CN103138685B - 一种ofdm自适应前馈线性功率放大装置 - Google Patents

一种ofdm自适应前馈线性功率放大装置 Download PDF

Info

Publication number
CN103138685B
CN103138685B CN201110386128.2A CN201110386128A CN103138685B CN 103138685 B CN103138685 B CN 103138685B CN 201110386128 A CN201110386128 A CN 201110386128A CN 103138685 B CN103138685 B CN 103138685B
Authority
CN
China
Prior art keywords
power amplifier
module
power
self
attenuation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201110386128.2A
Other languages
English (en)
Other versions
CN103138685A (zh
Inventor
李伟
高丹
仵元元
田文强
王营冠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Microsystem and Information Technology of CAS
Original Assignee
Shanghai Institute of Microsystem and Information Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Microsystem and Information Technology of CAS filed Critical Shanghai Institute of Microsystem and Information Technology of CAS
Priority to CN201110386128.2A priority Critical patent/CN103138685B/zh
Publication of CN103138685A publication Critical patent/CN103138685A/zh
Application granted granted Critical
Publication of CN103138685B publication Critical patent/CN103138685B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Transmitters (AREA)
  • Amplifiers (AREA)

Abstract

本发明提供一种OFDM自适应前馈线性功率放大装置,包括功率放大模块,依据外部激励信号的变化对射频信号进行矢量调节以保证功放进行稳定的线性放大的自适应控制模块,依据预先设定的可调范围值对放大信号进行功率输出控制的数字ATT模块,以及对检测到反向功率值衰减处理后予以检波,并将该检波后的直流电压与预设的门限电压以对功率放大模块进行保护的驻波保护模块,以及线性功放控制模块。本发明对射频功率放大器要求有高的效率和最小的邻道干扰,而良好的线性传输性能充分利用频谱资源,可以在较宽的频带内有效的抑制非线性失真产物,更适合动态信道分配的需要,进而解决了高速无线TD信号中远距离信号传输及蜂窝基站信号存在盲区覆盖等问题。

Description

一种OFDM自适应前馈线性功率放大装置
技术领域
本发明涉及一种中高速无线传感网通信技术,特别是涉及一种应用于中高速传感网中的OFDM自适应前馈线性功率放大装置。
背景技术
随着通信和信息技术的迅猛发展,人类获取信息的发展趋势正在由固定走向移动,由语音走向多媒体。目前,能够在移动环境向大量观众提供多媒体内容的网络架构主要有三种:移动通信网络(WiMAX),基于OFDM技术(Orthogonal Frequency Division Multiplexing,即正交频分复用技术),双向传输,工作频率为2.3GHz、2.5GHz、3.5GHz、5.8GHz;无线局域网(WLAN),基于DSSS技术,双向传输,工作频率为2.4GHz、5.8GHz;地面数字广播网络(DVB-T),基于COFDM技术,单向传输,工作频率为VHF(174MHz~230MHz)、UHF(470MHz~862MHz)。此外,DVB组织已经正式发布了为通过地面数字电视广播网络向便携/手持终端提供多媒体业务所专门制定的DVB-H标准(Digital Video Broadcasting Handheld),从而使这一领域的竞争更为激烈。
随着城市的现代化建设和经济的快速发展,对城市公共安全系统的监控质量提出了更高的要求。在有大量高楼及高架公路阻隔的大城市市区,如何解决无线信号的信道传输是国内外研发机构正在努力的一个方向,因而,无线传感网OFDM自适应前馈线性功率放大器也正孕育而生。
当今蜂窝和个人通信网络的迅速增加,使已经拥挤的频谱负担更重,特别是第三代无线移动通信系统的提出,频带加宽,动态范围变大,功率输出增加,对高功率放大器的频带宽度、线性度和效率都有更高的要求,为此,要针对未来的通信体制,研究高效率高线性度功率放大器才是可行的实施方案。然而,在现有技术中,高速无线TD信号中远距离信号传输及蜂窝基站信号仍存在盲区覆盖,为解决这一技术问题,通常的做法是使用高功率,有损耗功率的合成器及大理的单通道放大器以提高系统功效,但是,一般通过功率回退提高线性度的高功放并不能满足TD-SCDMA的性能要求。特别是放大器的基板温度、通道的工作频率等发生变化,放大器的线性度将急剧恶化。导致放大器线性度恶化的原因是,外界条件的变化对电路产生了影响,两个环路中信号的反相抵消不彻底。
因而,如何设计一种应用于中高速传感网中的OFDM自适应前馈线性功率放大器,使矢量调节器能跟随外部条件的变化而自动进行调整,以保证信号的良好抵消,可以在较宽的频带内有效的抑制非线性失真产物,更适合动态信道分配的需要已成为本领域从业者亟待解决的问题。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种OFDM自适应前馈线性功率放大装置,用来配合解决高速无线TD信号中远距离信号传输及蜂窝基站信号存在盲区覆盖等问题。
本发明的另一目的在于提供一种OFDM自适应前馈线性功率放大装置,用以解决在较宽的频带内有效的抑制非线性失真产物,通过抑制无用信号进而提高有用信号线性度,更适合动态信道分配的需要以及因多载波信号高峰均比及高线性需求所带来的技术难题。
为实现上述目的及其他相关目的,本发明提供一种OFDM自适应前馈线性功率放大装置,包括其输入端连接有射频信号源,输出端连接有负载的功率放大模块,其特征在于,还包括:自适应控制模块,连接所述射频信号源及功率放大模块,接收到所述射频信号源输出的射频信号后,依据外部激励信号的变化对所述射频信号进行矢量调节后传输给所述功率放大模块,以保证所述功率放大模块进行稳定的线性放大;衰减模块,连接所述功率放大模块,用以接收到所述功率放大模块的放大信号后,依据预先设定的可调范围值对所述放大信号进行功率输出控制;驻波保护模块,连接所述衰减模块及负载,用于将衰减模块输出的功率信号传输给所述负载,并在检测到反向功率值时,对所述反向功率值衰减处理后进行检波,并将该检波后的直流电压与预设的门限电压进行比较,以输出驱动信号控制所述功率放大模块的栅极电压以对其进行保护;以及线性功放控制模块,连接所述自适应控制模块、衰减模块以及驻波保护模块,用以采集所述射频信号源输出的射频信号与所述驻波保护模块检测到的反向功率值,以及检测功放状态,同时依据检测到的功放状态输出控制信号给所述自适应控制模块及衰减模块,同时将检测到的功放状态通过预定的通信协议传输给外部控制装置,以使其监控该OFDM自适应前馈线性功率放大装置的工作状态。
在本发明的OFDM自适应前馈线性功率放大装置中,所述自适应控制模块的矢量调节系由一个9O度的移相器和一个衰减量大于20dB的连续可变衰减器完成,以使所述射频信号产生20dB的衰减量和正45度的相移,以保证所述功率放大模块进行稳定的线性放大。
