CN103163278A - 基于数值模式与统计分析结合的大气重污染预报方法 - Google Patents

基于数值模式与统计分析结合的大气重污染预报方法 Download PDF

Info

Publication number
CN103163278A
CN103163278A CN2013100385739A CN201310038573A CN103163278A CN 103163278 A CN103163278 A CN 103163278A CN 2013100385739 A CN2013100385739 A CN 2013100385739A CN 201310038573 A CN201310038573 A CN 201310038573A CN 103163278 A CN103163278 A CN 103163278A
Authority
CN
China
Prior art keywords
forecast
subpattern
day
weather
prediction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013100385739A
Other languages
English (en)
Other versions
CN103163278B (zh
Inventor
程水源
李悦
陈东升
田川
王志娟
刘超
黄青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201310038573.9A priority Critical patent/CN103163278B/zh
Publication of CN103163278A publication Critical patent/CN103163278A/zh
Application granted granted Critical
Publication of CN103163278B publication Critical patent/CN103163278B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

一种基于数值模式与统计分析结合的大气重污染预报方法,包括:获取NCEP全球预报背景场数据;手动强制生成或气象模式运行结束后自动生成预测触发指令;启动预测指令,得到模拟区域及周边地区的气象要素数据集;获取空气质量监测数据;生成预报因子集数据文件;通过能见度预报子模式得出预报日的能见度;通过污染程度初判子模式定性判别预报日的空气质量级别;通过天气类型识别子模式诊断识别预报日的天气类型;通过重污染定量化预报子模式运算得出预报日的污染物浓度;确定该污染程度对人体的危害级别,为管理者提供应急管理决策依据。本发明对大气重污染的预测效果与国内外各现行空气质量预报系统的高浓污染天气预报效果相比有明显改善。

