CN103136538A - Multidata fusion flame recognition device and method - Google Patents
Multidata fusion flame recognition device and method Download PDFInfo
- Publication number
- CN103136538A CN103136538A CN2013100549033A CN201310054903A CN103136538A CN 103136538 A CN103136538 A CN 103136538A CN 2013100549033 A CN2013100549033 A CN 2013100549033A CN 201310054903 A CN201310054903 A CN 201310054903A CN 103136538 A CN103136538 A CN 103136538A
- Authority
- CN
- China
- Prior art keywords
- data
- sensor
- module
- data fusion
- flame
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000004927 fusion Effects 0.000 title claims abstract description 42
- 238000000034 method Methods 0.000 title claims abstract description 12
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 15
- 238000003909 pattern recognition Methods 0.000 claims abstract description 7
- 238000012545 processing Methods 0.000 claims description 11
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 9
- 238000004891 communication Methods 0.000 claims description 9
- 238000001514 detection method Methods 0.000 claims description 7
- 230000000694 effects Effects 0.000 claims description 5
- 238000004364 calculation method Methods 0.000 claims description 3
- 239000000779 smoke Substances 0.000 claims description 3
- 238000005516 engineering process Methods 0.000 abstract description 5
- 230000002265 prevention Effects 0.000 abstract description 4
- 230000005540 biological transmission Effects 0.000 abstract description 2
- 238000005265 energy consumption Methods 0.000 abstract 1
- 238000012544 monitoring process Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Images
Landscapes
- Fire-Detection Mechanisms (AREA)
- Fire Alarms (AREA)
- Alarm Systems (AREA)
Abstract
Description
技术领域technical field
本发明属于物联网,森林防火等技术领域,涉及一种多数据融合的火焰识别装置及方法。The invention belongs to the technical fields of Internet of Things, forest fire prevention, etc., and relates to a multi-data fusion flame recognition device and method.
背景技术Background technique
物联网对数据进行实时获取,采集环境信息,已经应用于多个领域。在信息技术的支撑下物联网正在引发新一轮的生活方式变革。随着物联网的发展,一系列的科研难题也相继产生。本文作者将物联网技术应用于森林防火的过程中发现了这类问题,比如:由于WSN功耗消耗大、网络寿命短的不足,造成了节点的可利用性比较差。由于物联网的WSN中节点的检测能力单一,造成了数据混乱。The Internet of Things acquires data in real time and collects environmental information, which has been applied in many fields. With the support of information technology, the Internet of Things is triggering a new round of lifestyle changes. With the development of the Internet of Things, a series of scientific research problems have also emerged one after another. The author of this paper found such problems in the process of applying the Internet of Things technology to forest fire prevention. For example, due to the large power consumption of WSN and the short network life, the availability of nodes is relatively poor. Due to the single detection capability of the nodes in the WSN of the Internet of Things, data confusion is caused.
发明内容Contents of the invention
本发明的目的在于克服上述技术缺陷,提供一种多数据融合的火焰识别装置及方法。The purpose of the present invention is to overcome the above-mentioned technical defects and provide a multi-data fusion flame recognition device and method.
其技术方案为:Its technical solution is:
一种多数据融合的火焰识别装置,包括传感模块、通讯模块、图像采集模块、arduino单片机,其中单片机包含处理模块、数据采集模块、数据融合模块:A multi-data fusion flame recognition device, including a sensing module, a communication module, an image acquisition module, and an arduino single-chip microcomputer, wherein the single-chip microcomputer includes a processing module, a data acquisition module, and a data fusion module:
传感模块:通过温湿度传感器、气体传感器、探测火源传感器和图像传感器采集基础数据用于数据融合;Sensing module: collect basic data through temperature and humidity sensors, gas sensors, fire detection sensors and image sensors for data fusion;
处理模块:通过Arduino单片机完成数据融合计算和图像识别算法,从而判断有效的数据再传递给通讯模块,同时单片机还有电源管理的功能给整个装置提供电源策略;Processing module: complete the data fusion calculation and image recognition algorithm through the Arduino single-chip computer, so as to judge the valid data and then pass it to the communication module. At the same time, the single-chip computer also has the function of power management to provide power strategy for the whole device;
通讯模块:硬件实现的Xbee协议栈;Communication module: Xbee protocol stack implemented by hardware;
数据采集模块:是传感器的驱动程序,驱动传感器采集数据,通过数据闸值自动的剔除多余的,无效的,混杂的传感器数据,从而达到功耗的效果;Data acquisition module: it is the driver program of the sensor, which drives the sensor to collect data, and automatically eliminates redundant, invalid, and mixed sensor data through the data gate value, so as to achieve the effect of power consumption;
图像采集模块:用来采集图像,然后进行模式识别,集合了Arduino上的视频驱动和模式识别算法;Image acquisition module: used to acquire images, and then perform pattern recognition, which integrates the video driver and pattern recognition algorithms on Arduino;
数据融合模块:将各种信息联合起来融合成关键信息,报告可能的火势。Data Fusion Module: Combine all kinds of information into key information and report possible fires.
所述温湿度传感器为DHT11数字温湿度传感器,含有已校准数字信号输出。The temperature and humidity sensor is a DHT11 digital temperature and humidity sensor with calibrated digital signal output.
所述气体传感器基于气敏元件的MQ3气体传感器,用于检测到空气中的酒精、乙醇气体,与Arduino专用传感器扩展板结合使用,用于探测空气中的烟雾的浓度。The gas sensor is based on the MQ3 gas sensor of the gas sensor, which is used to detect alcohol and ethanol gas in the air, and is used in combination with the Arduino special sensor expansion board to detect the concentration of smoke in the air.
所述探测火源传感器可探测到波长在760纳米~1100纳米范围内的光源,转换成数字信号传递给处理模块。The fire source detection sensor can detect light sources with wavelengths in the range of 760 nm to 1100 nm, convert them into digital signals and transmit them to the processing module.
所述图像传感器CMUcam4为可编程的嵌入式图像传感器,采用Parallax P8X32A芯片和Omini Vision9665CMOS摄像头模组扑捉森林中火焰的照片。The image sensor CMUcam4 is a programmable embedded image sensor, which uses Parallax P8X32A chip and Omini Vision9665CMOS camera module to capture photos of flames in the forest.
一种多数据融合的火焰识别方法,一种多数据融合的火焰识别方法,先通过摄像头采集数据,然后使用单片机删选有效的数据,通过闸值删选图像信息,最后合成有效的图形数据,从而识别火焰。A multi-data fusion flame identification method, a multi-data fusion flame identification method, first collects data through a camera, then uses a single-chip microcomputer to delete valid data, deletes image information through a gate value, and finally synthesizes valid graphic data, To identify the flame.
与现有技术相比,本发明的有益效果为:Compared with prior art, the beneficial effect of the present invention is:
本装置应用于森林防火的物联网后,很好的解决了节点功耗高的问题。利用物联网收集到的数据更加准确、直接地反映监控现场的各种环境因素变化情况,而且时效性更好,能够很好地弥补传统火灾监测预警技术的不足。项目通过对火灾监测过程中感应器感应信息的追踪和多信息源的信息融合决策,利用数据融合技术解决目前森林火灾监测预警。更为难得的是作者使用的算法和软件很好的弥补了WSN中硬件所固有的问题,发明了一种有效的收集反馈物联网中信息的装置。After the device is applied to the Internet of Things for forest fire prevention, it solves the problem of high power consumption of nodes. The data collected by the Internet of Things can more accurately and directly reflect the changes of various environmental factors at the monitoring site, and has better timeliness, which can well make up for the shortcomings of traditional fire monitoring and early warning technologies. The project uses data fusion technology to solve the current forest fire monitoring and early warning through the tracking of sensor sensing information in the fire monitoring process and the information fusion decision-making of multiple information sources. What is even more rare is that the algorithm and software used by the author make up for the inherent problems of the hardware in WSN, and invent an effective device for collecting and feeding back information in the Internet of Things.
图1是本发明装多数据融合的火焰识别装置的硬件连接结构图;Fig. 1 is the hardware connection structural diagram of the flame identification device of the present invention that adorns multi-data fusion;
图2是多数据融合的火焰识别装置软件结构图;Fig. 2 is the software structural diagram of the flame identification device of multi-data fusion;
图3多种数据融合的过程图。Figure 3 Process diagram of multiple data fusion.
具体实施方式Detailed ways
下面结合附图与具体实施方式对本发明的装置作进一步详细地说明。The device of the present invention will be further described in detail below in conjunction with the drawings and specific embodiments.
本发明构建多种数据融合模型,对获得的数据进行时序上的排列,在数学模型的准则上判断有效数据。将采集到的火焰、温度、湿度、气体等信息综合判断。从而消除了大量的无用数据减轻了网络的负担。表1为数据融合模型中的各项值。The invention constructs multiple data fusion models, arranges the obtained data in time series, and judges valid data based on the criterion of the mathematical model. Comprehensively judge the collected flame, temperature, humidity, gas and other information. Thereby eliminating a large amount of useless data and reducing the burden on the network. Table 1 shows the values of each item in the data fusion model.
表1Table 1
本发明同时也构建了火焰图像识别模型,实现了识别火焰的算法,作者自己发明了一种低功耗的算法,使用很少的硬件资源就能识别图像中是否有火焰。从PC中移植到Arduino平台后发现很完美的结合了平台的特性对节点功耗的改善有显著的效果。The present invention also builds a flame image recognition model and realizes an algorithm for recognizing flames. The author himself invented a low-power algorithm, which can recognize whether there is a flame in an image with very few hardware resources. After porting from the PC to the Arduino platform, it is found that the perfect combination of the characteristics of the platform has a significant effect on the improvement of node power consumption.
如图1-2所示,一种多数据融合的火焰识别装置包括,传感模块、通讯模块、图像采集模块、arduino单片机,其中单片机包含处理模块、数据采集模块、数据融合模块。如图2中各种传感器采集到的数据然后经过数据融合得到结果。As shown in Figure 1-2, a multi-data fusion flame recognition device includes a sensing module, a communication module, an image acquisition module, and an arduino single-chip microcomputer, wherein the single-chip microcomputer includes a processing module, a data acquisition module, and a data fusion module. As shown in Figure 2, the data collected by various sensors is then obtained through data fusion.
传感模块:通过温湿度传感器、气体传感器、探测火源传感器和图像传感器采集基础数据用于数据融合;Sensing module: collect basic data through temperature and humidity sensors, gas sensors, fire detection sensors and image sensors for data fusion;
处理模块:通过Arduino单片机完成数据融合计算和图像识别算法,从而判断有效的数据再传递给通讯模块,同时单片机还有电源管理的功能给整个装置提供电源策略;Processing module: complete the data fusion calculation and image recognition algorithm through the Arduino single-chip computer, so as to judge the valid data and then pass it to the communication module. At the same time, the single-chip computer also has the function of power management to provide power strategy for the whole device;
通讯模块:硬件实现的Xbee协议栈;Communication module: Xbee protocol stack implemented by hardware;
数据采集模块:是传感器的驱动程序,驱动传感器采集数据,通过数据闸值自动的剔除多余的,无效的,混杂的传感器数据,从而达到功耗的效果;Data acquisition module: it is the driver program of the sensor, which drives the sensor to collect data, and automatically eliminates redundant, invalid, and mixed sensor data through the data gate value, so as to achieve the effect of power consumption;
图像采集模块:用来采集图像,然后进行模式识别,集合了Arduino上的视频驱动和模式识别算法;Image acquisition module: used to acquire images, and then perform pattern recognition, which integrates the video driver and pattern recognition algorithms on Arduino;
数据融合模块:将各种信息联合起来融合成关键信息,报告可能的火势。Data Fusion Module: Combine all kinds of information into key information and report possible fires.
所述温湿度传感器为DHT11数字温湿度传感器,含有已校准数字信号输出。The temperature and humidity sensor is a DHT11 digital temperature and humidity sensor with calibrated digital signal output.
所述气体传感器基于气敏元件的MQ3气体传感器,用于检测到空气中的酒精、乙醇气体,与Arduino专用传感器扩展板结合使用,用于探测空气中的烟雾的浓度。The gas sensor is based on the MQ3 gas sensor of the gas sensor, which is used to detect alcohol and ethanol gas in the air, and is used in combination with the Arduino special sensor expansion board to detect the concentration of smoke in the air.
所述探测火源传感器可探测到波长在760纳米~1100纳米范围内的光源,转换成数字信号传递给处理模块。The fire source detection sensor can detect light sources with wavelengths in the range of 760 nm to 1100 nm, convert them into digital signals and transmit them to the processing module.
所述图像传感器CMUcam4为可编程的嵌入式图像传感器,采用Parallax P8X32A芯片和Omini Vision9665CMOS摄像头模组扑捉森林中火焰的照片。The image sensor CMUcam4 is a programmable embedded image sensor, which uses Parallax P8X32A chip and Omini Vision9665CMOS camera module to capture photos of flames in the forest.
参照图3,一种多数据融合的火焰识别方法,先通过摄像头采集数据,然后使用单片机删选有效的数据,通过闸值删选图像信息,最后合成有效的图形数据,从而识别火焰。部署在节点上的arduino等单片机有一定的处理能力可以进行数据融合,考虑到节点电量和处理能力,使用基于系数的融合算法。假设有多个传感器每个传感器输出数据是X,然后对他们使用加权平均法,获取融合的结果。Referring to Figure 3, a multi-data fusion flame recognition method first collects data through a camera, then uses a single-chip microcomputer to delete valid data, deletes image information through gate values, and finally synthesizes valid graphic data to identify flames. Arduino and other single-chip microcomputers deployed on nodes have certain processing capabilities for data fusion. Taking into account the power and processing capabilities of nodes, a fusion algorithm based on coefficients is used. Assuming that there are multiple sensors, the output data of each sensor is X, and then use the weighted average method on them to obtain the fusion result.
实施例1Example 1
模拟火灾场景:Simulated fire scene:
接受温度和湿度数据后,通过数据融合算法判断有火灾情况。没有打开火焰和图像识别的功能减少了能效率的损耗。通过电量估算,本装置的电池使用寿命是同种功能普通节点的五倍以上。After receiving the temperature and humidity data, it is judged that there is a fire situation through the data fusion algorithm. The function of not turning on the flame and image recognition reduces the loss of energy efficiency. According to power estimation, the battery life of this device is more than five times that of ordinary nodes with the same function.
实施例2Example 2
模拟火灾场景:Simulated fire scene:
接受温度和湿度数据后,无法判断是否有火情,气体指数是200%,通过融合算法得出需要打开火焰传感器来识别火情。装置打开以后发现有火情,成功预测火焰。After receiving the temperature and humidity data, it is impossible to judge whether there is a fire. The gas index is 200%. Through the fusion algorithm, it is concluded that the flame sensor needs to be turned on to identify the fire. After the device was opened, it was found that there was a fire, and the flame was successfully predicted.
实施例3Example 3
模拟火灾场景:Simulated fire scene:
接受四项数据(温度,湿度,气体,火焰)后发现有可能是火情,融合算法打开最后一步通过图像识别算法查看森林中是否有火情。结果是火焰传感器的无效数据。Arduino自动判断不开启无线传输,从而达到了省电的功效。After receiving four items of data (temperature, humidity, gas, and flame), it is found that there may be a fire, and the fusion algorithm opens the last step to check whether there is a fire in the forest through the image recognition algorithm. The result is invalid data for the flame sensor. Arduino automatically judges not to enable wireless transmission, thus achieving the power saving effect.
以上所述,仅为本发明最佳实施方式,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,可显而易见地得到的技术方案的简单变化或等效替换均落入本发明的保护范围内。The above is only the best implementation mode of the present invention, any simple changes or equivalent replacements of the technical solutions that can be clearly obtained by any person skilled in the art within the technical scope disclosed in the present invention all fall into the scope of the present invention within the scope of protection.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013100549033A CN103136538A (en) | 2013-02-04 | 2013-02-04 | Multidata fusion flame recognition device and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013100549033A CN103136538A (en) | 2013-02-04 | 2013-02-04 | Multidata fusion flame recognition device and method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103136538A true CN103136538A (en) | 2013-06-05 |
Family
ID=48496345
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2013100549033A Pending CN103136538A (en) | 2013-02-04 | 2013-02-04 | Multidata fusion flame recognition device and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103136538A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106384102A (en) * | 2016-09-30 | 2017-02-08 | 深圳火星人智慧科技有限公司 | IR-card-equipped day-night digital network camera flame detection system and method |
CN107566373A (en) * | 2017-09-07 | 2018-01-09 | 中山火炬职业技术学院 | IoT data fusion method, device, terminal and computer-readable storage medium |
CN110278533A (en) * | 2019-06-14 | 2019-09-24 | 浙江理工大学 | Forest fire prevention data communication method based on network control system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20100023362A (en) * | 2008-08-21 | 2010-03-04 | 랜스(주) | Zigbee fire defense system |
US20120302219A1 (en) * | 2011-05-24 | 2012-11-29 | Vang Vang | Monitoring and automating a network of independent wireless remote devices based on a mobile device location |
CN202584340U (en) * | 2012-05-30 | 2012-12-05 | 英利能源(中国)有限公司 | Forest fire hazard alarm system |
-
2013
- 2013-02-04 CN CN2013100549033A patent/CN103136538A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20100023362A (en) * | 2008-08-21 | 2010-03-04 | 랜스(주) | Zigbee fire defense system |
US20120302219A1 (en) * | 2011-05-24 | 2012-11-29 | Vang Vang | Monitoring and automating a network of independent wireless remote devices based on a mobile device location |
CN202584340U (en) * | 2012-05-30 | 2012-12-05 | 英利能源(中国)有限公司 | Forest fire hazard alarm system |
Non-Patent Citations (2)
Title |
---|
余荣华: ""森林火灾图像自动识别系统的研究与实现"", 《中国优秀硕士学位论文全文数据库(信息科技辑)》, 30 June 2010 (2010-06-30) * |
颜学义: ""基于ZigBee的智能火灾报警系统设计"", 《中国优秀硕士学位论文全文数据库(信息科技辑)》, 31 May 2010 (2010-05-31) * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106384102A (en) * | 2016-09-30 | 2017-02-08 | 深圳火星人智慧科技有限公司 | IR-card-equipped day-night digital network camera flame detection system and method |
CN107566373A (en) * | 2017-09-07 | 2018-01-09 | 中山火炬职业技术学院 | IoT data fusion method, device, terminal and computer-readable storage medium |
CN110278533A (en) * | 2019-06-14 | 2019-09-24 | 浙江理工大学 | Forest fire prevention data communication method based on network control system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103945179B (en) | A kind of intelligent video monitoring system based on distributed wireless sensor network | |
CN107564231B (en) | Building fire early warning and fire situation assessment system and method based on Internet of things | |
WO2017054101A1 (en) | Cloud of things online monitoring general platform system | |
CN111754714A (en) | A security monitoring system and monitoring method thereof | |
CN116978207B (en) | A multifunctional laboratory safety monitoring and early warning system | |
CN112087528A (en) | Water environment intelligent monitoring system and method based on deep learning | |
CN102902954A (en) | Pedestrian detection system and method based on internet-of-things intelligent household security gateway | |
CN113556768A (en) | Sensor data anomaly detection method and system | |
CN103136538A (en) | Multidata fusion flame recognition device and method | |
CN109060148B (en) | Flame detector and its control method | |
CN105306878A (en) | Internet of things coprocessing monitor camera system | |
CN104103237A (en) | Intelligent LED display system based on multi sensor data fusion | |
US11120676B2 (en) | Intrusion detection methods and devices | |
CN104305621A (en) | RFID (radio frequency identification devices)-based mine safety helmet and work process thereof | |
CN203288046U (en) | Household combustion gas leakage monitoring system based on wireless communication and GSM mobile communication | |
CN105992213A (en) | Intelligent router, cloud server and intelligent router start and stop system | |
CN112907885B (en) | Distributed centralized household image fire alarm system and method based on SCNN | |
CN208010403U (en) | Coal mine underground environmental safety monitors and personnel location system | |
CN203492225U (en) | Control system of illumination circuit | |
CN210839860U (en) | An Intelligent Monitoring System Based on DY-EXP430F6638 | |
CN203243530U (en) | A system of internet of things | |
CN202471135U (en) | Drug information detecting device | |
CN103473885A (en) | Intelligent asset information identifying, monitoring and pre-warning system | |
CN116248830A (en) | A wild animal identification method, terminal and system based on space-based internet of things | |
Truong et al. | Design and implementation of a LoRa-based system for warning of forest fire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20130605 |