理器用以基于所述车辆特定系统故障代码、所述车辆特定部件故障代码和所述图形模型处理器来确定条件概率;以及
向用户输出高概率失效模式。
12. 根据方案9所述的系统,其特征在于,所述处理器用以:
接收车辆失灵记录,所述车辆失灵记录包括一个或多个车队车辆系统故障代码、一个或多个车队车辆部件故障代码、以及一个或多个车队车辆失效模式;
基于所述因果概率对所述车辆失灵记录分类,其中使用所述图形模型来确定一个或多个因果概率,所述处理器用以基于所述车队车辆系统故障代码、所述车队车辆部件故障代码、以及所述车辆失效模式来处理器来确定边际概率;以及
向用户输出所述已分类的车辆失灵。
13. 根据方案12所述的系统,其特征在于,为了向用户输出所述已分类的车辆失灵记录,如果所述已分类的车辆失灵记录包括低或中等概率,则所述处理器用以向质量管理员输出一个或多个车辆故障记录。
14. 根据方案12所述的方法,其特征在于,为了向用户输出所述一个或多个已分类的车辆故障记录,如果所述已分类的车辆失灵记录包括低于阈值的概率,则所述处理器用以向诊断工程师输出一个或多个车辆故障记录。
15. 根据方案9所述的系统,其特征在于,所述处理器用以:
接纳一个或多个车辆失灵记录,所述一个或多个车辆失灵记录包括一个或多个车队车辆系统故障代码、一个或多个车队车辆部件故障代码、以及一个或多个车队车辆失效模式;并且
更新所述图形模型以包括在先前图形模型中没有的一个或多个车辆失灵记录。
16. 根据方案9所述的系统,其特征在于,所述图形模型包括非循环图形模型。
17. 一种方法,包括:
接收系统诊断故障代码(DTC)、部件DTC、以及根本原因;
确定第一级模型,所述第一级模型包括在系统DTC与部件DTC之间的第一级因果关系和第一级因果权重;
确定第二级模型,所述第二级模型包括在部件 DTC与根本原因之间的第二级因果关系和第二级因果权重;并且
基于所述第一级模型和所述第二模型,产生非循环图形模型。
18. 根据方案17所述的方法,其特征在于,包括:
接收一个或多个单独的车辆系统DTC以及一个或多个单独的车辆部件DTC;
使用所述非循环图形模型结合所述单独的车辆系统DCT以及一个或多个单独的车辆部件DTC来计算因果概率;
基于所述因果概率,确定一个或多个高度可能的根本原因;以及
向用户显示所述一个或多个高度可能的根本原因。
19. 根据方案17所述的方法,其特征在于,包括:
接收车辆故障记录,所述车辆故障记录包括一个或多个车队车辆系统DTC、一个或多个车队车辆部件DTC、以及一个或多个车队车辆失效模式;
使用所述非循环图形模型结合所述一个或多个车队车辆系统DTC、所述一个或多个车队车辆部件DTC、以及所述一个或多个车队车辆失效模式来计算边际概率;
基于所述边际概率对所述车辆故障记录分类;以及
向用户输出已分类的车辆故障。
20. 根据方案17所述的方法,其特征在于:
所述第一级因果权重包括给定部件DTC下的系统DTC的条件概率;并且
所述第二级因果权重包括给定根本原因下的部件DTC的条件概率。
附图说明
被视为本发明的主题被特别地指出并且清楚地在本说明书的结尾部分中被要求保护。然而,就组织和操作方法而言,本发明连同其目的、特征、以及优势当结合附图阅读时可通过参照下列详细描述最佳地理解,在这些附图中:
图1是根据本发明的实施例的车辆诊断系统的示意图;
图2是根据本发明的实施例的车辆诊断系统的示意图;
图3是根据本发明的实施例的车辆诊断系统的一部分的示意图;
图4是方法根据本发明的实施例的根本原因分析方法的示意;
图5是方法根据本发明的实施例的质量分析方法的示意;并且
图6是根据本发明的实施例的方法的流程图。
应了解,为了简单和图示的清楚,在这些图中示出的元件不一定按比例绘制。例如,为了清楚,元件中的一些的尺寸相对于其它元件可能被夸大。此外,在认为适当的情况下,附图标记在这些图中可被重复以指示对应的或类似的元件。
具体实施方式
在下列详细描述中,阐明了许多特殊的细节以便提供对本发明的实施例的彻底的理解。然而,应由本领域的那些普通技术人员理解的是,本发明实施例可在没有这些特殊细节的情况下被实施。在其它情况下,熟知的方法、程序、元件、和电路不会对本发明的各个方面造成模糊,所以未详细描述它们。
除非相反明确陈述,如从下列讨论中明显的,贯穿说明书讨论,利用诸如“处理”、“计算”、“存储”、“确定”等的术语,指计算机或计算系统或类似的电子计算装置的动作和/或过程,操纵被表示为计算系统的寄存器和/或存储器内的物理诸如电子的数量的数据和/或将该数据变换成类似于被表示为计算系统的存储器、寄存器或其它这样的信息存储器、传送器或显示装置内的物理数量的其它数据。
图1是根据本发明的实施例的车辆诊断系统的示意图。车辆诊断系统100可包含一个或多个处理器或控制器30、存储器32、长期储存器34、(多个)输入装置或(多个)区域40、以及(多个)输出装置或(多个)区域42。(多个)输入装置或(多个)区域40和(多个)输出装置或(多个)区域42可被合并到例如触摸屏显示器中以及可为系统100的一部分的输入端。
系统100可包含一个或多个数据库36。存储器32或数据库36可包含例如规则10、历史现场数据12、当前车辆数据或当前车队数据14、失效模式或根本原因16,故障代码或症状18(例如,系统故障代码或系统症状20(例如,系统诊断故障代码(SDTC)),电路或部件故障代码、电路症状、或部件症状 22(例如,部件诊断故障代码(DTC))、和/或其它信息。数据库36可全部或部分地被存储在存储器32、长期储存器34中的一者或两者中或另一装置中。
处理器或控制器30可为例如中央处理器(CPU)、芯片、诊断推理器、或任何适当的计算或估算装置。处理器或控制器30可包含多个处理器,并且可包含通用的处理器和/或专用处理器诸如图形处理芯片。处理器30可执行例如存储在存储器32或长期储存器34中的行码或指令,以执行本发明的实施例。
存储器32可为或可包含例如随机存取存储器(RAM)、只读存储器(ROM)、动态RAM(DRAM)、同步DRAM(SD-RAM)、双倍数据速率(DDR)存储器芯片、闪存存储器、易失性存储器、非易失性存储器、高速缓冲存储器、缓冲器、短期存储器单元、长期存储器单元、或其它适当的存储单元或储存单元。存储器32可为或可包含多个存储器单元。
长期储存器34可为或可包含例如硬盘驱动器、软盘驱动器、光盘(CD)驱动器、CD-可记录(CD-R)驱动器、通用串行总线(USB)装置或其它适当的可移除和/或固定的存储单元,并且可包含多个这样的单元或其组合。
图2是根据本发明的实施例的车辆诊断系统的示意图。历史现场数据12和规则10可例如由系统100接收。历史现场数据12(例如,历史现场故障数据或历史车辆失效数据)可例如为先前被记录的关于车辆失灵、缺陷、或失效的车辆数据。历史现场数据12可例如包含从保修报告、车间报告、车辆技工逐字记录(例如,“书面记录”)、以及其它来源接收的关于特定或具体车辆失灵的信息。历史现场数据12可例如包含故障代码18(例如,系统故障代码20(例如,系统诊断故障代码(SDTC))、部件故障代码22(例如,部件DTC)、以及其它症状或诊断故障代码)、失效模式或根本原因16、以及其它信息。故障代码18可例如为表示或限定具体或特定车辆失灵、缺陷、或失效的信息。故障代码18可例如从与车辆组件、系统、电路和装置相关联的车辆传感器输出到车辆电子控制单元(ECU)或其它装置。系统故障码20可例如为表示或限定系统失灵或缺陷(例如,发动机不发火、蒸发系统性能、贫/富燃料等)的信息。部件故障代码22可例如为表示或限定部件失灵或缺陷(例如,燃料喷射器电路、质量空气流量(MAF)电路、等)的信息。故障代码18在一些实施例中可促使车辆向车辆占用者或驾驶员输出信息(例如,检查发动机灯、检查刹车灯、等)。
失效模式或根本原因16可例如为部件的失效或失灵(例如,零件名称信息和其它信息),其产生被输出的系统故障代码20和/或部件故障代码22。失效模式16在一些实施例中可包含零件和/或系统名称信息、失灵或失效的描述、和/或其它信息。失效模式可例如为,质量空气流量传感器零件对地短路失效或其它失效模式。在此处所使用的数字符号中,失效模式可例如隐含地包含零件或系统名称。例如,部件故障代码22(例如,部件DTC)可为从监控部件性能或部件的电路的ECU中的诊断算法输出的信息。例如,部件故障代码22可为燃料喷射器电路DTC,并且燃料喷射器电路DTC可被从测量燃料喷射器和/或其它部件的功能的传感器输出。如果在燃料喷射器电路中存在电路失效(例如,对地短路、对电压短路、开路/高阻抗),则燃料喷射器电路故障代码(例如,电路DTC)被存储在发动机控制模块中。例如,如果燃料喷射器或其它部件失效或失灵并且部件DTC22被输出,则失效或失灵可为部件DTC22的失效模式或根本原因16。
历史现场数据12可例如源自于关于特定或特定车辆失灵、缺陷、或误差的各种来源或从所述各种来源接收(例如,保修报告、(多个)维护手册、修理车间数据、技工逐字记录(例如,车辆技工报告或书面记录)、遥感勘测数据、场和其它来源)。规则10(例如,诊断规则)可例如为故障代码18、车辆失效模式16与其它信息之间的关系。例如,规则10可包含很可能一起或同时发生的系统故障代码20、部件故障代码22、以及失效模式16的组合。示例规则10可例如为,如果部件故障代码22发生,则某一系统故障代码20可能是高度可能的。规则10(例如,诊断规则)可例如为关于给定车辆的维护手册、质量保证要求、故障模式、和/或其它指南或从在系统100处从给定车辆的维护手册、质量保证要求、故障模式、和/或其它指南接收。
根据一些实施例,模型110可基于输入的数据(例如,历史现场数据12、规则10和其它数据)在学习操作或途径期间被产生、创建、或限定。模型110可例如为概率分层模型、图形模型、非循环图形模型、数学模型或其它类型的模型。例如,历史数据12(例如,包含系统故障代码20、部件故障代码22、失效模式16、其它故障代码、和/或其它数据)和/或服务程序可被用来产生模型110。模型110可例如包含系统故障代码20、部件故障代码22、失效模式16、和其它信息之间的因果关系。系统故障代码20、部件故障代码22、失效模式16、和其它信息之间的因果关系可例如使用综合数据分析(aggregate data analysis)(102)或其它方法来确定或定义。系统故障代码20、部件故障代码22、失效模式16、和其它信息之间的因果权重可例如使用综合数据分析(102)(例如,使用规则10) 或其它方法来确定或定义。两个代码之间的权重(例如,系统故障代码和部件故障代码之间的第一级因果权重,部件故障代码和失效模式之间的第二级因果权重)可为例如两个代码将一起发生或出现的可能性。例如,部件故障代码和失效模式之间的因果权重可为部件故障代码与失效模式同时发生的可能性的测量。因果关系、因果权重、和其它信息可例如由主题专家(SME)或其他人来审核(104)或验证。其它技术或途径和其它数据或信息当然可被用来产生模型110(例如,图形模型)。
当在此处被讨论时,图形模型110(例如,概率分层模型、图形模型、非循环图形模型)可为计算机系统中的信息的组织。信息的组织可包含一个或多个节点(例如,表示系统故障代码20、部件故障代码22、失效模式16、和其它车辆相关数据)、节点之间的加权连接(例如,系统故障代码20、部件故障代码22、失效模式16、和其它车辆相关数据之间的因果关系和因果权重)和其它关系。为了描述的目的,图形模型110可使用视觉术语来描述以辅助可读性和读者理解。然而,信息的组织(例如,图形模型110)可被存储在计算机系统中,作为以人无法辨认的形式的相关的或有组织的数据或信息(例如,不以图形形式)。
根据一些实施例,历史现场数据12可例如在综合数据分析运算102期间被处理或被分析以将历史现场数据12(例如,系统故障代码20、部件故障代码22、失效模式16,等)转换成预先定义的与模型110(例如,图形模型、概率分层模型等)兼容的或适合于在模型110中使用的形式或格式。根据一些实施例,(例如,从车辆维护手册或其它源输入的)服务程序可在综合数据分析运算102期间被处理以将服务程序转换成与模型110兼容的或适合于在模型110中使用的格式。服务程序可例如包含:系统故障代码20、部件故障代码22、失效模式16、和/或其它故障代码;或表示系统故障代码20、部件故障代码22、失效模式16、和/或故障代码的信息。综合数据分析102可例如被用来确定因果关系。例如,系统故障代码20和一个或多个部件故障代码22之间的因果关系或依赖性可被确定。类似地,一个或多个部件故障代码22与一个或多个失效模式16 之间的因果关系可被确定。因果关系可例如表示两个事件、变量、或参数(例如,系统故障代码20、部件故障代码22、失效模式16、等)之间的相互关联性或关系。因果关系可能例如预示着,对于两个或更多个事件、变量、或参数可相互结合发生,存在至少一些可信度、可能性或概率。例如,如果对于系统故障代码20和部件故障代码22共享或起因于相同的根本原因,存在一些可信度,则系统故障代码20和部件故障代码22可为因果相关的。如果例如历史现场数据12包含系统故障代码20和部件故障代码22(例如,系统故障代码20和部件故障代码22出现在历史现场数据12中的设置或记录(例如,保修报告)中)之间的关联性,则系统故障代码20可为因果相关到或因果地依赖于部件故障代码22。因果依赖性或关系当然可使用其它方法和使用其它变量或参数来产生。
根据一些实施例,一个或多个系统故障代码20和一个或多个部件故障代码22之间的因果关系以及一个或多个部件故障代码22和一个或多个失效模式16之间的因果关系可被用来产生图形模型110(例如,概率分层模型、非循环图形模型、或其它类型的模型)。图形模型110可例如为分层模型,并且可包含一级或多级。图形模型110可例如包含:第一模型级,其包含(多个)第一级因果关系112(例如,(多个)系统故障代码20和(多个)部件故障代码22因果关系);第二模型级,其包含(多个)第二级因果关系114(例如,(多个)部件故障代码22和(多个)失效模式16因果关系);以及潜在地其它模型级。
根据一些实施例,因果权重可在图形模型110的每个级处被确定。第一级因果概率、可能性、或权重120(例如,系统级因果权重或系统到部件因果概率、可能性或权重)可例如被计算或确定。第一级因果权重120可例如表示或相当于给定的部件故障代码22发生或将随给定的系统故障代码20或结合给定的系统故障代码20发生的概率或可能性。
在一些实施例中,第一级因果权重120可表示给定的一个或多个部件故障代码22和给定的系统故障代码20将在相同的保修报告、修理车间数据、遥感勘测数据、或其它数据中发生的可能性或概率。第一级因果权重120可例如表示给定的部件级故障代码22和系统级故障代码20之间的相互关联性。第一级因果权重120可例如由表示、量化、或限定在部件级故障代码22和系统级故障代码20之间的因果和/或关联关系的数值、百分比、或其它值或参数表示。
例如,系统故障代码20可为发动机不发火系统故障代码。系统故障代码20(例如,发动机不发火系统故障代码)可因果地关联到一个或多个部件故障代码22,包含例如喷射器1控制电路故障代码、HO2S加热器性能传感器1故障代码、燃料修整系统贫故障代码、以及其它部件故障代码22。发动机不发火系统故障代码和喷射器1控制电路故障代码之间的第一级因果权重120可例如相当于1或另一值。发动机不发火系统故障代码和HO2S加热器性能传感器1故障代码之间的第一级因果权重120可例如为0.85或另一值。发动机不发火系统故障代码和燃料调整系统贫故障代码之间的第一级因果权重120可例如为0.7或另一值。与发动机不发火系统故障代码和HO2S加热器性能传感器1故障代码相比,发动机不发火系统故障代码和喷射器1控制电路1故障代码可例如为更高或更强的相互关联性。类似地,与发动机不发火系统故障代码和燃料修整系统贫故障代码相比,发动机不发火系统故障代码和HO2S加热器性能传感器1故障代码可例如为更高或更强的相互关联性。
根据一些实施例,第二级因果概率、可能性、或权重122(例如,部件级因果权重或部件到失效模式因果概率、可能性、或权重)可被计算或确定。第二级因果权重122可例如表示或相当于给定的失效模式16发生或将随或结合给定的部件故障代码22发生的概率或可能性。在一些实施例中,第二级因果权重122可表示给定的一个或多个部件故障代码22和给定的失效模式16将在相同的保修报告、修理车间数据、遥感勘测数据、或其它数据中发生的可能性或概率。第二级因果权重122可例如表示一个或多个失效模式16与一个或多个部件级故障代码22之间的相互关联性。第二级因果权重122可例如由表示、量化、或限定失效模式16与部件级故障代码22之间的因果和/或关联关系的数值、百分比、或其它值或参数表示。部件级故障代码22可例如与多个失效模式16相关或关联。类似地,失效模式16可例如与多个部件级故障代码22相关或关联。
例如,失效模式16(例如,燃料喷射器更换(例如,包含零件名称信息和失效描述信息)和/或其它失效模式)可与多个部件级故障代码22(例如,质量空气流量(MAF)传感器电路低频、富燃料修整系统、以及其它部件级故障代码)相关。燃料喷射器更换失效模式和富燃料调整系统部件故障代码之间的第二级因果权重122可例如为1或另一值。燃料喷射器更换失效模式和质量空气流量传感器电路低频故障代码之间的第二级因果权重122可例如为0或另一值。与燃料喷射器更换失效模式和质量空气流量传感器电路低频故障代码相比,燃料喷射器更换失效模式和富燃料修整系统部件故障代码可例如为更高或更强的相互关联性。
根据一些实施例,主题专家(104)(例如,具备车辆、相关装置(例如,维修工具和装置)、和/或车辆失效模式的专业知识的人),可使用历史数据12、规则10(例如,诊断规则)、和/或其它信息来审核或验证因果权重、可能性、或概率。不需要进行该运算。模型110(例如,包含第一级因果关系112、第一级因果权重120、第二级因果关系114、第二级因果权重122)可例如(例如,经输出装置42)输出到主题专家(104)以便分析。根据一些实施例,在主题专家审核(104)期间,第一级因果关系112、第一级因果权重120、第二级因果关系114、第二级因果权重122、以及可能地系统100中(例如,在模型110中)的其它信息可由SME修改。SME可例如修改,更改,或改变第一级因果权重120和第二级因果权重值122数值、百分比或其它信息。经修改的第一级因果权重120值、第二级因果权重122值、和其它信息可由SME(例如,使用输入装置40)在系统100处接收或输入到系统100中。模型110可例如基于或根据由系统100接收的经修改的第一级因果权重120值、第二级因果权重122值、和其它信息被更改或修改。在一些实施例中,SME可输入其它信息到系统100或修改模型110中的其它信息。
根据一些实施例,图形模型110可被用来在经销商车间、技术支持中心、或其它车辆相关设施处提供诊断决策支持(130)。车辆134(例如,客车、卡车、或其它车辆)可例如呈现失灵。车辆134可包含电子控制单元(ECU),并且ECU可从车辆134中的或与车辆134相关联的各个传感器接收一个或多个故障代码18(例如,系统故障代码20、部件故障代码22、或其它故障代码)。通常,车辆技工132可例如从ECU接收一个或多个故障代码18并且诊断车辆失灵。根据本发明的实施例,图形模型110可由系统100使用以基于从车辆134(例如,车辆ECU或另一装置)输出的一个或多个车辆特定或单独的车辆故障代码(例如车辆特定系统故障代码138、车辆特定部件故障代码139、或其它故障代码)来确定一个或多个失效模式16的条件概率(例如,概率推理或因果概率)。概率推理可例如从或基于模型(例如,图形模型110)或其它数据中得到的结论或预测。概率推理可包含基于条件概率、边际概率、或另一类型的概率的结论。概率推理可例如表示多项事件发生的可信度、可能性、或概率。概率推理可例如用来基于给定的数据对多项事件发生的可信度分级。例如,多个失效模式16可基于每个失效模式16将结合系统故障代码、部件故障代码、和/或其它数据的特定组合发生的可能性或可信度被分级。
根据一些实施例,失效模式16的条件概率可例如被用来根据基于一个或多个车辆特定故障代码(例如,车辆特定系统故障代码138、车辆特定部件故障代码139、或其它故障代码)的发生的概率或可能性而对多个失效模式16分级。基于根据条件概率的多个失效模式16的分级,高概率失效模式136(例如,一列故障模式或故障模式推荐列表)在一些实施例中可输出到技工132。基于高概率失效模式或故障模式推荐列表136,车辆技工132可例如通过检查车辆134并校正一个或多个高概率失效模式16来证实或验证高概率失效模式16。技工132可例如通过更换零件、修复系统、或进行其它修正动作来改正一个或多个高概率失效模式16。其它方法可被用来确定车辆故障模式。
在一些实施例中,图形模型110可在质量监控操作140中使用。车辆车队数据142可例如由系统100接收。车辆车队数据142可例如包含故障代码18(例如,系统故障代码20、部件故障代码22、或其它故障代码)、失效模式16、和/或与车辆146的车队中的一台或多台车辆144相关联的其它数据。图形模型110可例如被用来基于车辆车队数据142对车辆146的车队(例如,车辆车队146)中的一台或多台车辆144分类(140)。车辆144可例如基于使用系统故障代码20、部件故障代码22、失效模式16、和/或与车辆144相关联的其它数据的联合概率(例如,概率推理或因果概率)被分类。基于车辆分类148(例如,车辆故障分类),诊断工程师150可例如分析整个车辆车队146的趋势。诊断工程师150可例如调查来自许多不同的来源(例如,修理车间、远程信息处理服务等)的车辆车队数据142、保修索赔数据、操作参数标识符(PID)数据中的异常现象,和/或执行其它动作。基于车辆分类148(例如,车辆故障分类),质量工程师152可例如监控特定客车经销商(例如,客车经销权)、修理车间、保修部门等。
在一些实施例中,图形模型110可由系统100(例如,由处理器30)基于当前车辆车队数据142更新以包含系统故障代码20、部件故障代码22、失效模式16、和不在图形模型110中的其它数据的组合。图形模型110可因此基于当前车辆车队信息或数据142被改进和更新。
此处所讨论的系统100中的模块和/或其它模块、操作、系统、或方法的操作可例如由系统100内的处理器30执行,从而执行存储在系统100内的存储器20,但是可由另一处理器、由专用硬件、或其它系统执行。
图3是根据本发明的实施例的车辆诊断系统的一部分的示意图。根据一些实施例,模型110可基于历史数据12、规则10、和/或其它可能的其它数据在学习操作或途径期间被产生。模型110可例如为概率分层模型、图形模型、非循环图形模型、数学模型或其它类型的模型。历史现场数据12(例如,系统级故障代码20、部件故障代码22、其它故障代码18、失效模式16、以及其它数据)和规则10(例如,诊断规则)可被用来产生模型110。
根据一些实施例,综合数据分析102可例如被用来限定多个模型级(水平),每个模型级包含因果关系和因果权重。历史现场数据12可在综合数据分析运算102期间被处理或被分析以将历史现场数据12(例如,系统故障代码20、部件故障代码22、失效模式16、等)转换成预先定义的与模型110兼容的或适合于在模型110(例如,概率分层模型)中使用的形式或格式。综合数据分析102可例如被用来确定历史现场数据12内的因果关系和因果权重。例如,系统故障代码20与一个或多个部件故障代码22之间的因果关系和因果权重可被确定。类似地,一个或多个部件故障代码22与一个或多个失效模式16之间的因果关系和因果权重可被确定。
根据一些实施例,包含第一级因果关系112和第一级因果权重120的第一级模型210可被产生。第一级因果关系112可例如在系统故障代码20与部件故障代码22之间被限定。第一级因果关系112可例如使用综合数据分析运算102或其它方法或数学途径来限定。通过确定SDTC20在具有一个或多个部件故障代码22的相同的保修报告、车辆技工报告、遥感勘测数据、或其它历史现场数据12是否出现和/或出现多少次,综合数据分析运算102可例如限定系统故障代码20与部件故障代码22之间的关系。例如,可确定哪些部件故障代码22与给定的SDTC20相关,并且该关系可以模型110中的第一级因果关系112表示。
根据一些实施例,系统故障代码20与部件故障代码22之间的第一级因果权重、可能性、或(多个)概率关系120可被确定。第一级因果权重                                               
Figure 2012105538401100002DEST_PATH_IMAGE002
,120(例如,系统级因果权重、系统到部件因果概率、可能性或权重)可例如被计算或被确定。第一级因果权重120可例如包含或可相当于给定的部件故障代码22下系统故障代码20的条件概率。第一级因果权重
Figure 121243DEST_PATH_IMAGE002
,120(例如,与第i个部件相关的第i个第一级因果权重或因果)可例如为或可表示系统诊断故障代码20,
Figure 2012105538401100002DEST_PATH_IMAGE004
在给定的部件诊断故障代码22, 
Figure 2012105538401100002DEST_PATH_IMAGE006
(例如,第i个部件故障代码或DTC)下的条件概率或可能性。(多个)第一级因果权重120可例如使用诸如如下等式来计算或确定:
Figure 2012105538401100002DEST_PATH_IMAGE008
假定部件故障代码22, 
Figure 349968DEST_PATH_IMAGE006
发生或存在,(多个)第一级因果权重
Figure 192022DEST_PATH_IMAGE002
,120可例如表示系统故障代码20, 
Figure 587231DEST_PATH_IMAGE004
将发生或将存在的概率(例如,条件概率)或可信度。(多个)第一级因果权重120, 
Figure 214652DEST_PATH_IMAGE002
可例如使用用于图形模型的乘积规则(例如,贝叶斯规则)或另一数学途径来确定或计算。
(多个)第一级因果权重,120可例如为部件故障代码22与给定的系统故障代码20共享共有根本失效(common root failure)或根本原因的可信度的指示或表示。第一级因果权重120可例如由表示、量化、或限定系统故障代码20与给定的系统故障代码20共享共有根本失效或根本原因的可信度的数值、百分比、或其它值或参数表示。第一级因果权重120可例如包含或可相当于给定的部件故障代码22下系统故障代码20的条件概率。
根据一些实施例,多个第一级因果权重
Figure 304148DEST_PATH_IMAGE002
,120可被确定。例如,系统级故障代码20可例如与多个部件级故障代码22(例如,i个不同的部件级故障代码)相互关联,并且系统故障代码20与多个部件故障代码22共享共有根本失效或根本原因的可信度可被确定。例如,系统故障代码20(例如,发动机不发火或其它系统级故障代码)可被关联到多个故障级代码22(例如,燃料喷射器电路、质量空气流量(MAF)传感器、歧管绝对压力(MAP)传感器、不平坦道路状况、以及其它部件级故障代码)。
根据一些实施例,在主题专家审核(104)期间,主题专家可审核或确认第一级因果权重120,
Figure 565365DEST_PATH_IMAGE002
。历史数据12、规则10、第一级因果关系112、第一级因果权重120,
Figure 234244DEST_PATH_IMAGE002
、以及其它数据可例如(例如,经输出装置42)对主题专家(104)输出用于分析。主题专家可基于规则10(例如,诊断规则)、个人知识、或其它信息例如将系统修改到部件级因果权重120,
Figure 539192DEST_PATH_IMAGE002
,并且从而更新或修改图形模型110。主题专家(104)可例如审核历史现场数据12、第一级因果权重120,
Figure 293522DEST_PATH_IMAGE002
、以及其它数据来识别异常情况、噪声和/或误差。SME可向系统100输入经修改的历史现场数据12、第一级因果权重120值、以及其它信息。经修改的历史现场数据12、第一级因果权重120值、以及其它信息可由系统100(例如,使用输入装置40)接收。模型110可例如基于或根据由系统100接收的经修改的历史现场数据12、第一级因果权重120值、或其它信息被更改或修改。例如,历史现场数据12(例如,系统故障代码20、部件故障代码22、以及其它故障代码18)、第一级因果权重120值、或模型110中的其它信息可例如由系统100修改、改变或更新。在一些实施例中,SME可输入其它信息到系统100或修改模型110中的其它信息。
根据一些实施例,包含第二级因果关系114和第二级因果权重122的第二级模型220可被产生。第二级因果关系114(例如,部件到失效模式因果关系)可例如在部件故障代码22与失效模式16(例如,零件名称信息和其它信息)之间被限定。第二级因果关系114可例如使用综合数据分析运算102或其它方法或数学途径来限定。通过确定一个或多个部件故障代码22在具有一个或多个失效模式16的相同的数据输入(例如,保修报告、车辆技工报告、遥感勘测数据、或其它历史现场数据12输入)中是否出现和/或出现多少次,综合数据分析运算102可例如限定部件故障代码22与失效模式16之间的关系。例如,可确定哪些部件故障代码22与失效模式16相关,并且该关系可以模型110中的第二级因果关系114表示。
根据一些实施例,系统故障代码20与部件故障代码22之间的因果权重、可能性、或(多个)概率关系可被确定。第二级因果权重
Figure 2012105538401100002DEST_PATH_IMAGE010
,122(例如,与第i个部件和第j个失效模式相关的第二级因果权重)可例如被计算或被确定。第二级因果权重
Figure 92850DEST_PATH_IMAGE010
,122可例如为或可表示在给定的失效模式或根本原因16,(例如,第j个失效模式)下部件故障代码22,
Figure 429285DEST_PATH_IMAGE006
(例如,第i个部件故障代码或DTC)的条件概率或可能性。当在此处被使用时,失效模式16,可包含零件和/或(多个)系统名称以及可能地零件的失灵或失效的描述。第二级因果权重122,可例如使用诸如如下等式来计算或确定:
Figure 2012105538401100002DEST_PATH_IMAGE014
假定系统诊断故障代码20,
Figure 438195DEST_PATH_IMAGE004
发生或存在,第二级因果权重122,
Figure 393251DEST_PATH_IMAGE010
可例如表示部件故障代码22,
Figure 728417DEST_PATH_IMAGE006
将发生或将存在的概率(例如,条件概率)或可信度。部件故障代码22,
Figure 457339DEST_PATH_IMAGE006
、以及失效模式16,
Figure 536153DEST_PATH_IMAGE012
Figure 96447DEST_PATH_IMAGE006
可例如在保修报告输入、车辆技工报告输入、或其它历史现场数据12中发生。第二级因果权重122,
Figure 868094DEST_PATH_IMAGE010
可例如使用用于图形模型的乘积规则(例如,贝叶斯规则)或另一数学途径来确定或计算。
第二级因果权重122,
Figure 818733DEST_PATH_IMAGE010
可例如由表示、量化、或限定部件故障代码22与给定的失效模式16共享共有根本失效或根本原因的可信度的数值、百分比、或其它值或参数表示。第二级因果权重122可例如包含或可相当于给定的失效模式或根本原因16下部件故障代码22的条件概率。
根据一些实施例,多个第二级因果权重122,
Figure 514287DEST_PATH_IMAGE010
可被确定。例如,部件故障代码22可与多个失效模式16相互关联,并且部件故障代码22与多个失效模式16中的每一个共享共有根本失效或根本原因的可信度可被确定。例如,部件故障代码22(例如,燃料喷射器电路、质量空气流量(MAF)传感器电路低频)可与多个失效模式16(例如,燃料喷射器失效、燃料喷射燃料轨道组件更换)相关。
根据一些实施例,在主题专家审核(104)期间,主题专家可审核、确认、或修改第二级因果权重122,
Figure 866771DEST_PATH_IMAGE010
。主题专家(104)可例如使用历史数据12(例如,系统故障代码20、部件故障代码22、以及其它信息)、规则10(例如,诊断规则)、和/或其它信息来审核部件级因果权重120,w i。主题专家可例如基于规则10(例如,诊断规则)、个人知识、 或其它信息来审核并修改第二级因果权重122,d ij ,并且从而更新或修改模型110。SME可向系统100输入经修改的历史现场数据12、第二级因果权重122值、以及其它信息。经修改的历史现场数据12、第二级因果权重122值、以及其它信息可由系统100(例如,使用输入装置40)接收。模型110可例如基于或根据由系统100接收的经修改的历史现场数据12、第二级因果权重122值、或其它信息被更改或修改。例如,历史现场数据12(例如,系统故障代码20、部件故障代码22、以及其它故障代码18)、第二级因果权重122值、或模型110中的其它信息可例如由系统100修改、改变、更新。在一些实施例中,SME可输入其它信息到系统100或修改模型110中的其它信息。
根据一些实施例,主题专家(104)可审核历史现场数据12、第一级因果关系112、第二级因果关系114、第一级因果权重120、第二级因果权重122、以及其它数据以识别异常情况或误差。例如,如果车辆技工、保修部门雇员、汽车代理权雇员、或其它用户将数据不正确地输入到保修索赔、技工逐字记录、修理车间报告、或被包含在历史现场数据12中的其它数据库中,则异常情况和误差可发生。主题专家(104)可例如通过将数据输入到系统100中或修改系统100中的数据来修改模型110以改正数据中的异常情况、噪声、和/或误差。
根据一些实施例,第一级模型210、第二级模型220以及潜在地其它级模型或信息可被合并以产生图形模型110(例如,概率分层模型、非循环图形模型、或其它类型的模型、数据集、或信息集)。图形模型110可例如表示系统级故障代码20、部件级故障代码22、失效模式16、其它故障代码18、以及潜在地其它数据之间的关系。第一级模型210可例如包含系统故障代码20与部件故障代码22之间的第一级因果关系112以及相关联的系统到部件级因果权重120,w i。第二级模型220可例如包含部件故障代码22与失效模式16之间的第二级因果关系114以及相关联的部件到(多个)失效模式因果权重122,d ij
根据一些实施例,第一级模型210、第二级模型220、以及潜在地其它级模型或信息可通过确定这些级模型之间的公共数据或信息被合并。一个模型中的信息可例如经公共信息与另一个模型中的信息相关。例如,在合并第一级模型210和第二级模型220中,被包含在第一级模型210和第二级模型220两者中的部件故障代码22可由系统100确定。第一级模型210中的系统故障代码20可例如经被包含在第一级模型210和第二级模型220两者中的部件故障代码20与第二级模型220中的失效模式16相关。其它方法和途径可被用来合并级模型。
根据一些实施例,部件故障代码的先验概率可被确定或计算。部件故障代码的先验概率
Figure 2012105538401100002DEST_PATH_IMAGE016
(例如,第i个部件故障代码先验概率)可以使用诸如如下方程来计算或确定:
Figure 2012105538401100002DEST_PATH_IMAGE018
部件故障代码的先验概率
Figure 871637DEST_PATH_IMAGE016
可例如为或可表示部件故障代码发生的不确定性或可能性,并且可被表示为
Figure 2012105538401100002DEST_PATH_IMAGE020
。部件故障代码的先验概率
Figure 638734DEST_PATH_IMAGE016
可例如被用来确定或计算联合概率和边际概率。根据一些实施例,系统故障代码的先验概率可使用与被用来确定部件故障代码的先验概率的方法类似的方法来计算或确定。
根据一些实施例,失效模式的先验概率
Figure 2012105538401100002DEST_PATH_IMAGE022
(例如,第j个失效模式先验概率)可使用诸如如下方程来计算或确定:
Figure 2012105538401100002DEST_PATH_IMAGE024
失效模式的先验概率
Figure 121668DEST_PATH_IMAGE022
可例如为或可表示失效模式(例如,包含零件或系统名称信息)发生的不确定性或可能性,并且可被表示为
Figure 2012105538401100002DEST_PATH_IMAGE026
。失效模式的先验概率
Figure 594237DEST_PATH_IMAGE022
可例如被用来确定或计算条件概率或边际概率。
图4是根据本发明的实施例的根本原因分析方法的示意。根据一些实施例,模型110可被用来提供诊断决策支持或根本原因分析。车辆134可例如向系统100输出单独的车辆或车辆特定故障代码(例如,车辆特定系统故障代码138、部件故障代码139、或其它故障代码)。根据本发明的实施例,图形模型110可在概率推理操作(320)中由系统100使用以基于从车辆134(例如,车辆ECU或另一装置)输出的一个或多个故障代码(例如车辆特定系统故障代码138、车辆部件故障代码139或另一故障代码)来确定一个或多个高概率失效模式。在概率推理操作320中,条件概率330(例如,概率推理)或一个或多个失效模式16的其它类型的概率可例如基于从车辆134输出的车辆特定故障代码138和车辆特定部件故障代码139来计算。条件概率、可能性、或权重330可例如使用诸如下列方程的方程来确定或计算:
Figure 2012105538401100002DEST_PATH_IMAGE028
该方程可例如表示基于从车辆134输出的车辆特定系统故障代码138和车辆特定部件故障代码139来计算或确定失效模式16发生的概率或可能性(例如,条件概率)的一种可能的方法。当然可使用其它方程、数值方法、以及数学途径。
条件概率330可例如使用用于图形模型的乘积规则(例如贝叶斯规则)或另一数学途径来确定或计算。条件概率330可例如基于第一部件失效代码的先验概率
Figure 2012105538401100002DEST_PATH_IMAGE030
来计算,其可表示第一部件失效代码发生的不确定性或可能性。假定车辆特定系统故障代码138,
Figure 520736DEST_PATH_IMAGE004
以及车辆特定部件故障代码139,
Figure 508284DEST_PATH_IMAGE006
发生或存在,条件概率330,
Figure 2012105538401100002DEST_PATH_IMAGE032
,可例如表示失效模式16
Figure 2012105538401100002DEST_PATH_IMAGE034
将发生或存在的概率。条件概率330,
Figure 44176DEST_PATH_IMAGE032
可例如表示给定的失效模式16,
Figure 105673DEST_PATH_IMAGE034
、车辆特定部件故障代码139,
Figure 2012105538401100002DEST_PATH_IMAGE036
、以及车辆特定系统故障代码138,之间的相互关联性。条件概率330,
Figure 864868DEST_PATH_IMAGE032
,可例如由表示、量化、或限定失效模式16与给定的车辆特定系统故障代码138和车辆特定部件故障代码139共享共有根本失效或根本原因的可信度的数值、百分比、或其它值或参数表示。
根据一些实施例,条件概率330可例如被用来依据失效模式16结合车辆特定故障代码(例如,车辆特定系统故障代码138、车辆特定部件故障代码139、或其它故障代码)发生的可信度或可能性来对多个失效模式16分级。例如,如果第一失效模式结合车辆特定故障代码发生的条件概率330高于第二失效模式16结合车辆特定故障代码发生的条件概率,则第一失效模式16可被分级为高于第二失效模式16。条件概率330可例如被用来基于概率推理确定高概率失效模式或最可能的根本原因340。
根据一些实施例,基于根据条件概率的多个失效模式16的分级,高概率失效模式340(例如,最可能的根本原因、故障模式的建议列表、失效或故障模式推荐列表、等)在一些实施例中可对技工输出用于验证(350)。基于高概率失效模式340,车辆技工可例如检查车辆134并且改正一个或多个高概率失效模式或根本原因340。车辆技工可例如通过更换零件、修复系统、或在车辆134上进行其它修正动作来改正一个或多个高概率失效模式340。向车辆技工输出高概率失效模式340可允许车辆技工迅速确定车辆失灵的根本原因或失效模式。
图5是根据本发明的实施例的质量分析方法的示意图。车辆车队数据410可例如由系统100接收。车辆车队数据410可例如包含车辆故障或失灵记录412。车辆故障记录412和车辆车队数据410可例如包含车队车辆故障代码(例如,车队车辆系统故障代码402、车队车辆故障代码404、或其它故障代码)、车队车辆失效模式406、和/或与车辆146的车队中的一台或多台车辆144相关联的其它数据。图形模型110可例如被用来基于车辆车队数据142(例如,车队车辆系统故障代码402、车队车辆故障代码404、车队车辆失效模式406)对车辆146的车队(例如,车辆车队146)中的一台或多台车辆144进行分类420。车辆144可例如基于车队车辆系统故障代码402、车队车辆故障代码404、车队车辆失效模式406、和/或与车辆144相关联的其它数据的发生的边际概率430(例如,概率推理)被分类。边际概率、可能性、或权重430可例如使用求和规则,乘积规则,因式分解规则,和/或诸如下列方程中的方程中的其它图形模型规则来确定或计算:
Figure 2012105538401100002DEST_PATH_IMAGE038
该方程可例如表示计算或确定车队车辆系统故障代码402、车队车辆组件故障代码404、车队车辆失效模式406、和/或与车辆144相关联的其它数据的发生的概率或可能性(例如,边际概率)的一种可能的方法。当然可使用其它方程、数值方法、以及数学途径。边际概率430,
Figure 2012105538401100002DEST_PATH_IMAGE040
,可例如基于第一失效模式、第二失效模式
Figure 2012105538401100002DEST_PATH_IMAGE042
、系统诊断故障代码
Figure 949815DEST_PATH_IMAGE004
、第一部件故障代码
Figure 451073DEST_PATH_IMAGE036
、以及第二部件故障代码
Figure 2012105538401100002DEST_PATH_IMAGE044
来确定或计算。
根据一些实施例,边际概率430,
Figure 350895DEST_PATH_IMAGE040
可例如基于联合图形模型概率432,
Figure 2012105538401100002DEST_PATH_IMAGE046
(例如,联合模型概率、联合概率、等)来确定。联合图形模型概率432,
Figure 979323DEST_PATH_IMAGE046
可例如使用诸如如下方程来计算或确定:
Figure 2012105538401100002DEST_PATH_IMAGE048
联合图形模型概率432,
Figure 94041DEST_PATH_IMAGE046
可例如使用用于图形模型的乘积规则(例如贝叶斯规则)和链式规则或另一数学途径来确定或计算。联合图形模型概率432可例如基于第一失效模式的先验概率
Figure 2012105538401100002DEST_PATH_IMAGE050
、第二失效模式的概率
Figure DEST_PATH_IMAGE052
、以及其它变量和/或参数来计算。第一失效模式的先验概率可例如为或可表示第一失效模式发生的不确定性或可能性。第二失效模式的先验概率可例如为或可表示第二失效模式发生的不确定性或可能性。
根据一些实施例,联合图形(junction graph)、信息传递、和/或其它数学方法或计算法可被用来确定或计算联合图形模型概率432,
Figure 585437DEST_PATH_IMAGE046
。为了产生联合图形,被完全连接的变量或随机变量(例如,系统故障代码20、部件故障代码22、失效模式16、等)可例如由系统100分组成组节点。如果这些变量中的每一个与所有其它变量因果相关,则一组随机的变量可例如被完全连接。相邻的组节点可例如包含一个或多个公共变量。组节点可例如被连接到具有公共变量的相邻的组节点以产生联合图形。在联合图形中的组节点中的每一个在一些实施例中可与其相邻的或邻近组点相关或通过所述相邻的或邻近组节点之间的公共变量与与其相邻的或邻近组点联通。在一些实施例中,组节点可被以树型布置,并且信息传递技术可被用来计算多个随机变量的联合图形模型概率432。(当在此处被讨论时,通过创建树、包含节点和关系的图形、或使用视觉项所描述的其它组织来组织信息可包含创建计算机系统内部的数据结构,该数据结构可使用视觉项被描述但是可以以其它方式被存储在计算机系统中)。当然可使用其它数学方法和计算方法。
联合图形模型概率432,
Figure 476032DEST_PATH_IMAGE046
可例如表示第一失效模式
Figure 273087DEST_PATH_IMAGE034
、第二失效模式
Figure 944240DEST_PATH_IMAGE042
、系统诊断故障代码、第一部件故障代码
Figure 128413DEST_PATH_IMAGE036
、以及第二部件故障代码可共享公共根本原因或根本失效的概率、可能性或可信度。联合图形模型概率432可例如由表示、量化、或限定第一失效模式
Figure 5551DEST_PATH_IMAGE034
、第二失效模式
Figure 717155DEST_PATH_IMAGE042
、系统诊断故障代码、第一部件故障代码
Figure 783517DEST_PATH_IMAGE036
、以及第二部件故障代码
Figure 684389DEST_PATH_IMAGE044
共享公共根本原因或根本失效的可信度的数值、百分比、或其它值或参数表示。
根据一些实施例,联合图形模型概率432,
Figure 934104DEST_PATH_IMAGE046
可被用来计算或确定边际概率430,,如此处所讨论。边际概率430,可例如表示车队车辆失效模式406,、车队车辆系统诊断故障代码402,
Figure 228634DEST_PATH_IMAGE004
、以及车队车辆部件故障代码404,
Figure 68414DEST_PATH_IMAGE006
可共享公共根本原因或因果相关的概率。边际概率430,
Figure 549074DEST_PATH_IMAGE040
可例如由表示、量化、或限定第一失效模式、系统诊断故障代码
Figure 760929DEST_PATH_IMAGE004
、以及第一部件故障代码共享公共根本原因或另外相关的可信度的数值、百分比或其它值或参数表示。
基于边际概率430,车辆失灵记录412(例如,关于车辆车队146中的特定车辆144的车辆车队数据410)可例如(例如,在车辆故障分类运算420中)被分类(420)。例如,如果表示或关于(例如,基于车队车辆系统故障代码402、车队车辆部件故障代码404、车队车辆失效模式406、等计算的)车辆失灵记录412的边际概率430高于预先定义的阈值(例如,高于0.8、在0.8与1之间、或另一阈值),则车辆失灵记录412可以被认为与车辆诊断识别的车辆失效或根本原因相关。
如果例如表示车辆失灵记录412的边际概率430被视为中等或中间范围概率值440(例如,在0.6与0.8之间或概率值的另一范围),则车辆失灵记录412可向质量人员460(例如,商标质量管理员、质量分析员、等)或其它用户输出。质量员460可例如调查与(例如,基于车队车辆系统故障代码402、车队车辆部件故障代码404、车队车辆失效模式406、等计算的)失灵记录412相关联的特定车辆144上的修理或采取其它动作。质量员460在一些实施例中可监测与失灵记录412或车辆车队数据410关联或相关的特定汽车经销商(例如,汽车经销商)、修理车间、质保部门等。
根据一些实施例,如果表示车辆失灵记录412的边际概率430被视为低概率值442(例如,在0.2与0.6之间或概率值的另一范围),则车辆失灵记录412(例如,包含车队车辆系统故障代码402、车队车辆部件故障代码404、车队车辆失效模式406、等)可向质量人员460或其它用户输出。质量人员460可例如调查在与失灵记录412相关联的特定车辆144上的修理,会见(多个)诊断工程师450以确定失灵的根本原因,和/或采取其它动作。
根据一些实施例,如果表示车辆失灵记录412的边际概率430被视为极低概率值444(例如,在0与0.05之间或概率值的另一范围,或低于概率阈值),则车辆失灵记录412(例如,包含车队车辆系统故障代码402、车队车辆部件故障代码404、车队车辆失效模式406、等)可向诊断工程师450或其它用户输出。诊断工程师450可例如确定在与失灵记录412相关联的特定车辆144中的失灵的根本原因或采取其它动作。
在一些实施例中,图形模型110可基于当前车辆车队数据410和/或(多个)车辆失灵记录412被更新(470)以包含系统故障代码20、部件故障代码22、失效模式16、和不在图形模型110中的其它数据的组合。例如,由系统100接收的车辆失灵记录412可包含车队车辆系统故障代码402、车队车辆部件故障代码404、车队车辆失效模式406、和/或不在模型110中的其它信息的组合。图形模型110可因此被改善或被更新以增加包含已经不在模型110中的组合的车辆车队信息410和/或车辆失灵记录412。在一些实施例中,SME可审核新信息的增加以确保增加的信息是有效的(例如,非输入错误、尚未在模型110中、非起因于误差),并且可通过在系统100中(例如,经输入装置40)输入信息来修改增加的车辆车队信息410或车辆失灵记录412。
图6是根据本发明的实施例的方法的流程图。在运算500中,系统故障代码(例如,图1的系统故障代码20)、部件故障代码(例如,图1的部件故障代码22)、和失效模式(例如,图1的失效模式16)可以在系统(例如,图1的系统100)处被接收。
在运算510中,包含第一级因果关系(例如,图3的第一级因果关系112)的第一级模型(例如,图3的第一级模型210)和系统故障代码与部件故障代码之间的第一级因果权重(例如,图3的第一级因果权重120)可被产生。
在运算520中,包含第二级因果关系(例如,图3的第二级因果关系114)的第二级模型(例如,图3的第二级模型220)和部件故障代码与失效模式之间的第二级因果权重(例如,图3的第二级因果权重122)可被产生。
在运算530中,第一级模型和第二级模型可被合并以产生诸如图形模型(例如,图2的图形模型110)的模型。图形模型可例如为概率分层模型、非循环图形模型、或其它类型的模型。
在运算540中,一个或多个因果概率(例如,图4的条件概率330、图5的边际概率430)可使用图形模型来确定。对于试验车队监测和根本原因分析,一个或多个因果概率可例如被用来使用图形模型产生(多个)概率推理。
可使用其它或不同的一系列运算。
本发明的实施例可包含用于进行此处所描述的运算的装置。这样的装置可被特别配置用于期望的目的,或可包括由存储在计算机中的计算程序选择性地激活或重新配置的计算机或处理器。这样的计算机程序可以被存储在计算机可读或处理器可读非暂态存储介质;包含软盘、光盘、CD-ROM、磁光盘的任何类型的磁盘;只读存储器(ROM)、随机存取存储器(RAM)、电可编程只读存储器(EPROM)、电可擦除且可编程只读存储器(EEPROM)、磁卡或光卡、或适合于存储电子指令的任何其它类型的介质中。应了解,各种编程语言可被用来实现如此处所描述的本发明的教义。本发明的实施例可包含诸如非暂态计算机或处理器可读非暂态存储介质的物件,诸如例如编码、包含或存储例如计算机可执行指令的指令的存储器、盘驱动器、或USB闪存存储器,所述指令当由处理器或控制器执行时促使处理器或控制器向实现此处所公开的方法。这些指令可促使处理器或控制器执行实现此处所公开的方法的过程。
在此处公开了不同的实施例。某些实施例的特征可与其它实施例的特征合并;因此,某些实施例可以是多个实施例的特征的组合。本发明的实施例的前述描述已经被提出用于说明和描述的目的。该描述并不意味着是详尽的或用于将原理限制于所公开的精确的形式。应由本领域的人了解的是,许多修改、变型、替代、改变、以及等同物依据以上教义是可能的。因此,应理解,所附权利要求旨在覆盖如落入本发明的真正精神内的所有这样的修改和改变。

Claims (10)

1. 一种方法,包括:
接收系统故障代码、部件故障代码、以及失效模式;
产生第一级模型,所述第一级模型包括所述系统故障代码与所述部件故障代码之间的第一级因果关系和第一级因果权重;
产生第二级模型,所述第二级模型包括所述部件故障代码与所述失效模式之间的第二级因果关系和第二级因果权重;
合并所述第一级模型和所述第二级模型以产生图形模型;以及
使用所述图形模型确定一个或多个概率推理。
2. 根据权利要求1所述的方法,其特征在于:
所述第一级因果权重包括给定所述部件故障代码下的所述系统故障代码的条件概率;并且
所述第二级因果权重包括给定所述失效代码下的所述部件故障代码的条件概率。
3. 根据权利要求1所述的方法,其特征在于,包括:
接收一个或多个车辆特定系统故障代码和一个或多个车辆特定部件故障代码;
基于所述概率推理确定一个或多个高概率失效模式,其中使用所述图形模型确定一个或多个概率推理包括:基于所述车辆特定系统故障代码、所述车辆特定部件故障代码和所述图形模型来确定条件概率;以及
向用户输出高概率失效模式。
4. 根据权利要求1所述的方法,其特征在于,包括:
接收车辆失灵记录,所述车辆失灵记录包括一个或多个车队车辆系统故障代码、一个或多个车队车辆部件故障代码、以及一个或多个车队车辆失效模式;
基于所述概率推理对所述车辆失灵记录分类,其中使用所述图形模型确定一个或多个概率推理包括:基于所述车队车辆系统故障代码、所述车队车辆部件故障代码、以及所述车辆失效模式来确定边际概率;以及
向用户输出已分类的车辆失灵。
5. 根据权利要求4所述的方法,其特征在于,向用户输出所述已分类的车辆失灵记录包括:如果所述已分类的车辆失灵记录包括低或中等概率,则向质量管理员输出一个或多个车辆故障记录。
6. 根据权利要求4所述的方法,其特征在于,向用户输出一个或多个已分类的车辆故障记录包括:如果所述已分类的车辆失灵记录包括低于阈值的概率,则向诊断工程师输出所述一个或多个车辆故障记录。
7. 根据权利要求1所述的方法,其特征在于,包括:
接收一个或多个车辆失灵记录,所述一个或多个车辆失灵记录包括一个或多个车队车辆系统故障代码、一个或多个车队车辆部件故障代码、以及一个或多个车队车辆失效模式;并且
更新所述图形模型以包括在先前图形模型中没有的一个或多个车辆失灵记录。
8. 根据权利要求1所述的方法,其特征在于,所述图形模型包括概率分级模型。
9. 一种系统,包括:
存储器;以及
处理器,其用以:
接收系统故障代码、部件故障代码、以及失效模式;
产生第一级模型,所述第一级模型包括所述系统故障代码与所述部件故障代码之间的第一级因果关系和第一级因果权重;
产生第二级模型,所述第二级模型包括所述部件故障代码与所述失效模式之间的第二级因果关系和第二级因果权重;
合并所述第一级模型和所述第二级模型以产生图形模型;和
使用所述图形模型确定一个或多个因果概率。
10. 一种方法,包括:
接收系统诊断故障代码(DTC)、部件DTC、以及根本原因;
确定第一级模型,所述第一级模型包括在系统DTC与部件DTC之间的第一级因果关系和第一级因果权重;
确定第二级模型,所述第二级模型包括在部件 DTC与根本原因之间的第二级因果关系和第二级因果权重;并且
基于所述第一级模型和所述第二模型,产生非循环图形模型。
CN201210553840.1A 2011-12-19 2012-12-19 用于系统级故障的根本原因分析和质量监控的方法和系统 Expired - Fee Related CN103163877B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/329,816 2011-12-19
US13/329816 2011-12-19
US13/329,816 US8732112B2 (en) 2011-12-19 2011-12-19 Method and system for root cause analysis and quality monitoring of system-level faults

Publications (2)

Publication Number Publication Date
CN103163877A true CN103163877A (zh) 2013-06-19
CN103163877B CN103163877B (zh) 2017-04-26

Family

ID=48522346

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210553840.1A Expired - Fee Related CN103163877B (zh) 2011-12-19 2012-12-19 用于系统级故障的根本原因分析和质量监控的方法和系统

Country Status (3)

Country Link
US (1) US8732112B2 (zh)
CN (1) CN103163877B (zh)
DE (1) DE102012223393A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104176060A (zh) * 2014-07-25 2014-12-03 湖南大学 一种电动汽车整车故障分级处理方法
CN105404268A (zh) * 2014-09-10 2016-03-16 波音公司 交通工具审核和交通工具系统的维护和诊断控制
CN105808557A (zh) * 2014-12-30 2016-07-27 陕西重型汽车有限公司 车辆监控系统的数据质量分析系统及其方法
CN106462158A (zh) * 2014-06-26 2017-02-22 庞巴迪公司 使用检测事件的潜在原因的发生概率辅助维护飞机和其它移动平台的方法和设备
CN106557083A (zh) * 2015-09-26 2017-04-05 广州汽车集团股份有限公司 车辆电控单元的故障码记录方法及车辆电控单元
CN108275094A (zh) * 2017-01-06 2018-07-13 通用汽车环球科技运作有限责任公司 用于隔离dc电源的低充电状态的根本原因的方法和设备
WO2019100763A1 (zh) * 2017-11-21 2019-05-31 阿里巴巴集团控股有限公司 一种车险定损数据的处理方法、装置和处理设备
CN109844666A (zh) * 2016-10-12 2019-06-04 哈曼国际工业有限公司 用于车内预测性故障检测的系统和方法
CN110887671A (zh) * 2019-10-18 2020-03-17 北京百度网讯科技有限公司 定位车辆故障的根本原因的方法和装置
CN111520231A (zh) * 2019-12-30 2020-08-11 哈尔滨工程大学 一种基于chde和pwfp的共轨喷油器敏感故障特征提取方法
CN113093679A (zh) * 2015-10-09 2021-07-09 费希尔-罗斯蒙特系统公司 用于将因果矩阵表示为数值表示集合的系统和方法

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8977423B2 (en) * 2012-05-23 2015-03-10 Snap-On Incorporated Methods and systems for providing vehicle repair information
US9064213B2 (en) * 2013-02-05 2015-06-23 International Business Machines Corporation Dynamic model-based analysis of data centers
CN103439944A (zh) * 2013-08-27 2013-12-11 中联重科股份有限公司渭南分公司 一种工程机械智能故障诊断系统、方法和工程机械
US20170024943A1 (en) * 2014-03-19 2017-01-26 Cummins, Inc. System and Method for Service Assessment
CN104298225B (zh) * 2014-09-25 2017-07-04 中国石油化工股份有限公司 化工过程异常工况因果关系推理模型建模与图形化展示方法
WO2016117041A1 (ja) * 2015-01-21 2016-07-28 株式会社日立製作所 損傷推定装置
EP3156870B1 (en) * 2015-10-15 2022-06-01 Tata Consultancy Services Limited Systems and methods for predictive reliability mining
KR101786228B1 (ko) * 2015-12-01 2017-10-18 현대자동차주식회사 차량 고장 진단방법
JP6443372B2 (ja) * 2016-03-24 2018-12-26 トヨタ自動車株式会社 車両用ソフトウェア割当てシステム
GB201621434D0 (en) * 2016-12-16 2017-02-01 Palantir Technologies Inc Processing sensor logs
US10279816B2 (en) * 2017-03-07 2019-05-07 GM Global Technology Operations LLC Method and apparatus for monitoring an on-vehicle controller
US10909132B2 (en) 2017-06-09 2021-02-02 Snap-On Incorporated Analyzing vehicles based on common circuit elements
US11645131B2 (en) * 2017-06-16 2023-05-09 Cisco Technology, Inc. Distributed fault code aggregation across application centric dimensions
US10395444B1 (en) * 2017-08-10 2019-08-27 Zoox, Inc. Vehicle self-diagnostics
EP3451101B1 (de) * 2017-09-05 2022-04-20 Lisa Dräxlmaier GmbH Verfahren zum bestimmen einer fehlerursache eines fehlers in einer fahrzeugkomponente
US10600261B2 (en) * 2017-10-05 2020-03-24 GM Global Technology Operations LLC Vehicle with health-based active self-testing method
US10497185B2 (en) * 2017-11-28 2019-12-03 The Boeing Company Apparatus and method for vehicle maintenance scheduling and fault monitoring
DE102017011685A1 (de) * 2017-12-18 2019-06-19 lnfineon Technologies AG Verfahren und Vorrichtung zur Verarbeitung von Alarmsignalen
US20190273649A1 (en) * 2018-03-02 2019-09-05 Nxp B.V. Vehicle quality of service device
CN108627345B (zh) * 2018-05-11 2020-07-10 浙江师范大学 一种汽轮机系统级故障的诊断方法及系统
US10926888B2 (en) * 2018-08-07 2021-02-23 The Boeing Company Methods and systems for identifying associated events in an aircraft
US11151808B2 (en) * 2018-12-06 2021-10-19 GM Global Technology Operations LLC Vehicle fault root cause diagnosis
US11017572B2 (en) * 2019-02-28 2021-05-25 Babylon Partners Limited Generating a probabilistic graphical model with causal information
CN110084500B (zh) * 2019-04-19 2020-03-31 深圳市德塔防爆电动汽车有限公司 基于安全树概率和安全重要度的电动车辆安全控制方法和电动车辆
EP4080303A1 (en) * 2021-04-22 2022-10-26 Abb Schweiz Ag Decision support in industrial plants
US20220371530A1 (en) * 2021-05-19 2022-11-24 Pony Ai Inc. Device-level fault detection
US11914358B2 (en) 2021-09-01 2024-02-27 Ford Global Technologies, Llc Methods and systems for anomaly detection of a vehicle
DE102022208653A1 (de) 2022-08-22 2024-02-22 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren und Vorrichtung zum Ermitteln, ob in einer Fahrzeugflotte eine Anomalie vorliegt, mittels Wissensgraphen
DE102022003086A1 (de) 2022-08-23 2024-02-29 Mercedes-Benz Group AG Verfahren und System zur Fehleranalyse

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003042770A1 (en) * 2001-11-16 2003-05-22 Abb Ab Provision of data for analysis
DE10235525B4 (de) * 2001-09-10 2004-09-09 Daimlerchrysler Ag Verfahren und System zur Überwachung des Zustands eines Fahrzeugs
US20050096854A1 (en) * 2002-02-01 2005-05-05 Larsson Jan E. Apparatus, method and computer program product for modelling causality in a flow system
CN1862278A (zh) * 2005-05-12 2006-11-15 通用电气公司 预测电动机剩余寿命的方法和系统

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6141608A (en) 1997-10-28 2000-10-31 Snap-On Tools Company System for dynamic diagnosis of apparatus operating conditions
US6308120B1 (en) 2000-06-29 2001-10-23 U-Haul International, Inc. Vehicle service status tracking system and method
US7209860B2 (en) 2003-07-07 2007-04-24 Snap-On Incorporated Distributed expert diagnostic service and system
US20050222817A1 (en) 2004-03-09 2005-10-06 Traceability System Architects, Inc. Computer implemented methods and systems for storing product history and/or failure data and/or analyzing causes of component and/or system failure
US7379799B2 (en) 2005-06-29 2008-05-27 General Electric Company Method and system for hierarchical fault classification and diagnosis in large systems
US7765040B2 (en) 2006-06-14 2010-07-27 Spx Corporation Reverse failure analysis method and apparatus for diagnostic testing
US20080228338A1 (en) 2007-03-15 2008-09-18 Honeywell International, Inc. Automated engine data diagnostic analysis
JP4502037B2 (ja) 2008-04-02 2010-07-14 トヨタ自動車株式会社 故障診断用情報生成装置及びシステム
US8170743B2 (en) 2009-01-29 2012-05-01 GM Global Technology Operations LLC Integrated diagnosis and prognosis system as part of the corporate value chain
US8095261B2 (en) 2009-03-05 2012-01-10 GM Global Technology Operations LLC Aggregated information fusion for enhanced diagnostics, prognostics and maintenance practices of vehicles
US8027782B2 (en) * 2009-09-16 2011-09-27 GM Global Technology Operations LLC Pattern recognition for random misfire
US9613472B2 (en) 2009-09-18 2017-04-04 Toyota Motor Sales, U.S.A., Inc. System and method for data collection and messaging
US8498776B2 (en) * 2009-11-17 2013-07-30 GM Global Technology Operations LLC Fault diagnosis and prognosis using diagnostic trouble code markov chains
US8473330B2 (en) 2009-12-10 2013-06-25 GM Global Technology Operations LLC Software-centric methodology for verification and validation of fault models
US8301333B2 (en) * 2010-03-24 2012-10-30 GM Global Technology Operations LLC Event-driven fault diagnosis framework for automotive systems
US8392096B2 (en) * 2010-04-19 2013-03-05 GM Global Technology Operations LLC Cylinder combustion performance monitoring and control
US8433472B2 (en) * 2010-08-04 2013-04-30 GM Global Technology Operations LLC Event-driven data mining method for improving fault code settings and isolating faults
US8527441B2 (en) * 2011-03-10 2013-09-03 GM Global Technology Operations LLC Developing fault model from service procedures
US8509985B2 (en) * 2011-05-25 2013-08-13 GM Global Technology Operations LLC Detecting anomalies in fault code settings and enhancing service documents using analytical symptoms
US8532908B2 (en) * 2011-05-31 2013-09-10 GM Global Technology Operations LLC System and method for estimating indicated mean effective pressure of cylinders in an engine
US8601862B1 (en) * 2012-05-22 2013-12-10 GM Global Technology Operations LLC System and method for detecting misfire based on a firing pattern of an engine and engine torque

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10235525B4 (de) * 2001-09-10 2004-09-09 Daimlerchrysler Ag Verfahren und System zur Überwachung des Zustands eines Fahrzeugs
WO2003042770A1 (en) * 2001-11-16 2003-05-22 Abb Ab Provision of data for analysis
US20050096854A1 (en) * 2002-02-01 2005-05-05 Larsson Jan E. Apparatus, method and computer program product for modelling causality in a flow system
CN1862278A (zh) * 2005-05-12 2006-11-15 通用电气公司 预测电动机剩余寿命的方法和系统

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10395439B2 (en) 2014-06-26 2019-08-27 Bombardier Inc. Methods and apparatus for assisting in the maintenance of aircraft and other mobile platforms using occurrence probabilities of potential causes of a detected event
CN106462158A (zh) * 2014-06-26 2017-02-22 庞巴迪公司 使用检测事件的潜在原因的发生概率辅助维护飞机和其它移动平台的方法和设备
CN106462158B (zh) * 2014-06-26 2020-01-10 庞巴迪公司 使用检测事件的潜在原因的发生概率辅助维护飞机和其它移动平台的方法和设备
CN104176060B (zh) * 2014-07-25 2016-08-24 湖南大学 一种电动汽车整车故障分级处理方法
CN104176060A (zh) * 2014-07-25 2014-12-03 湖南大学 一种电动汽车整车故障分级处理方法
CN105404268B (zh) * 2014-09-10 2019-06-25 波音公司 交通工具审核和交通工具系统的维护和诊断控制
CN105404268A (zh) * 2014-09-10 2016-03-16 波音公司 交通工具审核和交通工具系统的维护和诊断控制
CN105808557B (zh) * 2014-12-30 2019-03-05 陕西重型汽车有限公司 车辆监控系统的数据质量分析系统及其方法
CN105808557A (zh) * 2014-12-30 2016-07-27 陕西重型汽车有限公司 车辆监控系统的数据质量分析系统及其方法
CN106557083A (zh) * 2015-09-26 2017-04-05 广州汽车集团股份有限公司 车辆电控单元的故障码记录方法及车辆电控单元
CN106557083B (zh) * 2015-09-26 2018-10-19 广州汽车集团股份有限公司 车辆电控单元的故障码记录方法及车辆电控单元
CN113093679A (zh) * 2015-10-09 2021-07-09 费希尔-罗斯蒙特系统公司 用于将因果矩阵表示为数值表示集合的系统和方法
CN109844666A (zh) * 2016-10-12 2019-06-04 哈曼国际工业有限公司 用于车内预测性故障检测的系统和方法
CN108275094A (zh) * 2017-01-06 2018-07-13 通用汽车环球科技运作有限责任公司 用于隔离dc电源的低充电状态的根本原因的方法和设备
TWI686759B (zh) * 2017-11-21 2020-03-01 香港商阿里巴巴集團服務有限公司 車險定損資料的處理方法、裝置和處理設備
WO2019100763A1 (zh) * 2017-11-21 2019-05-31 阿里巴巴集团控股有限公司 一种车险定损数据的处理方法、装置和处理设备
CN110887671B (zh) * 2019-10-18 2022-04-12 北京百度网讯科技有限公司 自动驾驶中定位车辆故障的根本原因的方法和装置
CN110887671A (zh) * 2019-10-18 2020-03-17 北京百度网讯科技有限公司 定位车辆故障的根本原因的方法和装置
CN111520231A (zh) * 2019-12-30 2020-08-11 哈尔滨工程大学 一种基于chde和pwfp的共轨喷油器敏感故障特征提取方法

Also Published As

Publication number Publication date
US20130159240A1 (en) 2013-06-20
US8732112B2 (en) 2014-05-20
CN103163877B (zh) 2017-04-26
DE102012223393A1 (de) 2013-06-20

Similar Documents

Publication Publication Date Title
CN103163877A (zh) 用于系统级故障的根本原因分析和质量监控的方法和系统
US8473330B2 (en) Software-centric methodology for verification and validation of fault models
US20190213605A1 (en) Systems and methods for prediction of automotive warranty fraud
US7499777B2 (en) Diagnostic and prognostic method and system
US7496798B2 (en) Data-centric monitoring method
CN102375452B (zh) 改善故障代码设定和隔离故障的事件驱动的数据挖掘方法
CN102096760A (zh) 在现场故障数据中检测异常
US9959158B2 (en) Methods and apparatus for the creation and use of reusable fault model components in fault modeling and complex system prognostics
CN102360335B (zh) 定量评估核电厂安全级dcs系统应用软件缺陷价值的方法
WO2010067547A1 (ja) 車両の故障診断装置
US20120232905A1 (en) Methodology to improve failure prediction accuracy by fusing textual data with reliability model
US20150081729A1 (en) Methods and systems for combining vehicle data
KR102215107B1 (ko) 주행 데이터 기반 차량 상태 예측 시스템 및 방법
CN110333962B (zh) 一种基于数据分析预测的电子元器件故障诊断模型
CN108267983A (zh) 使用基于物理的模型和数据驱动的模型减少来自于交通工具的妨害性故障指示
Singh et al. Data-driven framework for detecting anomalies in field failure data
CN115099260A (zh) 双螺杆输油泵在线监测机械故障实时诊断方法
Borissova et al. An integrated framework of designing a decision support system for engineering predictive maintenance
Alalawin et al. Forecasting vehicle's spare parts price and demand
Panda et al. ML-based vehicle downtime reduction: A case of air compressor failure detection
Guo et al. Towards practical and synthetical modelling of repairable systems
EP2535853A1 (en) Methods systems and apparatus for ranking tests used to identify faults in a system
CN110110401B (zh) 一种基于安全树模型的电动车辆安全设计优化方法
Davari et al. A fault detection framework based on lstm autoencoder: A case study for volvo bus data set
Pal et al. Modeling of decision making process for product service failure diagnosis

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170426