在本发明的OFDM自适应前馈线性功率放大装置中,所述衰减模块为衰减在0~30dB范围内并以1dB步进变化且可控制所述功率放大模块输出可调范围值功率的数控衰减器。所述可调范围值为1~10W。
在本发明的OFDM自适应前馈线性功率放大装置中,所述驻波保护模块包括:隔离单元,连接所述负载,用于检测反向功率值;衰减网络单元,连接所述隔离单元,用于将所述反向功率值进行功率衰减处理;功率检测单元,连接所述衰减网络单元,用于对衰减后的反向功率值进行检波;比较单元,连接所述功率检测单元,用于该检波后的直流电压与预设的门限电压进行比较,当判断出该直流电压大于该门限电压时输出处理信号;以及逻辑非门单元连接所述比较单元及所述功率放大模块,用于接收到处理信号,输出驱动信号切断所述功率放大模块的栅极电压以对其进行保护。
在本发明的OFDM自适应前馈线性功率放大装置中,所述线性功放控制模块包括:数据采集单元,用以采集所述射频信号源输出的射频信号与所述驻波保护模块检测到的反向功率值;状态检测单元,用以检测功率放大装置的功率、电流、电压及温度参数;环路控制单元,用于依据检测到的功放状态,通过环路控制输出控制信号给所述自适应控制模块及衰减模块;通信单元,用以将检测到的功放状态通过预定的通信协议传输给外部控制装置,以使其监控该OFDM自适应前馈线性功率放大装置的工作状态。所述功率放大模块包括最大输出功率为25W的功率放大器。
如上所述,本发明的OFDM自适应前馈线性功率放大装置,对射频功率放大器要求有高的效率和最小的邻道干扰,而良好的线性传输性能充分利用频谱资源,本发明提出的前馈放大技术可以在较宽的频带内有效的抑制非线性失真产物,更适合动态信道分配的需要。由于蜂窝系统的带宽一般要求大于30MHz,使用前馈技术的宽带线性功率放大器,就可以避免使用高功率,有损耗功率的合成器,及大理的单通道放大器,提高了系统功效,进而解决了高速无线TD信号中远距离信号传输及蜂窝基站信号存在盲区覆盖等问题。
附图说明
图1显示为本发明的OFDM自适应前馈线性功率放大装置原理框图。
图2显示为本发明中线性功放控制的原理图。
图3显示为本发明中驻波保护的原理框图。
图4显示为本发明中线性功放控制模块的框图。
元件标号说明
1                   射频信号源
2                   OFDM自适应前馈线性功率放大装置
21                  自适应控制模块
22                  功率放大模块
23                  数字ATT模块(衰减模块)
24                  驻波保护模块
241                 隔离单元
242                 衰减网络单元
243                 功率检测单元
244                 比较单元
245                 逻辑非门单元
25                  线性功放控制模块
251                 数据采集单元
252                 状态检测单元
253                 环路控制单元
254                  信单元
3                   负载
4                   主板
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
请参阅图1至图4。需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。
如图1所示,本发明提供一种OFDM自适应前馈线性功率放大装置,连接于射频信号源1和负载3之间,且还连接一用于监控其工作状态的主板4。所述OFDM自适应前馈线性功率放大装置2至少包括:自适应控制模块21,功率放大模块22,衰减模块(即图示中的数字ATT模块23),驻波保护模块24,以及线性功放控制模块25。
所述自适应控制模块21连接所述射频信号源1及功率放大模块22,接收到所述射频信号源1输出的射频信号后,依据外部激励信号的变化对所述射频信号进行矢量调节后传输给所述功率放大模块22,以保证所述功率放大模块22进行稳定的线性放大,在本实施例中,所述自适应控制模块21的矢量调节系由一个9O度的移相器和一个衰减量大于20dB的连续可变衰减器完成,以使所述射频信号产生20dB的衰减量和正45度的相移,以保证所述功率放大模块22进行稳定的线性放大。所述的外部激励信号的变化源于所述功率放大模块22的基板温度、通道的工作频率等因素。
由于在本发明的OFDM自适应前馈线性功率放大装置2中采用了该自适应控制模块21,以使所述功率放大模块22在调整好的状态下有很好的线性度,如果外部工作条件发生变化,特别是所述功率放大模块22的基板温度、通道的工作频率等发生变化,所述功率放大模块22的线性度将急剧恶化。导致所述功率放大模块22线性度恶化的原因是,外界条件的变化对电路产生了影响,电路中的环路信号的反相抵消不彻底。所述自适应控制模块21使矢量调节器能跟随外部条件的变化而自动进行调整,以保证信号的良好抵消。
所述功率放大模块22输入端连接该射频信号源1,输出端连接该负载3,用以将射频信号放大后输出,在本实施例中,所述功率放大模块22包括最大输出功率为25W的功率放大器,具体地,所述功率放大模块22采用的是Freescale公司的LDMOS芯片MRF5S4125N,其最大输出25W,使用前馈技术能使其在输出10W时ACPR能达到-47dBc,能较好的将OFDM调制子载波信号不失真的放大传输。
为了进一步阐述本发明的原理及功效,请参阅图2,本发明中的功率放大模块22使用现有的微波集成电路技术,基准环的输入取样使用功率分路器(如图示中的分路器)或定向耦合器(如图示中的正向耦合器和反向耦合器)来实现。每个环路(如图示中环路控制1及环路控制2)中信号的幅度和相位的控制通过一个9O度的矢量调节器完成,其中,所述每一个矢量调节器由一个9O度的移相器和一个衰减量大于20dB的连续可变衰减器组成,因此矢量调节器能使信号产生20dB的衰减量和正45度的相移,可以保证信号的准确反相抵消,进而提高了主放大器(即本发明中的功率放大模块22)的线性度,在双音条件下测试,整个系统使功率放大模块22的C/I可以从22dBc提高到56dBc,即C/I提高34dB。
如图2所示,射频信号F1经过分录器后分成两路信号,上面的支路为主支路,经过主放大器后会产生失真信号F2;下面的支路是参考信号,与主放大器的输出失真信号相减得到信号失真分量F3。失真分量在经过误差放大器放大后反相叠加到主输出回路,从而抵消主放大器的失真,得到所需要的信号F4。在本实施例中,误差功率放大器采用的是Freescale公司的LDMOS芯片MRF1513NT1,其最大输出8W,误差放大器为小信号放大器,具有很好的线性和噪声性能,非线性失真信号经耦合器耦合一部分与另一路通过延时线后的信号在90度基准合路器进行合成,可通过调节可调衰减器和移相器使两路信号幅度相等,相位相差90度,则合成器的输出将是一个误差信号。
所述数字ATT模块23连接所述功率放大模块22,用以接收到所述功率放大模块22的放大信号后,依据预先设定的可调范围值对所述放大信号进行功率输出控制。在本实施例中,所述数字ATT模块23为衰减在0~30dB范围内并以1dB步进变化且可控制所述功率放大模块22输出可调范围值功率的数控衰减器。所述可调范围值为1~10W。具体地,所述ATT模块采用的是Hittite公司的数控衰减器HMC273,该芯片能通过五路I/O口控制,使其衰减在0~30dB范围内变化(1dB步进),通过该芯片能够控制功放输出1~10W可调。
所述驻波保护模块24连接所述数字ATT模块23及负载3,用于将数字ATT模块23输出的功率信号传输给所述负载3,并在检测到反向功率值时,对所述反向功率值衰减处理后进行检波,并将该检波后的直流电压与预设的门限电压进行比较,以输出驱动信号控制所述功率放大模块22的栅极电压以对其进行保护。
请参阅图3,在本实施例中,所述驻波保护模块24包括:隔离单元241,衰减网络单元242,功率检测单元243,比较单元244,逻辑非门单元245。
其中,所述隔离单元241连接所述负载3,用于检测反向功率值;在本实施例中,所述隔离单元241例如为带大功率衰减器的隔离器。所述衰减网络单元242连接所述隔离单元241,用于将所述反向功率值进行功率衰减处理;在本实施例中,所述衰减网络单元242为由电阻元器件组成的∏型衰减网络。所述功率检测单元243连接所述衰减网络单元242,用于对衰减后的反向功率值进行检波;在本实施例中,所述功率检测单元243为检波器或功率检测器,用于将这个反向功率值转换成直流电压。所述比较单元244连接所述功率检测单元243,用于该检波后的直流电压与预设的门限电压进行比较,当判断出该直流电压大于该门限电压时输出处理信号;在本实施例中,所述比较单元244为比较器。所述逻辑非门单元245连接所述比较单元244及所述功率放大模块22,用于接收到处理信号,输出驱动信号切断所述功率放大模块22(图示中功率放大器)的栅极电压以对其进行保护。在本实施例中,所述逻辑非门单元245为逻辑非门。
所述驻波保护模块24的工作原理是由隔离器检测出反向功率值,经衰减器后进入功率检测器进行检波,然后将检波后的直流信号送入比较器与门限电压进行比较,最后送出处理信号经由逻辑非门后控制为LDMOS管的所述功率放大模块22的栅极电压,以达到对所述功率放大模块22的输出保护。在具体的实施过程中,首先会设定功放的驻波保护的门限值,根据这个值可以由公式推算出反射功率的大小,该反射功率先经电阻元器件组成的∏型衰减网络调整输入大小,然后再由检波器将这个功率值转换成电压,这个电压可以设定为比较器的门限电压。然后由比较器的输出端经由逻辑非门控制后接入到LDMOS管的栅极,以达到对功率放大模块22进行控制的目的。
所述线性功放控制模块25连接所述自适应控制模块21、数字ATT模块23以及驻波保护模块24,用以采集所述射频信号源1输出的射频信号与所述驻波保护模块24检测到的反向功率值,以及检测功放状态,同时依据检测到的功放状态输出控制信号给所述自适应控制模块21及数字ATT模块23,同时将检测到的功放状态通过预定的通信协议传输给外部控制装置,以使其监控该OFDM自适应前馈线性功率放大装置2的工作状态。
请参阅图4,在本实施例中,所述线性功放控制模块25包括:数据采集单元251,状态检测单元252,环路控制单元253以及通信单元254。其中,所述数据采集单元251用以采集所述射频信号源1输出的射频信号与所述驻波保护模块24检测到的反向功率值;所述状态检测单元252用以检测功率放大装置的功率、电流、电压及温度参数;所述环路控制单元253用于依据检测到的功放状态,通过环路控制输出控制信号给所述自适应控制模块21及数字ATT模块23;所述通信单元254用以将检测到的功放状态通过预定的通信协议传输给例如为主板4的外部控制装置,以使所述主板4监控该OFDM自适应前馈线性功率放大装置2的工作状态。
在具体的实施过程中,所述线性功放控制模块25功放控制系统由数据采集、环路控制、功放工作状态监控和通信等几个部分组成。数据采集单元251由耦合器、功率检测器、衰减网络等组成,控制单元根据采样取值进行比较判断,然后输出控制信号进行控制。经由耦合器取样输出信号进入电阻元器件组成的∏型衰减网络进行取样功率大小调整。功率检测器将调整后的信号输出功率转换成电压信号。取样后的信号分成两路,一路进入功放控制单元A/D模块(图示中ADC/DAC)进行量化分析得出输出功率大小,另一路反馈到输出过驻波保护模块24;环路控制是功放控制系统中最核心的部分,为了实现抵消主放大器产生的交调信号的目的,控制系统需要分别调整环路控制1和环路控制2(参见图2)的状态,环路控制1主要负责失真信号的检测,环路控制2负责失真信号的消除。在前馈线性功放的设计中,控制系统的调整方法非常重要,其决定着系统是否稳定、能否改善足够的RF性能等。控制系统的核心是一颗TI公司推出的适于实现控制功能的DSP:TMS320LF2407A(图示中DSP),其内部带有10路的高速10bit精度ADC(图示中ADC/DAC),最高处理速度可以达到40MIPS(每秒百万指令数)。它的内部集成了FLASH(内存)和高速RAM(随机存储器),并且内含PLL(锁相环),这使其可以使用比较低速度的外部时钟,并在内部倍频到需要的频率以提高系统的EMC(电磁兼容性)性能。
所述线性功放控制模块25功放控制方法如下:1)初始化参数,包括信号输入功率上下限、输出功率设定值、输出驻波保护设定值、过温度保护设定值、过电流保护设定值;2)如检测信号输入功率在设定的上下限范围内则打开功放管(功率放大模块22)的栅极电压,使功放管正常工作,数控衰减器以1dB为步进从30dB开始递减,每递减1dB都需要检测输出功率,判断其是否达到输出功率设定值;反之则切断功放管栅极电压,数控衰减器设置为30dB;3)检测功放电流不正常时,切断功放管栅极电压,数控衰减器设置为30dB;4)检测到输出驻波比超出设定值时,切断功放管栅极电压,数控衰减器设置为30dB;5)检测温度值,如果温度超过设定值则功放输出功率降低3dB,等待10分钟,如果温度还是超过设定值,输出功率再降低3dB,再等待10分钟,如果温度还高于设定门限值,则切断功放管栅极电压。
综上所述,本发明的OFDM自适应前馈线性功率放大装置,对射频功率放大器要求有高的效率和最小的邻道干扰,而良好的线性传输性能充分利用频谱资源,本发明提出的前馈放大技术可以在较宽的频带内有效的抑制非线性失真产物,更适合动态信道分配的需要。由于蜂窝系统的带宽一般要求大于30MHz,使用前馈技术的宽带线性功率放大器,就可以避免使用高功率,有损耗功率的合成器,及大理的单通道放大器,提高了系统功效,进而解决了高速无线TD信号中远距离信号传输及蜂窝基站信号存在盲区覆盖等问题。所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (7)

1.一种OFDM自适应前馈线性功率放大装置,包括其输入端连接有射频信号源,输出端连接有负载的功率放大模块,其特征在于,还包括:
自适应控制模块,连接所述射频信号源及功率放大模块,接收到所述射频信号源输出的射频信号后,依据外部激励信号的变化对所述射频信号进行矢量调节后传输给所述功率放大模块,以保证所述功率放大模块进行稳定的线性放大;
衰减模块,连接所述功率放大模块,用以接收到所述功率放大模块的放大信号后,依据预先设定的可调范围值对所述放大信号进行功率输出控制;
驻波保护模块,连接所述衰减模块及负载,用于将衰减模块输出的功率信号传输给所述负载,并在检测到反向功率值时,对所述反向功率值衰减处理后进行检波,并将该检波后的直流电压与预设的门限电压进行比较,以输出驱动信号控制所述功率放大模块的栅极电压以对其进行保护;以及
线性功放控制模块,连接所述自适应控制模块、衰减模块以及驻波保护模块,用以采集所述射频信号源输出的射频信号与所述驻波保护模块检测到的反向功率值,以及检测功放状态,同时依据检测到的功放状态输出控制信号给所述自适应控制模块及衰减模块,同时将检测到的功放状态通过预定的通信协议传输给外部控制装置,以使其监控该OFDM自适应前馈线性功率放大装置的工作状态。
2.根据权利要求1所述的OFDM自适应前馈线性功率放大装置,其特征在于:所述自适应控制模块的矢量调节系由一个9O度的移相器和一个衰减量大于20dB的连续可变衰减器完成,以使所述射频信号产生20dB的衰减量和正45度的相移,以保证所述功率放大模块进行稳定的线性放大。
3.根据权利要求1所述的OFDM自适应前馈线性功率放大装置,其特征在于:所述衰减模块为衰减在0~30dB范围内并以1dB步进变化且可控制所述功率放大模块输出可调范围值功率的数控衰减器。
4.根据权利要求3所述的OFDM自适应前馈线性功率放大装置,其特征在于:所述可调范围值为1~10W。
5.根据权利要求1所述的OFDM自适应前馈线性功率放大装置,其特征在于:所述驻波保护模块包括:
隔离单元,连接所述负载,用于检测反向功率值;
衰减网络单元,连接所述隔离单元,用于将所述反向功率值进行功率衰减处理;
功率检测单元,连接所述衰减网络单元,用于对衰减后的反向功率值进行检波;
比较单元,连接所述功率检测单元,用于该检波后的直流电压与预设的门限电压进行比较,当判断出该直流电压大于该门限电压时输出处理信号;以及
逻辑非门单元连接所述比较单元及所述功率放大模块,用于接收到处理信号,输出驱动信号切断所述功率放大模块的栅极电压以对其进行保护。
6.根据权利要求1所述的OFDM自适应前馈线性功率放大装置,其特征在于:所述线性功放控制模块,包括:
数据采集单元,用以采集所述射频信号源输出的射频信号与所述驻波保护模块检测到的反向功率值;
状态检测单元,用以检测功率放大装置的功率、电流、电压及温度参数;
环路控制单元,用于依据检测到的功放状态,通过环路控制输出控制信号给所述自适应控制模块及衰减模块;
通信单元,用以将检测到的功放状态通过预定的通信协议传输给外部控制装置,以使其监控该OFDM自适应前馈线性功率放大装置的工作状态。
7.根据权利要求1所述的OFDM自适应前馈线性功率放大装置,其特征在于:所述功率放大模块包括最大输出功率为25W的功率放大器。
CN201110386128.2A 2011-11-28 2011-11-28 一种ofdm自适应前馈线性功率放大装置 Active CN103138685B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110386128.2A CN103138685B (zh) 2011-11-28 2011-11-28 一种ofdm自适应前馈线性功率放大装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110386128.2A CN103138685B (zh) 2011-11-28 2011-11-28 一种ofdm自适应前馈线性功率放大装置

Publications (2)

Publication Number Publication Date
CN103138685A CN103138685A (zh) 2013-06-05
CN103138685B true CN103138685B (zh) 2015-06-10

Family

ID=48498091

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110386128.2A Active CN103138685B (zh) 2011-11-28 2011-11-28 一种ofdm自适应前馈线性功率放大装置

Country Status (1)

Country Link
CN (1) CN103138685B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107707206A (zh) * 2017-09-28 2018-02-16 广东欧珀移动通信有限公司 射频前端装置、温度控制方法和终端
CN107612588B (zh) * 2017-10-26 2019-06-25 京信通信系统(中国)有限公司 一种功放保护方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6552608B2 (en) * 2001-04-18 2003-04-22 Fujitsu Limited Linear amplifier
CN1430425A (zh) * 2001-12-31 2003-07-16 深圳市中兴通讯股份有限公司上海第二研究所 前馈式线性功率放大器的自适应跟踪抵消控制方法及装置
CN1516493A (zh) * 2003-01-10 2004-07-28 深圳市中兴通讯股份有限公司上海第二 一种功率放大器线性化方法和线性功率放大器装置
CN201015188Y (zh) * 2006-10-18 2008-01-30 深圳国人通信有限公司 线性功率放大装置
CN101572528A (zh) * 2009-05-12 2009-11-04 三维通信股份有限公司 基于导频的自适应前馈线性功放装置和控制方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4709446B2 (ja) * 2001-09-20 2011-06-22 株式会社日立国際電気 フィードフォワード非線型歪補償増幅器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6552608B2 (en) * 2001-04-18 2003-04-22 Fujitsu Limited Linear amplifier
CN1430425A (zh) * 2001-12-31 2003-07-16 深圳市中兴通讯股份有限公司上海第二研究所 前馈式线性功率放大器的自适应跟踪抵消控制方法及装置
CN1516493A (zh) * 2003-01-10 2004-07-28 深圳市中兴通讯股份有限公司上海第二 一种功率放大器线性化方法和线性功率放大器装置
CN201015188Y (zh) * 2006-10-18 2008-01-30 深圳国人通信有限公司 线性功率放大装置
CN101572528A (zh) * 2009-05-12 2009-11-04 三维通信股份有限公司 基于导频的自适应前馈线性功放装置和控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
自适应预失真前馈功率放大系统研究;谢成诚;《中国优秀博硕士学位论文全文数据库》;20061215;第1-48页 *

Also Published As

Publication number Publication date
CN103138685A (zh) 2013-06-05

Similar Documents

Publication Publication Date Title
EP3010144B1 (en) Switchable dual core power amplifier
CN102457458B (zh) 一种基站数字预失真的实现方法和装置
CN102076120B (zh) 基于软件无线电的多模多频带射频机载微微蜂窝通信系统
CN101790256B (zh) 一种收信机、发信机及其信号处理方法
CN202197283U (zh) 通信中继装置及其驻波比检测装置
CN103959643A (zh) 用于自适应功率放大器线性化的系统和方法
CN101272155B (zh) 时分双工模式数字预失真功放装置
CN103138685B (zh) 一种ofdm自适应前馈线性功率放大装置
US20180176867A1 (en) Headend device of distributed antenna system and signal processing method thereof
CN101827431B (zh) 基于所检测的背景噪声来调整接收机接收链的方法、电路和系统
CN104980384A (zh) Dpd mcpa的信号处理方法、系统、装置及mcpa设备
CN101247154A (zh) 实现削峰和数字预失真相互补偿的系统及方法
CN201919158U (zh) 基于软件无线电的多模多频带射频机载微微蜂窝通信系统
CN101364829A (zh) 多通道基带拉远系统的射频收发模块及基带拉远系统
CN108400789B (zh) 多系统合路平台及提高多系统合路平台互调的方法
CN101826881B (zh) 用于根据接收信号的特性来适配接收机接收链组件的方法、电路和系统
CN201274579Y (zh) 多通道基带拉远系统的射频收发模块及基带拉远系统
CN101207430A (zh) 直放站系统抗自激模块
Hirata et al. Development of high efficiency amplifier for cellular base stations
CN106230763B (zh) 基于fpga的lte tdd rru峰均比统计方法
CN101699771B (zh) 全数字宽带微波发射机及其控制方法
CN201039179Y (zh) 基带反馈型抗自激模块
CN101237265B (zh) 无线传感网td-scdma多载波功率放大器
CN100514883C (zh) 无线接入网络信号区域覆盖方法和无线接入网络
CN218920426U (zh) 一种5gnr高效智能光纤射频拉远装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant