CN103163083B - 一种生鲜肉类多参数检测的双波段光谱融合方法及系统 - Google Patents

一种生鲜肉类多参数检测的双波段光谱融合方法及系统 Download PDF

Info

Publication number
CN103163083B
CN103163083B CN201310080308.7A CN201310080308A CN103163083B CN 103163083 B CN103163083 B CN 103163083B CN 201310080308 A CN201310080308 A CN 201310080308A CN 103163083 B CN103163083 B CN 103163083B
Authority
CN
China
Prior art keywords
data
spectrometer
wavelength
fresh meat
spectrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310080308.7A
Other languages
English (en)
Other versions
CN103163083A (zh
Inventor
彭彦昆
林琬
郭辉
石力安
田潇瑜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Agricultural University
Original Assignee
China Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Agricultural University filed Critical China Agricultural University
Priority to CN201310080308.7A priority Critical patent/CN103163083B/zh
Publication of CN103163083A publication Critical patent/CN103163083A/zh
Application granted granted Critical
Publication of CN103163083B publication Critical patent/CN103163083B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明提供一种生鲜肉类多参数检测的双波段光谱融合方法及系统,属于食品品质快速无损检测领域。所述方法包含步骤:分别设置两光谱仪的积分时间、采样次数和平滑次数;设置两光谱仪所产生光谱曲线的最佳连接点;根据最佳连接点进行参数变量定义;两光谱仪依据定义的参数变量分别进行数据采集;对采集到的数据进行数据变换;对变换后的数据进行数据整合;依据整合后的数据生成全波段曲线。所述系统包含检测探头、Y形光纤和两光谱仪和处理设备。实现将两台不同波段、有重叠有效波段的光谱数据融合,并在界面中显示光谱曲线,此技术应用于生鲜肉类的含水率、嫩度、颜色等品质参数的快速、非破坏性检测研究,实现对生鲜肉类品质参数的预测与在线分级。

Description

一种生鲜肉类多参数检测的双波段光谱融合方法及系统
技术领域
本发明涉及一种畜肉品质快速无损检测领域,具体涉及一种生鲜肉类多参数检测的双波段光谱融合方法及系统。 
背景技术
牛肉分级是指根据市场对牛肉品质的认可度,将牛肉产品分成不同的等级,实现优质优价的利益分配。牛肉分级的广泛推广,对牛肉行业的健康发展具有重要作用,可以指引牛肉生产者进行定性良种选育、科学饲喂、规范的屠宰分割,使其生产出质美价优的牛肉产品;也可以规范牛肉市场,形成良性健康的市场竞争;还可以指导消费者正确消费,确保交易的公平性。 
现行国内外生产加工企业对牛肉的质量分级指标主要有大理石花纹、生理成熟度、肉色、脂肪色、嫩度等。国外应用成熟的检测技术主要包括:(1)机器视觉检测技术,用来检测胴体特征、大理石花纹、眼肌面积等感官指标,(2)超声波成像技术,用来检测活体或二分体的背膘厚;(3)基于近红外光谱检测技术的在线检测仪器,如美国农业部的嫩度检测仪。 
随着光谱技术在农产品无损检测中的广泛应用,越来越多的人选择可见、近红外光谱检测肉的外在和内在品质。国内外很多学者通过光谱仪对牛肉的嫩度、水分等品质参数进行预测,但是由于可见-近红外光谱仪与近红外光谱仪用到的光学探测器不相同,因此光谱检测只能在两台光谱仪上完成,采集到的光谱数据来自两个通道,是两组独立的数据,又由于两台光谱仪覆盖的有效波段有重叠部分,因此不能得到一组完整的、最佳的、光谱数据覆盖范围宽的数据。 
因此,针对以上不足,本发明提供了一种生鲜肉类多参数检测的双波段光谱融合方法及系统。 
发明内容
(一)要解决的技术问题 
针对现有技术的不足,本发明提供了一种生鲜肉类多参数检测的双波段光谱融合方法及系统,实现将两台不同波段、有重叠有效波段的光谱数据融合,并在界面中显示光谱曲线,此技术应用于生鲜肉类的含水率、嫩度、颜色等品质参数的快速、非破坏性检测研究,实现对生鲜肉类品质参数的预测与在线分级。 
(二)技术方案 
为实现以上目的,本发明通过以下技术方案予以实现: 
一种生鲜肉类多参数检测的双波段光谱融合方法,其特征在于,包含以下步骤: 
S1、分别设置第一光谱仪和第二光谱仪的积分时间、采样次数和平滑次数;设置第一光谱仪和第二光谱仪所产生光谱曲线的最佳连接点; 
S2、根据S1中所述的最佳连接点进行参数变量定义;定义数组Rdata1用于存放第一光谱仪采集到的数据;数组Rdata2用于存放第二光谱仪采集到的数据;数组Rdata用于存放数据变换后的完整数据;最佳连接点设置为中间波长Middlewave;起始波长设为Startwave,结束波长为Endwave;第一光谱仪的起始波长为Startwave,结束波长为Middlewave;第二光谱仪的起始波长为Middlewave,结束波长为Endwave;两光谱仪的间隔波长定为Internal=1nm;Count=(Endwave-Startwave)/Internal,定义为全波段光谱数据个数;Endcount1=(Middlewave-Startwave)/Internal,为采集的第一光谱仪数据个数;Endcount2=(Endwave-Middlewave)/Internal为采集的第二光谱仪数据个数; 
S3、第一光谱仪和第二光谱仪依据S1和S2中所定义的参数变量分别进行数据采集; 
S4、对S3中的采集到的数据进行数据变换; 
S5、对S4中变换后的数据进行数据整合; 
S6、依据S5中整合后的数据生成全波段曲线。 
其中所述第一光谱仪为可见-近红外光谱仪,有效波段为400-950nm,所述第二光谱仪为近红外光谱仪的有效波段为800-2600nm;步骤S1包含:第一光谱仪和第二光谱仪上分别实验相同待测样品,通过观察两光谱仪所分别产生的光谱曲线在重叠波段的光谱形状,以形状相似的区域作为连接区域。 
其中所述的连接区域为850-900nm;所述连接区域的最佳连接点为890nm。 
其中步骤S3中第一光谱仪和第二光谱仪进行数据采集的参数包括积分时间、采样次数、平滑次数、起始波长、结束波长和间隔波长;采集黑参考和白参考,然后计算出待测样品的反射率,计算公式为: 
R = R 0 - D W - D × 100 %
其中W为白参考采集到的反射光谱强度,D为黑参考采集到的反射光谱强度,R0为当前采集到的反射光谱强度,R为待测样品的反射率;将采集到的数据分别保存于定义的数组内。 
其中步骤S4中包含:在中间波长Middlewave处之前取N个第一光谱仪的数据做平均,平均值记为Avg1;之后取N个第二光谱仪数据做平均,平均值记为Avg2;求差值b=Avg2-Avg1;第二光谱仪采集到的数据整体变换后记为Rdata2=Rdata2+b。 