Description

基于数值模式与统计分析结合的大气重污染预报方法
技术领域
本发明涉及一种体系完整的大气重污染预报方法,特别涉及一种专门针对大气重污染过程、可体现污染区域性特征的基于数值模式与统计分析结合方法的空气质量预测预警方法。
背景技术
随着经济飞速增长,城市化进程不断加快,机动车保有量大幅增加,我国大气污染的趋势没有从根本上得到遏制,持续的高浓度大气污染频发,2002~2011年北京与周边地区发生近百次大气颗粒物重污染过程(重污染过程是指当天空气污染指数大于200的污染过程的统称),颗粒物浓度水平经常超过国家标准数倍甚至十几倍。近几年京津冀、珠三角、长三角地区每年出现灰霾现象的天数超过100天,在不利的气象条件下,区域性的灰霾持续时间长达5~10天,浓度超标严重。我国大气环境高浓度污染发生频率之高,影响范围之大,污染程度之重,已成为制约我国社会经济发展的瓶颈之一,严重威胁到人民群众的身体健康和生态安全。
尽管大气重污染过程发生频繁,对生态环境和人群健康的影响十分严重,但由于大气重污染的形成受天气背景场、地形环境、输送汇聚等多种因素的影响,形成机制十分复杂,因此目前国内外还没有有效的技术方法对重污染过程进行准确的预报。高浓度污染的预报成为了国内外亟待克服的重要难题。关于空气质量预报,目前国际上主要有潜势预报、统计预报和数值预报三种方法。潜势预报方法简单方便,但预报的准确率较低,通常用来与其它方法相配合,很少独立使用;统计预报方法应用广泛,准确率和计算效率较高,但对历史资料的依赖性较大,并缺乏一定的物理意义;数值预报方法是预报系统采用的主要方法之一,它对非重污染时段的预报效果较好,但由于对重污染时段复杂气象条件下的污染物输送、扩散、转化等机理表达欠准确等原因,其对高浓度污染时段的预报误差较大,可高达400%。上述各种预报方法均存在局限性,对高浓度污染的预报效果不能达到理想的效果。
空气质量业务化预报系统是以上述某种预报方法为核心,形成的每日实时预报的业务化系统。目前世界发达国家主要采用数值预报方法,例如,美国、加拿大、日本和欧洲很多国家采用第三代空气质量模式(Models-3)系统进行未来24小时的污染预报,对中低浓度污染天气的预报效果较好。其他一些国家主要采用求解质量守恒大气扩散方程的简单模型开发业务化预报系统,方法相对简单、预报效果略逊于Models-3模式系统。总体上说,发达国家的空气质量情况较好,很少发生高浓度污染,并且其业务化预报系统是在当地的地理、气象、污染特征等基础上研究建立起来的,而我国等易发生高浓度污染的国家的地理位置、气象与下垫面条件、地域污染排放特征等均与上述国家的条件存在很大差异,因此发达国家普遍应用的预报方法仅适用于低浓度污染的预报,不能实现高浓度污染的准确预报,难以直接应用于大气重污染频发的国家。而我国大部分城市的空气质量预报业务系统采用潜势预报、统计预报和数值预报中的一种或几种方法进行,其中北京市的预报业务处于全国领先地位,但其对高浓度重污染的预报仍存在较大误差,通过对环境保护部每日发布的空气质量日报与预报数据的对比发现,该预报方法对非重污染天气的预报效果较好,但对重污染天气的报出率不足40%(预报日是高浓度污染,预报结果等级为高浓度污染,视为报出),误报率高于35%(预报日非高浓度污染,预报结果等级为高浓度污染,视为误报),该预报效果目前远远不能满足为公众提供健康指引,引导居民合理安排出行和生活的重要需求。
综上,目前国内外还没有有效的技术方法对大气重污染过程进行准确的预报,现有的空气质量预报系统及方法对中低浓度污染天气具有较高的预报准确率,但对区域性特征日益明显的大气重污染过程的预报误差较高。因而急需开发建立可准确预报大气重污染的方法(特别是细颗粒物和持续高浓度重污染的预报方法)。本发明为解决该问题提供了一套新的思路和方法。
发明内容
本发明的目的在于填补上述重污染准确预报方法的空白,提供一种基于数值模式与统计分析结合的大气重污染预报方法,实现方法的优势互补,克服各种预报方法单独使用时存在的缺点。使国内外大量天气型与污染关系的研究成果得以在重污染的定量化预报中体现,解决统计预报方法缺乏实际物理意义的严重缺陷,使方法细化后的预报结果更加准确。
本发明是采用以下技术手段实现的。
一种基于数值模式与统计分析结合的大气重污染预报方法,包括:大气环流数值模式及气象模式、预报因子集成子模式、能见度预报子模式、污染程度初判子模式、天气类型识别子模式、重污染定量化预报子模式及基于Google Earth的可视化展示平台部分;包括以下步骤:
1.1、利用气象模式下载运行程序,获取NCEP全球预报背景场数据;
1.2、利用高时空分辨率气象模式预测模拟区域的气象场,由管理员手动强制生成或气象模式运行结束后自动生成预测触发指令,作为后续预测工作的控制结点;
1.3、启动预测指令,通过气象要素数据提取程序对气象场预测结果进行提取,并实现数据格式转换,得到模拟区域及周边地区的气象要素数据集;
1.4、启动预测指令,通过空气质量在线监测设备获取空气质量监测数据;
1.5、通过预报因子集成子模式对部分气象要素与空气质量监测数据进行因子集成,合并部分原始提取要素与集成因子生成预报因子集数据文件;
1.6、利用预报因子集数据文件中的部分因子,通过能见度预报子模式得出预报日的能见度;
1.7、利用预报因子集数据文件中的部分因子和能见度预报结果,通过污染程度初判子模式定性判别预报日的空气质量级别;
1.8、利用预报因子集数据文件中的部分因子,通过天气类型识别子模式诊断识别预报日的天气类型;
1.9、利用预报因子集数据文件中的部分因子和能见度预报结果,根据预报日的污染程度和天气类型,通过重污染定量化预报子模式运算得出预报日的污染物浓度;
1.10、根据浓度预测结果判别预报日污染程度,决定是否发布重污染预警信号;同时通过基于Google Earth的可视化展示平台,展示重污染级别与污染范围,确定该污染程度对人体的危害级别,为管理者提供应急管理决策依据。
前述的步骤1.5中的预报因子集成包括以下步骤:
2.1、根据预报日及前一日的气象要素预报结果,通过因子集成子模块计算24小时变温因子和24小时变压因子;
2.2、根据预报日的气象要素预报结果,通过因子集成子模块计算地面与850百帕高空温度差因子;
2.3、根据预报日的气象要素预报结果,通过因子集成子模块计算预报目标地及周边区域平均温度、平均压力、气压梯度力、区域对角气压差因子;
2.4、根据预报日的气象要素预报结果,通过因子集成子模块计算基于Newton法的地表温度-风速非线性因子;
2.5、根据预报日的空气质量监测数据,通过因子集成子模块计算起报时刻前1至前5小时空气质量变化趋势线斜率因子和截距因子;
2.6、提取气象要素预报结果和空气质量监测数据中的部分因子,与2.1至2.5计算得到因子进行集成合并,生成预报因子集数据文件。
前述的步骤1.9中的重污染定量化预报子模式由预报子模式-1、预报子模式-2、预报子模式-3组成,还包括以下步骤:
3.1、根据预报因子集数据文件和能见度预报结果,生成重污染定量化预报所需的输入数据文件;
3.2、根据预报日的污染程度初判结果和天气类型识别结果,将输入数据文件代入基于逐步回归方法的预报子模式-1进行预报日的污染物浓度值预报;
3.3、根据预报日的污染程度初判结果和天气类型识别结果,将输入数据文件代入基于多元线性回归方法的预报子模式-2进行预报日的污染物浓度值预报;
3.4、根据预报日的污染程度初判结果和天气类型识别结果,将输入数据文件代入基于BP神经网络方法的预报子模式-3进行预报日的污染物浓度值预报;
3.5、利用重污染预报结果集成模块对步骤3.2、步骤3.3、步骤3.4中预报子模式-1、预报子模式-2和预报子模式-3的运算结果进行综合集成,得出预报日的定量化污染物浓度值。
本发明一种针对大气重污染级别的区域污染过程诊断识别与预测预警实现方法,与现有技术相比,具有以下明显的优势和有益效果:
本发明填补了目前缺乏大气重污染的准确预报方法的空白,有效提升了大气重污染预报效果。本方法采用了数值模式和多种统计分析方法相结合的方式,实现了方法的优势互补,克服了各种预报方法单独使用时存在的缺点。本方法在污染定量化预报前增加了基于气象要素聚类的天气类型识别与划分方法,使国内外大量天气型与污染关系的研究成果得以在重污染的定量化预报中体现,解决了统计预报方法缺乏实际物理意义的严重缺陷,并提出在不同天气类型和不同污染程度的判别基础上建立重污染定量化预报模型,使方法细化后的预报结果更加准确。另外,本方法在定量预报中集成了三种主流的统计方法,降低了误报的发生概率。本方法首次集中性地全面考虑了天气背景场、气象条件、地形条件、污染物浓度变化规律、污染源排放变化等多方面因素对大气重污染的影响作用,并能够体现高浓度污染的区域性等重要特征。经检验,本发明对大气重污染天气的报出率与现行各预报方法相比提升20%以上,误报率降低20%以上,该预测效果与国内外各现行空气质量预报系统的高浓污染天气预报效果相比有明显改善。
附图说明
图1为本发明的系统框图及数据流示意图;
图2为大气重污染预报方法总流程图;
图3为重污染定量化预报方法流程图。
其中:
1为NCEP的GFS运算得出的全球预报背景场数据;2为空气质量在线监测系统;3为高时空分辨率气象模式;4为预报因子集成子模式;5为能见度预报子模式;6为污染程度初判子模式;7为天气类型识别子模式;8为重污染定量化预报子模式;9为重污染预报核心计算模块组;10为基于Google Earth的重污染可视化展示平台;11为预报系统管理员;12为大气重污染预报方法体系;13为气象模式自动下载运行程序;14触发指令;15为气象要素数据提取程序;16为空气质量监测数据;17为预报因子集数据文件;18为Linux系统环境;19为Windows系统环境。
具体实施方式
以下结合说明书附图对本发明的实施例做进一步的说明:
从整体角度看,本发明各部分集成方法及数据流示意如图1所示,预报方法总流程如图2所示,简述如下:
每日系统在规定时间启动,自动链接美国NCEP中心获取GFS的运算得出的全球预报背景场数据,利用高时空分辨率气象模式预报气象场,计算结束后自动生成预测工作触发指令,或由管理员手动强制启动生成触发指令。接下来系统以触发信号控制气象要素数据的提取和空气质量数据的获取,若接到触发指令,则按后续各子模式所需的文件要求和数据格式提取气象数据,同时从在线监测系统中获取目标区域的空气质量实时监测数据。
预报因子集成子模式根据气象要素数据和空气质量实时监测数据进行24小时变温因子、24小时变压因子、地面与850百帕高空温度差因子、区域平均温度因子、平均压力因子、气压梯度力因子、区域对角气压差因子、地表温度-风速非线性因子、浓度变化斜率因子和截距等因子的二次集成计算。将部分预选的原始提取要素与二次集成计算因子进行合并,调整数据次序并转换格式后生成预报因子集数据文件。
如预报因子集数据文件的数据质量检查不通过,则重新下载气象背景场数据,以避免数据下载与运算过程中的故障导致预报结果错误。如数据质量检查通过,系统将预报因子集数据文件传送给重污染预报核心计算模块组,各子模块根据计算所需自行提取预报因子。能见度预报子模式对预报日的能见度进行预报,得出的预测结果输送给污染程度初判子模式,进行预报日污染级别的定性化预报,同时由天气类型识别子模式对气象预测结果进行诊断识别,确定预报日的天气类型。
根据预报因子集数据文件和能见度预报结果生成重污染定量化预报所需的输入数据文件,在该数据文件满足各预报模式质量控制要求的前提下,分别利用基于逐步回归方法的预报子模式-1、基于多元线性回归方法的预报子模式-2、基于BP神经网络方法的预报子模式-3进行污染物浓度的预报,不满足模式质量控制要求的则不进行该模式的预报计算。各预报模式计算完毕后,将预报子模式-1、预报子模式-2、预报子模式-3的预测结果进行综合化集成,得出重污染多模式定量化集成预报结果。该部分流程图如图3所示,为重污染定量化预报方法流程图。
最后根据定量化预报结果进行判别,如预报日属于重污染,则发布重污染内部预警信号,利用基于Google Earth的重污染可视化展示平台展示污染级别与污染范围,确定该污染程度对人体的危害级别,为管理者提供应急管理决策依据。如预报日不属于重污染则内部存储预报过程记录文件与预报结果,结束预报。
下面给出具体实例对本发明作详细的说明。
实施例2013年1月11日北京市高浓度污染预报
2013年1月11日早11时(北京时间)系统自动获取当日NCEP全球预报背景场数据的08时刻数据,运行气象模式得出1月11日08时至1月12日20时的气象场预测结果,提取所需的气象要素数据并转换。同时从空气质量在线监测系统获取北京市12个国控站点的1月11日06时至10时的空气质量监测值。由预报因子集成子模式计算各集成因子,并与部分原始提取要素合并生成预报因子集数据文件。依次运行能见度预报子模式、污染程度初判子模式、天气类型识别子模式及重污染定量化预报子模式,并进行污染预报结果集成与可视化图形绘制。最后于1月11日14时完成11日20时至12日20时的空气质量预报。预报结果显示,11日20时至12日20时的空气质量指数为224,属于重污染范畴,发布重污染预警,并在可视化展示图中给出此次北京市各站点的浓度分布情况及24小时浓度变化情况,为管理者提供应急管理决策依据。
尽管本说明书参照上述的各个实施例对本发明已进行了详细的说明,但是,本领域的普通技术人员应当理解,仍然可以对本发明进行修改或等同替换;而一切不脱离发明的精神和范围的技术方案及其改进,其均应涵盖在本发明的权利要求范围当中。

Claims (3)

1.一种基于数值模式与统计分析结合的大气重污染预报方法,包括:大气环流数值模式及气象模式、预报因子集成子模式、能见度预报子模式、污染程度初判子模式、天气类型识别子模式、重污染定量化预报子模式及基于Google Earth的可视化展示平台部分;其特征在于包括以下步骤:
1.1、利用气象模式下载运行程序,获取NCEP全球预报背景场数据;
1.2、利用高时空分辨率气象模式预测模拟区域的气象场,由管理员手动强制生成或气象模式运行结束后自动生成预测触发指令,作为后续预测工作的控制结点;
1.3、启动预测指令,通过气象要素数据提取程序对气象场预测结果进行提取,并实现数据格式转换,得到模拟区域及周边地区的气象要素数据集;
1.4、启动预测指令,通过空气质量在线监测设备获取空气质量监测数据;
1.5、通过预报因子集成子模式对部分气象要素与空气质量监测数据进行因子集成,合并部分原始提取要素与集成因子生成预报因子集数据文件;
1.6、利用预报因子集数据文件中的部分因子,通过能见度预报子模式得出预报日的能见度;
1.7、利用预报因子集数据文件中的部分因子和能见度预报结果,通过污染程度初判子模式定性判别预报日的空气质量级别;
1.8、利用预报因子集数据文件中的部分因子,通过天气类型识别子模式诊断识别预报日的天气类型;
1.9、利用预报因子集数据文件中的部分因子和能见度预报结果,根据预报日的污染程度和天气类型,通过重污染定量化预报子模式运算得出预报日的污染物浓度;
1.10、根据浓度预测结果判别预报日污染程度,决定是否发布重污染预警信号;同时通过基于Google Earth的可视化展示平台,展示重污染级别与污染范围,确定该污染程度对人体的危害级别,为管理者提供应急管理决策依据。
2.根据权利要求1所述的基于数值模式与统计分析结合的大气重污染预报方法,其特征在于:所述的步骤1.5中的预报因子集成包括以下步骤:
2.1、根据预报日及前一日的气象要素预报结果,通过因子集成子模块计算24小时变温因子和24小时变压因子;
2.2、根据预报日的气象要素预报结果,通过因子集成子模块计算地面与850百帕高空温度差因子;
2.3、根据预报日的气象要素预报结果,通过因子集成子模块计算预报目标地及周边区域平均温度、平均压力、气压梯度力、区域对角气压差因子;
2.4、根据预报日的气象要素预报结果,通过因子集成子模块计算基于Newton法的地表温度-风速非线性因子;
2.5、根据预报日的空气质量监测数据,通过因子集成子模块计算起报时刻前1至前5小时空气质量变化趋势线斜率因子和截距因子;
2.6、提取气象要素预报结果和空气质量监测数据中的部分因子,与2.1至2.5计算得到因子进行集成合并,生成预报因子集数据文件。
3.根据权利要求1所述的基于数值模式与统计分析结合的大气重污染预报方法,其特征在于:所述的步骤1.9中的重污染定量化预报子模式由预报子模式-1、预报子模式-2、预报子模式-3组成,还包括以下步骤:
3.1、根据预报因子集数据文件和能见度预报结果,生成重污染定量化预报所需的输入数据文件;
3.2、根据预报日的污染程度初判结果和天气类型识别结果,将输入数据文件代入基于逐步回归方法的预报子模式-1进行预报日的污染物浓度值预报;
3.3、根据预报日的污染程度初判结果和天气类型识别结果,将输入数据文件代入基于多元线性回归方法的预报子模式-2进行预报日的污染物浓度值预报;
3.4、根据预报日的污染程度初判结果和天气类型识别结果,将输入数据文件代入基于BP神经网络方法的预报子模式-3进行预报日的污染物浓度值预报;
3.5、利用重污染预报结果集成模块对步骤3.2、步骤3.3、步骤3.4中预报子模式-1、预报子模式-2和预报子模式-3的运算结果进行综合集成,得出预报日的定量化污染物浓度值。
CN201310038573.9A 2013-01-31 2013-01-31 基于数值模式与统计分析结合的大气重污染预报方法 Expired - Fee Related CN103163278B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310038573.9A CN103163278B (zh) 2013-01-31 2013-01-31 基于数值模式与统计分析结合的大气重污染预报方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310038573.9A CN103163278B (zh) 2013-01-31 2013-01-31 基于数值模式与统计分析结合的大气重污染预报方法

Publications (2)

Publication Number Publication Date
CN103163278A true CN103163278A (zh) 2013-06-19
CN103163278B CN103163278B (zh) 2015-04-29

Family

ID=48586537

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310038573.9A Expired - Fee Related CN103163278B (zh) 2013-01-31 2013-01-31 基于数值模式与统计分析结合的大气重污染预报方法

Country Status (1)

Country Link
CN (1) CN103163278B (zh)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104200103A (zh) * 2014-09-04 2014-12-10 浙江鸿程计算机系统有限公司 一种基于多领域特征的城市空气质量等级预测方法
CN104200104A (zh) * 2014-09-04 2014-12-10 浙江鸿程计算机系统有限公司 一种基于空间特征的细粒度空气污染物浓度区域估计方法
CN105279576A (zh) * 2015-10-23 2016-01-27 中能电力科技开发有限公司 一种风速预报的方法
CN105631537A (zh) * 2015-12-23 2016-06-01 南京信息工程大学 基于气象服务平台的空气质量预报业务系统
CN106339775A (zh) * 2016-08-23 2017-01-18 北京市环境保护监测中心 基于天气分型和气象要素聚类的空气重污染案例判别方法
WO2017080296A1 (en) * 2015-11-12 2017-05-18 International Business Machines Corporation Very short-term air pollution forecasting
US20170184561A1 (en) * 2015-12-28 2017-06-29 International Business Machines Corporation Integrated Air Quality Forecasting
CN107194139A (zh) * 2016-03-14 2017-09-22 日电(中国)有限公司 大气污染源分级方法及计算设备
CN108734278A (zh) * 2018-05-23 2018-11-02 天津市气象科学研究所 一种基于多重神经网络逐步逼近法的低能见度预报方法
CN109033178A (zh) * 2018-06-26 2018-12-18 北京工业大学 一种挖掘能见度多维时空数据之间格兰杰因果关系的方法
CN110361505A (zh) * 2019-07-25 2019-10-22 中南大学 一种车外大气污染环境下列车乘员健康预警系统及其方法
CN111612055A (zh) * 2020-05-15 2020-09-01 北京中科三清环境技术有限公司 天气形势的分型方法、空气污染状况的预测方法及装置
US10830922B2 (en) 2015-10-28 2020-11-10 International Business Machines Corporation Air quality forecast by adapting pollutant emission inventory
CN112965145A (zh) * 2020-12-16 2021-06-15 陕西省环境监测中心站 一种环境空气臭氧预报方法
CN114565057A (zh) * 2022-03-15 2022-05-31 中科三清科技有限公司 一种基于机器学习的均压场识别方法、装置、存储介质及终端
CN114694333A (zh) * 2022-03-23 2022-07-01 云南安防科技有限公司 一种信息标志警示方法及系统
CN115097547A (zh) * 2022-07-04 2022-09-23 湖南省生态环境监测中心 一种基于数值模式与统计分析结合的大气重污染预报方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10330655B2 (en) 2017-01-11 2019-06-25 International Business Machines Corporation Air quality forecasting based on dynamic blending

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS529342A (en) * 1975-07-11 1977-01-24 Hitachi Ltd Air pollution density forecasting system
KR20010097331A (ko) * 2000-04-21 2001-11-08 박원규 레이저 레이더 및 확산모델을 이용한 대기오염 정보시스템
KR20090098127A (ko) * 2008-03-13 2009-09-17 (주)바이오텔 대기 오염물질 모니터링 시스템 및 그 방법
CN101847180A (zh) * 2010-04-30 2010-09-29 中国环境科学研究院 一种大气污染风险源识别方法
CN101882184A (zh) * 2010-05-25 2010-11-10 中冶赛迪工程技术股份有限公司 基于gis技术和aermode模型的大气环评系统与环评方法
CN102103061A (zh) * 2009-12-18 2011-06-22 西安费斯达自动化工程有限公司 一种大气监测、预测、评价的等浓度线方法
CN102567808A (zh) * 2010-12-31 2012-07-11 北京工业大学 结合实时气象信息的重大危险源事故后果预测预警方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS529342A (en) * 1975-07-11 1977-01-24 Hitachi Ltd Air pollution density forecasting system
KR20010097331A (ko) * 2000-04-21 2001-11-08 박원규 레이저 레이더 및 확산모델을 이용한 대기오염 정보시스템
KR20090098127A (ko) * 2008-03-13 2009-09-17 (주)바이오텔 대기 오염물질 모니터링 시스템 및 그 방법
CN102103061A (zh) * 2009-12-18 2011-06-22 西安费斯达自动化工程有限公司 一种大气监测、预测、评价的等浓度线方法
CN101847180A (zh) * 2010-04-30 2010-09-29 中国环境科学研究院 一种大气污染风险源识别方法
CN101882184A (zh) * 2010-05-25 2010-11-10 中冶赛迪工程技术股份有限公司 基于gis技术和aermode模型的大气环评系统与环评方法
CN102567808A (zh) * 2010-12-31 2012-07-11 北京工业大学 结合实时气象信息的重大危险源事故后果预测预警方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
王树功等: "环境空气污染预测预报探讨", 《重庆环境科学》 *
王芳等: "遗传算法优化神经网络用于大气污染预报", 《北京工业大学学报》 *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104200104A (zh) * 2014-09-04 2014-12-10 浙江鸿程计算机系统有限公司 一种基于空间特征的细粒度空气污染物浓度区域估计方法
CN104200103A (zh) * 2014-09-04 2014-12-10 浙江鸿程计算机系统有限公司 一种基于多领域特征的城市空气质量等级预测方法
CN105279576A (zh) * 2015-10-23 2016-01-27 中能电力科技开发有限公司 一种风速预报的方法
US10830922B2 (en) 2015-10-28 2020-11-10 International Business Machines Corporation Air quality forecast by adapting pollutant emission inventory
US10438125B2 (en) 2015-11-12 2019-10-08 International Business Machines Corporation Very short-term air pollution forecasting
WO2017080296A1 (en) * 2015-11-12 2017-05-18 International Business Machines Corporation Very short-term air pollution forecasting
GB2561102A (en) * 2015-11-12 2018-10-03 Ibm Very short-term air pollution forecasting
CN105631537A (zh) * 2015-12-23 2016-06-01 南京信息工程大学 基于气象服务平台的空气质量预报业务系统
US20170184561A1 (en) * 2015-12-28 2017-06-29 International Business Machines Corporation Integrated Air Quality Forecasting
US10444211B2 (en) * 2015-12-28 2019-10-15 International Business Machines Corporation Integrated air quality forecasting
CN107194139A (zh) * 2016-03-14 2017-09-22 日电(中国)有限公司 大气污染源分级方法及计算设备
CN106339775B (zh) * 2016-08-23 2019-10-11 北京市环境保护监测中心 基于天气分型和气象要素聚类的空气重污染案例判别方法
CN106339775A (zh) * 2016-08-23 2017-01-18 北京市环境保护监测中心 基于天气分型和气象要素聚类的空气重污染案例判别方法
CN108734278A (zh) * 2018-05-23 2018-11-02 天津市气象科学研究所 一种基于多重神经网络逐步逼近法的低能见度预报方法
CN109033178A (zh) * 2018-06-26 2018-12-18 北京工业大学 一种挖掘能见度多维时空数据之间格兰杰因果关系的方法
CN109033178B (zh) * 2018-06-26 2021-07-30 北京工业大学 一种挖掘能见度多维时空数据之间格兰杰因果关系的方法
CN110361505B (zh) * 2019-07-25 2021-06-22 中南大学 一种车外大气污染环境下列车乘员健康预警系统的方法
CN110361505A (zh) * 2019-07-25 2019-10-22 中南大学 一种车外大气污染环境下列车乘员健康预警系统及其方法
CN111612055A (zh) * 2020-05-15 2020-09-01 北京中科三清环境技术有限公司 天气形势的分型方法、空气污染状况的预测方法及装置
CN112965145A (zh) * 2020-12-16 2021-06-15 陕西省环境监测中心站 一种环境空气臭氧预报方法
CN112965145B (zh) * 2020-12-16 2021-09-21 陕西省环境监测中心站 一种环境空气臭氧预报方法
CN114565057A (zh) * 2022-03-15 2022-05-31 中科三清科技有限公司 一种基于机器学习的均压场识别方法、装置、存储介质及终端
CN114565057B (zh) * 2022-03-15 2022-10-21 中科三清科技有限公司 一种基于机器学习的均压场识别方法、装置、存储介质及终端
CN114694333A (zh) * 2022-03-23 2022-07-01 云南安防科技有限公司 一种信息标志警示方法及系统
CN115097547A (zh) * 2022-07-04 2022-09-23 湖南省生态环境监测中心 一种基于数值模式与统计分析结合的大气重污染预报方法

Also Published As

Publication number Publication date
CN103163278B (zh) 2015-04-29

Similar Documents

Publication Publication Date Title
CN103163278B (zh) 基于数值模式与统计分析结合的大气重污染预报方法
Zhou et al. Spatio-temporal evolution and the influencing factors of PM 2.5 in China between 2000 and 2015
US11335179B1 (en) Water environment risk prediction and early warning method
Donnelly et al. Real time air quality forecasting using integrated parametric and non-parametric regression techniques
Yu et al. Prediction of large-scale demolition waste generation during urban renewal: A hybrid trilogy method
CN104484993A (zh) 用于交通小区划分的手机信令信息的处理方法
CN106507315B (zh) 基于网络社交媒体数据的城市交通事故预测方法和系统
CN108230676A (zh) 一种基于轨迹数据的交叉口行人过街风险评估方法
CN111896680B (zh) 基于卫星遥感数据的温室气体排放分析方法及系统
Du et al. The China Carbon Watch (CCW) system: A rapid accounting of household carbon emissions in China at the provincial level
CN105678481A (zh) 一种基于随机森林模型的管线健康状态评估方法
CN106448132A (zh) 一种常规公交服务指数实时评价系统及评价方法
CN101465059B (zh) 城市道路交通安全态势鉴判预警系统
Dehshiri et al. A new application of multi-criteria decision making in identifying critical dust sources and comparing three common receptor-based models
Lin et al. Landscape ecological risk assessment and its driving factors of multi-mountainous city
CN107748940B (zh) 一种节电潜力量化预测方法
CN108120999A (zh) 车载导航设备及停车场引导方法
CN106651025A (zh) 交通情况预测方法及装置
CN115984044A (zh) 一种旅游发展高潜力村落的挖掘方法
Dehshiri et al. A multi-objective framework to select numerical options in air quality prediction models: A case study on dust storm modeling
CN112233381B (zh) 一种基于机理和机器学习耦合的泥石流预警方法与系统
CN117455237A (zh) 一种基于多源数据的道路交通事故风险预测方法
Ploennigs et al. e2-diagnoser: A system for monitoring, forecasting and diagnosing energy usage
CN105096586A (zh) 基于交通流特征参数的平原区高速公路事故预测方法
Rahardyan et al. The Influence Of Economic And Demographic Factors To Waste Generation In Capital City Of Java And Sumatera

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150429

Termination date: 20220131

CF01 Termination of patent right due to non-payment of annual fee