其中步骤S5中包含:把数组Rdata1中的数据移到数组Rdata中,数据从0排到Endcount1-1;把变换后的数组Rdata2中的数据移到数组Rdata中,数据从Endcount1排到Count-1;得到一组完整的包含从起始波长到结束波长反射率的数组Rdata。 
其中步骤S6中通过生鲜肉类在线检测系统把Rdata中存放的反射率数据从第0个到Count-1个依次连接,生成一条完整的光谱曲线。 
实施一种生鲜肉类多参数检测的双波段光谱融合方法的系统,该系统包含检测探头(1)、Y形光纤(2)和第一光谱仪(3)和第二光谱仪(4)和处理设备(7);检测探头(1)采集到的待测样品反射的光谱信息由Y形光纤(2)传送到第一光谱仪(3)和第二光谱仪(4),第一光谱仪(3)和第二光谱仪(4)把光谱信息转换为相应的光谱数据,由数据线(5)传送到处理设备(7);处理设备(7)处理第一光谱仪(3)和第二光谱仪(4)采集来的数据,生成一条完整的光谱曲线。 
其中检测探头(1)包含光纤探头(1-1)、光源(1-2)、底座(1-3),构成一个相对封闭的光屏蔽空间;所述第一光谱仪(3)为可见-近红外光谱仪,有效波段为400-950nm,所述第二光谱仪(4)为近红外光谱仪的有效波段为800-2600nm。 
其中所述光源(1-2)为卤钨灯;光纤探头(1-1)下端距离样品表面(8)间的距离可调,以适应多种检测条件。 
(三)有益效果 
本发明通过提供一种生鲜肉类多参数检测的双波段光谱融合方法及系统,具有如下优点: 
1)本发明通过连接可见-近红外和近红外两台光谱仪的数据,实现将两台不同波段、有重叠有效波段的光谱数据融合,得到完整波段的光谱数据,信息量全;对同时采集的两组光谱数据进行最佳组合,节省数据处理时间,提高光谱信号采集效率;此技术应用于生鲜肉类的含水率、嫩度、颜色等品质参数的快速、非破坏性检测研究,实现对生鲜肉类品质参数的预测与在线分级,并在界面中显示光谱曲线,便于测试人员直观的观察数据。 
2)此双波段融合方法增加了光谱检测的信息量,为生鲜肉类无损检测检测建模提供了更多有用数据,提高了数据建模的精度及稳定性,为开发生鲜肉类质量分级装置提供技术支持;通过此双波段光谱融合方法,提高生鲜肉类产品品质参数的预测及品质分级水平,增强我国的生鲜肉类产品在国际市场上的竞争力。 
附图说明
图1:生鲜牛肉多参数检测的双波段光谱融合装置的一种实施方式结构示意图; 
图2:生鲜牛肉多参数检测的双波段光谱融合方法的一种实施方式流程图; 
图3:牛肉嫩度/水分在线检测系统的一种实施方式界面示意图; 
图4:进行双波段光谱融合方法的黑参考光谱图; 
图5:进行双波段光谱融合方法的白参考光谱图; 
图6:进行双波段光谱融合方法的牛肉反射率光谱图; 
图7:牛肉嫩度/水分在线检测系统的操作流程图; 
附图标记说明:1检测探头、1-1光纤探头、1-2光源、1-3底座、2Y形光纤、3第一光谱仪、4第二光谱仪、5数据线、6USB接口、7处理设备、8待测样品;9光谱曲线显示区、10仪器校准区、11嫩度水分检测分级区、12分级结果显示区。 
具体实施方式
下面结合附图和实施例,对于本发明所提出的生鲜肉类多参数检测的双波段光谱融合方法及系统进行详细说明。 
在本实施例中,图1中的待测牛肉8为屠宰后经过排酸处理,在分割线上进行检测,检测部位为11~14椎骨之间垂直与肌纤维方向的横断面。 
如图7所示,开启牛肉嫩度/水分在线检测系统,处理设备自动对光谱仪进行自检以确保光谱仪连接的正确性。自检程序完成后,分别对光谱仪进行黑参考和白参考校正,黑参考和白参考校正完成后进行对肉样的检测,将探头的底面贴住待测牛肉的表面,点击在图3中的牛肉嫩度/水分在线检测系统的软件系统界面上的牛肉嫩度/水分检测分级按钮11后,就可以在结果显示区12中的到待测样品的嫩度值、含水率、颜色和分级结果。 
本实施例提供的的生鲜牛肉多参数检测的双波段光谱融合该检测系统:具体包含检测探头1、Y形光纤2和第一光谱仪3和第二光谱 仪4和处理设备7;所述第一光谱仪3为可见-近红外光谱仪,有效波段为400-950nm,所述第二光谱仪4为近红外光谱仪的有效波段为800-2600nm;其中检测探头1包含光纤探头1-1、光源1-2、底座1-3,构成一个相对封闭的光屏蔽空间;其中所述光源1-2为卤钨灯;光纤探头1-1下端距离样品表面8间的距离可调,以适应多种检测条件;光纤探头1-1采集到的待测样品反射的光谱信息由Y形光纤2传送到第一光谱仪3和第二光谱仪4,第一光谱仪3和第二光谱仪4把光谱信息转换为相应的光谱数据,由数据线5经USB接口6传送到处理设备7;处理设备7处理第一光谱仪3和第二光谱仪4采集来的数据,处理设备7安装有牛肉嫩度/水分在线检测系统,牛肉嫩度/水分在线检测系统的软件系统界面包含光谱曲线显示区9、仪器校准区10、嫩度/水分检测分级区11、分级结果显示区12。最终通过牛肉嫩度/水分在线检测系统的软件系统界面生成一条完整的光谱曲线。 
本实施例中当卤钨灯光源不在检测探头内时,可以把Y型光纤换成三分叉光纤,多出的一条光纤用于接卤钨灯光源。 
本实施例还提供的一种生鲜牛肉多参数检测的双波段光谱融合方法具体包含以下步骤: 
S1、首先分别设置第一光谱仪和第二光谱仪的积分时间、采样次数和平滑次数;设置第一光谱仪和第二光谱仪所产生光谱曲线的最佳连接点; 
第一光谱仪和第二光谱仪上分别实验相同待测样品,所述第一光谱仪为可见-近红外光谱仪,有效波段为400-950nm,所述第二光谱仪为近红外光谱仪的有效波段为800-2600nm;通过观察两光谱仪所分别产生的光谱曲线在重叠波段的光谱形状,以形状相似的区域作为连接区域。 
其中所述的连接区域优选为850-900nm;所述连接区域的最佳连 接点优选为890nm。 
S2、根据S1中所述的最佳连接点进行参数变量定义;定义数组Rdata1用于存放第一光谱仪采集到的数据;数组Rdata2用于存放第二光谱仪采集到的数据;数组Rdata用于存放数据变换后的完整数据;最佳连接点设置为中间波长Middlewave;起始波长设为Startwave,结束波长为Endwave;第一光谱仪的起始波长为Startwave,结束波长为Middlewave;第二光谱仪的起始波长为Middlewave,结束波长为Endwave;两光谱仪的间隔波长定为Internal=1nm;Count=(Endwave-Startwave)/Internal,定义为全波段光谱数据个数;Endcount1=(Middlewave-Startwave)/Internal,为采集的第一光谱仪数据个数;Endcount2=(Endwave-Middlewave)/Internal为采集的第二光谱仪数据个数。用户可以通过对Startwave和Endwave的参数改变,最终得到要获得的光谱范围。 
S3、第一光谱仪和第二光谱仪依据S1和S2中所定义的参数变量分别进行数据采集;第一光谱仪和第二光谱仪进行数据采集的参数包括积分时间、采样次数、平滑次数、起始波长、结束波长和间隔波长;采集黑参考和白参考,然后计算出待测样品的反射率,计算公式为: 
R = R 0 - D W - D × 100 %
其中W为白参考采集到的反射光谱强度,D为黑参考采集到的反射光谱强度,R0为当前采集到的反射光谱强度,R为待测样品的反射率;将采集到的数据分别存储于相应定义的数组内。 
S4、对S3中的采集到的数据进行数据变换; 
在连接点为890nm波长下,理论上两台光谱仪测量的数据应相同,但是由于硬件特性不同,两台光谱仪测量的同一样品数据也会有不同。因此需要以第一光谱仪为基准,变换第二光谱仪的数据,使其在连接点处的数据相同。需要把第二光谱仪的光谱整体平移,实现在界面上画出一条完整曲线的效果。平移量是在中间点处反射率Rdata 的差值,考虑到噪音信号的干扰,通过差值取5点平均值的差来变换第二光谱仪的数据。 
在中间波长Middlewave处之前取5个第一光谱仪的数据做平均,平均值记为Avg1;之后取5个第二光谱仪数据做平均,平均值记为Avg2;求差值b=Avg2-Avg1;第二光谱仪采集到的数据整体变换后记为Rdata2=Rdata2+b。 
S5、对S4中变换后的数据进行数据整合; 
把数组Rdata1中的数据移到数组Rdata中,数据从0排到Endcount1-1;把变换后的数组Rdata2中的数据移到数组Rdata中,数据从Endcount1排到Count-1;得到一组完整的包含从起始波长到结束波长反射率的数组Rdata。 
S6、依据S5中整合后的数据绘画全波段曲线。通过生鲜牛肉在线检测系统把Rdata中存放的反射率数据从第0个到Count-1个依次连接,最终形成一条完整的光谱曲线,通过牛肉嫩度/水分在线检测系统的软件系统界面显示出来。 
本实施例中的多参数检测的双波段光谱融合方法也可适用于其它肉类品质检测的光谱仪中,如猪肉、羊肉、狗肉等生鲜肉类食品,可实现对生鲜肉类产品的在线、快速、无损检测。 
以上实施方式仅用于说明本发明,而并非对本发明的限制,有关技术领域的普通技术人员,在不脱离本发明的精神和范围的情况下,还可以做出各种变化和变型,因此所有等同的技术方案也属于本发明的范畴,本发明的专利保护范围应由权利要求限定。 

Claims (7)

1.一种生鲜肉类多参数检测的双波段光谱融合方法,其特征在于,包含以下步骤:
S1、分别设置第一光谱仪和第二光谱仪的积分时间、采样次数和平滑次数;设置第一光谱仪和第二光谱仪所产生光谱曲线的最佳连接点;
S2、根据S1中所述的最佳连接点进行参数变量定义;定义数组Rdata1用于存放第一光谱仪采集到的数据;数组Rdata2用于存放第二光谱仪采集到的数据;数组Rdata用于存放数据变换后的完整数据;最佳连接点设置为中间波长Middlewave;起始波长设为Startwave,结束波长为Endwave;第一光谱仪的起始波长为Startwave,结束波长为Middlewave;第二光谱仪的起始波长为Middlewave,结束波长为Endwave;两光谱仪的间隔波长定为Internal=1nm;Count=(Endwave-Startwave)/Internal,定义为全波段光谱数据个数;Endcount1=(Middlewave-Startwave)/Internal,为采集的第一光谱仪数据个数;Endcount2=(Endwave-Middlewave)/Internal为采集的第二光谱仪数据个数;
S3、第一光谱仪和第二光谱仪依据S1和S2中所定义的参数变量分别进行数据采集;
S4、对S3中的采集到的数据进行数据变换;
S5、对S4中变换后的数据进行数据整合;
S6、依据S5中整合后的数据生成全波段曲线。
2.如权利要求1所述的一种生鲜肉类多参数检测的双波段光谱融合方法,其特征在于:所述第一光谱仪为可见-近红外光谱仪,有效波段为400-950nm,所述第二光谱仪为近红外光谱仪的有效波段为800-2600nm;步骤S1包含:第一光谱仪和第二光谱仪上分别实验相同待测样品,通过观察两光谱仪所分别产生的光谱曲线在重叠波段的光谱形状,以形状相似的区域作为连接区域。
3.如权利要求2所述的一种生鲜肉类多参数检测的双波段光谱融合方法,其特征在于:所述的连接区域为850-900nm;所述连接区域的最佳连接点为890nm。
4.如权利要求1所述的一种生鲜肉类多参数检测的双波段光谱融合方法,其特征在于:步骤S3中第一光谱仪和第二光谱仪进行数据采集的参数包括积分时间、采样次数、平滑次数、起始波长、结束波长和间隔波长;采集黑参考和白参考,然后计算出待测样品的反射率,计算公式为:
R = R 0 - D W - D × 100 %
其中W为白参考采集到的反射光谱强度,D为黑参考采集到的反射光谱强度,R0为当前采集到的反射光谱强度,R为待测样品的反射率;将采集到的数据分别保存于定义的数组内。
5.如权利要求1所述的一种生鲜肉类多参数检测的双波段光谱融合方法,其特征在于步骤S4中包含:在中间波长Middlewave处之前取N个第一光谱仪的数据做平均,平均值记为Avg1;之后取N个第二光谱仪数据做平均,平均值记为Avg2;求差值b=Avg2-Avg1;第二光谱仪采集到的数据整体变换后记为Rdata2=Rdata2+b。
6.如权利要求1所述的一种生鲜肉类多参数检测的双波段光谱融合方法,其特征在于,步骤S5中包含:把数组Rdata1中的数据移到数组Rdata中,数据从0排到Endcount1-1;把变换后的数组Rdata2中的数据移到数组Rdata中,数据从Endcount1排到Count-1;得到一组完整的包含从起始波长到结束波长反射率的数组Rdata。
7.如权利要求1所述的一种生鲜肉类多参数检测的双波段光谱融合方法,其特征在于,步骤S6中通过生鲜肉类在线检测系统把Rdata中存放的反射率数据从第0个到Count-1个依次连接,生成一条完整的光谱曲线。
CN201310080308.7A 2013-03-13 2013-03-13 一种生鲜肉类多参数检测的双波段光谱融合方法及系统 Active CN103163083B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310080308.7A CN103163083B (zh) 2013-03-13 2013-03-13 一种生鲜肉类多参数检测的双波段光谱融合方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310080308.7A CN103163083B (zh) 2013-03-13 2013-03-13 一种生鲜肉类多参数检测的双波段光谱融合方法及系统

Publications (2)

Publication Number Publication Date
CN103163083A CN103163083A (zh) 2013-06-19
CN103163083B true CN103163083B (zh) 2015-03-11

Family

ID=48586349

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310080308.7A Active CN103163083B (zh) 2013-03-13 2013-03-13 一种生鲜肉类多参数检测的双波段光谱融合方法及系统

Country Status (1)

Country Link
CN (1) CN103163083B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103389274A (zh) * 2013-08-01 2013-11-13 中国农业大学 一种畜肉便携式检测设备和方法
CN107101950A (zh) * 2016-02-22 2017-08-29 深圳欧谱申光电科技有限公司 一种用于工程现场测量的太阳反射比光谱测试仪

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101710067B (zh) * 2009-12-14 2011-12-28 中国农业大学 一种畜肉品质检测方法
CN102519906B (zh) * 2011-12-19 2013-07-31 中国农业大学 多通道近红外光谱牛肉品质多参数同时检测方法

Also Published As

Publication number Publication date
CN103163083A (zh) 2013-06-19

Similar Documents

Publication Publication Date Title
CN103630499B (zh) 一种基于高光谱成像技术的鱼蛋白质含量分布检测方法
CN102519906B (zh) 多通道近红外光谱牛肉品质多参数同时检测方法
CN102507459B (zh) 一种生鲜牛肉新鲜度快速无损评价方法及系统
CN102879353B (zh) 近红外检测花生中蛋白质组分含量的方法
CN101251526B (zh) 鲜猪肉综合品质无损检测方法与装置
CN103674838B (zh) 一种基于高光谱成像技术的鱼脂肪含量分布检测方法
CN103674864B (zh) 一种基于高光谱成像技术的鱼水分含量分布检测方法
CN103645155B (zh) 生鲜羊肉嫩度的快速无损检测方法
CN103257118A (zh) 一种基于特征波段的鱼肉嫩度高光谱检测方法
CN102818777A (zh) 一种基于光谱和颜色测量的水果成熟度评价方法
CN104458594B (zh) 一种生鲜肉品质参数多点同时检测的系统及方法
CN104977258B (zh) 基于二维相关光谱的茶叶/化妆品等品质检测方法
CN101710067A (zh) 一种畜肉品质检测系统及其检测方法
CN111157511B (zh) 一种基于拉曼光谱技术的鸡蛋新鲜度无损检测方法
CN104965973B (zh) 一种苹果霉心病多因子无损检测判别模型及其建立方法
CN104568815A (zh) 生鲜牛肉中挥发性盐基氮含量的快速无损检测方法
CN103712948B (zh) 生鲜羊肉中挥发性盐基氮含量的快速无损检测方法
CN110487746A (zh) 一种基于近红外光谱检测娃娃菜品质的方法
CN105136767B (zh) 基于拉曼光谱生鲜鸡肉中鲜味物质肌苷酸的快速检测方法
CN103163083B (zh) 一种生鲜肉类多参数检测的双波段光谱融合方法及系统
CN201156043Y (zh) 食品综合品质无损检测装置
CN106198423B (zh) 一种基于可见-近红外光谱分析技术鉴别火腿肠等级的方法
CN102507491A (zh) 一种水飞蓟籽品质的检测装置和检测方法
CN105158178B (zh) 基于高光谱透射技术谱峰面积的脐橙糖度检测快速建模法
CN110231306A (zh) 一种无损、快速测定奇亚籽蛋白质含量的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant