CN103119124A - 低残留地层压裂 - Google Patents

低残留地层压裂 Download PDF

Info

Publication number
CN103119124A
CN103119124A CN201180045649XA CN201180045649A CN103119124A CN 103119124 A CN103119124 A CN 103119124A CN 201180045649X A CN201180045649X A CN 201180045649XA CN 201180045649 A CN201180045649 A CN 201180045649A CN 103119124 A CN103119124 A CN 103119124A
Authority
CN
China
Prior art keywords
starch
fluid
fracturing fluid
weight
agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201180045649XA
Other languages
English (en)
Inventor
俞铧
周健
D·B·索拉瑞克
D·S·斯泰肯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HC Starck GmbH
Original Assignee
HC Starck GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HC Starck GmbH filed Critical HC Starck GmbH
Publication of CN103119124A publication Critical patent/CN103119124A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/66Compositions based on water or polar solvents
    • C09K8/68Compositions based on water or polar solvents containing organic compounds
    • C09K8/685Compositions based on water or polar solvents containing organic compounds containing cross-linking agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/84Compositions based on water or polar solvents
    • C09K8/86Compositions based on water or polar solvents containing organic compounds
    • C09K8/88Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • C09K8/90Compositions based on water or polar solvents containing organic compounds macromolecular compounds of natural origin, e.g. polysaccharides, cellulose
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

本发明通常涉及一种包含含水流体和至少一种聚合物胶凝剂的低残留水力压裂流体,其中所述聚合物胶凝剂包含至少一种经交联的改性淀粉。本发明还涉及一种通过使用上述地下压裂流体压裂地层的方法。

Description

低残留地层压裂
技术领域
本发明通常涉及用于处理地下地层的增粘剂组合物。更特别地,本发明涉及改性淀粉基天然聚合物体系在水力压裂应用中的用途。本发明还涉及用于提供在破胶后具有低残留物的本发明交联改性淀粉的化学体系以及使用该化学体系的油井压裂方法。
背景技术
在具有低渗透的细晶粒储油岩的地下地层中,尽管具有非常高的压力,但是油至生产井的流动性有时较低。为了有助于提高流动性或提高吸收能力,可对油藏井底区中的岩石进行人工处理以改善其渗透性。一种最有效的处理方法为水力压裂。
水力压裂是一种通过将水基流体在高压下注入含油岩层中而在所述地层中人工形成或拓宽裂缝的技术。所得裂缝向该区段的较远生产区域延伸,因此提高了油井的产量。为了防止压力解除后裂缝堵塞或塌陷,将支撑剂(如悬浮于胶凝性多糖溶液中的粗粒砂)与所述流体一起注入所述裂缝中。Reservoir Stimulation,第3版,John Wiley&Sons,Ltd,2000。
压裂流体的预期作用是引发并扩展裂缝,以及在最小滤失和最低处理压力下输送支撑剂。理想的压裂流体应在管道中具有较低的粘度(足以将支撑剂输送通过地面设备,但是足够低以避免不必要的摩擦压力损失),且在其中大压力值可提供更大的裂缝宽度和有效地将支撑剂向下输送至裂缝的压力下具有高粘度。
据报道,约22种不同的金属离子可交联水溶性多糖。“Chemical Modelfor the Rheological Behavior of Crosslinked Fluid Systems”,J.Pet.Tech.,Feb.:335(1983)。优异的热稳定性和剪切稳定性以及盐相容性使得用Al3+、Zr4+和Ti4+交联的羟丙基-和羧甲基羟丙基瓜尔胶、由Cr3+或NH4+介导的黄原胶、羧甲基纤维素、羧甲基羟乙基纤维素网络成为可选用于这些操作中的聚合物。所述聚合物的浓度为15-80磅/1000加仑,这取决于所需的粘度。通常延迟这些交联剂的反应以使得粘度在临近钻孔时显著增大。该延迟降低了管道分压(fraction pressure)并改善了所述粘性流体的长期稳定性。
然而,高粘度的压裂流体会不经意地堵塞高渗透性的支撑裂缝,由此导致非常不利的流动性。此时,必需在该工作后将粘度降至极低值的机制。将破胶剂,如氧化性化合物(如过二硫酸盐)或酶(如半纤维素酶)用于降低聚合物链的长度及其分子量。理想的是包封的破胶剂,这是因为其仅在压裂处理结束时才具有活性。早期破胶剂聚合物反应是不利的,因为其降低了所述流体所需的粘性;而特别成问题的是使破胶剂的量最小化或不使用破胶剂,这是因为其可对支撑剂-充填体渗透率造成永久性的损害。R.Lapasin和S.Pricl,“Rheology of Industrial Polysaccharides Theory andApplications”,AN Aspen Publication,1999。
在所述处理的整个过程中作为基础液体的聚合物链浓缩物也在压裂操作期间滤失至地层中。浓缩的聚合物,尤其是用多价金属离子交联的羟丙基-和羧甲基羟丙基瓜尔胶即使在破胶剂的存在下,也极其难以完全破坏。交联剂和聚合物的不同组合可能比其他物质更具耐受性,从而导致仅部分分解,这可导致显著的残留并因此破坏支撑剂-充填体的渗透率,并对压裂井的性能产生破坏性的影响。
美国专利4,659,811公开了一种用于瓜尔胶分解的碱精炼法以及由其制备的压裂流体。据称所述压裂流体具有优异的流体粘度和破胶后的低残留。
WO2006/109225公开了使用亲水改性的多糖(瓜尔胶)制备压裂流体,所述压裂流体在处理后在地层中形成非常低的残留物。
美国专利5,681,796公开了具有低浓度瓜尔胶的压裂流体的制备,所述瓜尔胶可用多价金属阳离子在特定的缓冲条件下交联并获得压裂所需的粘度和破胶后的低残留。
美国专利4,946,604公开了使用非还原性糖与瓜尔胶一起制备具有受控的粘度降低(破胶)性能的压裂流体。
美国专利5,881,813和5,547,026教导了使用酶破坏经交联的多糖基钻井处理流体,其具有低残留物以便更好地清除。
美国专利4,169,798教导了使用具有酶(即半纤维素酶)的瓜尔胶甲酯基钻井处理流体作为破胶剂以提供更好的破胶性能和清除效率。然而,保持所述酶基破胶剂的高温性能对目前的高温压裂应用而言仍是一个大问题。
美国专利6,983,801和5,460,226教导了用于瓜尔胶基压裂流体的新型破胶体系,其中掺有可水解的酯以降低pH值并改善所述多糖凝胶以低残留物进行的进一步解交联。美国专利7,331,389、7,311,145和6,488,091进一步教导了以类似方法再利用解交联的瓜尔胶凝胶的方法。
美国专利6,810,959公开了新型阳离子羟乙基纤维素基压裂流体,据称其在破胶后产生低残留物。该专利还公开了位于所述改性多糖上的亲水基团是破胶后低残留物的原因,这是因为据称破胶后的多糖片段更易溶于含水液体中。
发明简述
本发明通常涉及用于处理地下地层的增粘剂组合物。更特别地,本发明涉及改性淀粉基天然聚合物体系在水力压裂地下地层应用中的用途。本发明还涉及一种用于提供本发明的交联改性淀粉的化学体系,其在破胶后,在所处理的地下地层中具有最低量的残留物或者没有残留物;以及使用所述化学体系的油井压裂方法。
发明详述
本发明涉及一种低残留水力压裂流体,其包含含水流体、包含一种或多种可水合改性淀粉的聚合物胶凝剂。本发明的压裂流体可额外包含交联剂组合物、破胶剂和/或支撑剂。本发明的低残留水力压裂流体还可包含其他组分和添加剂,包括但不限于粘土稳定性、表面活性剂、防滤失剂、氧清除剂等。
在交联前,使用含水流体将所述胶凝剂水合。所述含水流体可为淡水或盐水。如果使用盐水,则其通常包含基于所述流体重量为0.01-13%的盐,优选基于所述流体重量为0.5-7%的盐,盐水可为天然或合成的盐水、海水或含有任何对活性成分和流体性能无害的无机盐组分或有机盐组分的水。
可水合的改性淀粉为水溶性多糖,其可进一步用多价金属离子交联以提供优异的热稳定性和剪切稳定性以及盐相容性。本发明制备中所用的淀粉可为任何衍生自任何种类的天然来源的淀粉,包括但不限于玉米(玉蜀黍)、马铃薯、大麦、小麦、木薯及其低直链淀粉(蜡质)和高直链淀粉的品种。优选的淀粉为含有低于所述淀粉重量的10%的直链淀粉的高分子量蜡质马铃薯或玉米淀粉;在另一实施方案中,直链淀粉含量低于所述淀粉重量的5%;在另一实施方案中,直链淀粉含量低于所述淀粉重量的2%;在又一实施方案中,低于所述淀粉重量的1%。可用于本发明中的可水合改性淀粉的分子量可为100,000-500百万;在另一实施方案中,为500,000-200百万。
所述改性淀粉由淀粉与氧化烯反应,随后用多官能交联剂将其交联而制备。除了用氧化烯进行化学改性之外,还可使用其他改性方式,如使用其他化学试剂、加热等以对其进行改性。
可用于淀粉改性的氧化烯具有如下通式:
(-O-R1-)y
其中R1独立地选自含有至多4个碳原子的亚烷基,且y为约1-约3000。
所述改性淀粉由淀粉与氧化烯反应,随后用多官能交联剂将其交联而制备。在本发明的一个实施方案中,用烷氧基化的非离子取代基对所述淀粉进行改性。当所述烷氧基改性基团经由醚键与淀粉连接时,所述反应试剂包含卤素、卤代醇基、环氧基或缩水甘油基。在一个实施方案中,所述交联剂选自三偏磷酸钠、三氯氧磷、表氯醇及其混合物。或者,在pH值和温度的特定条件下加热干燥的改性淀粉粉末可将所述淀粉物理改性具有与共价键交联淀粉类似的功能。
可用于淀粉改性的非离子烷氧基具有如下通式:-CH2-CH(OH)R,其中R=H、CH3或-CH2-CH3
在一个实施方案中,可用于淀粉改性的氧化烯包括但不限于氧化乙烯、氧化丙烯和氧化丁烯。
所述多官能交联剂可为任何含有可与淀粉多糖主链上的羟基反应的多官能基团的有机化合物或无机化合物。可用的交联剂包括但不限于三卤氧磷、三偏磷酸钠、聚磷酸钠、乙二醛、表氯醇、二缩水甘油醚型双环氧化物、双环氧丁烯(diepoxybutene)、含有多个(poly)N-甲醇基团的化合物及其混合物等。
通常使用基于所述淀粉重量为约0.1-30重量%的氧化烯和基于所述淀粉重量为1-1000ppm的交联剂对所述淀粉进行改性。在另一实施方案中,使用基于所述淀粉重量为约1-15%的氧化烯和基于所述淀粉重量为5-500ppm的交联剂对所述淀粉进行改性。
在(化学)改性后,然后使用蒸汽注入/双或单雾化工艺将所述经改性/交联的淀粉喷雾干燥以预胶凝,从而获得更好的冷水/盐水分散性。这些方法是已知的且充分描述于美国专利4,280,851、4,600,472和5,149,799中,通过引用并入本文。
就压裂应用而言,所述流体通常包含基于所述流体重量为约0.1-20重量%的淀粉,在另一实施方案中,包含基于所述流体重量为约0.5-5重量%的淀粉。
交联剂组合物可包含多价金属离子基无机或有机化合物,包括但不限于硼、铝、离子、锆、铬、钛。通常将基于所述流体重量为约0.01-10%的交联剂,在另一实施方案中,使用基于所述流体重量为约0.05-4%的交联剂用于压裂应用中,这取决于待压裂的地层温度和交联剂的类型。
本发明所用的破胶剂可包含,包括但不限于,氧化剂、酶、碱或酸。通常将基于所述流体重量为约0.01-20重量%的破胶剂,在另一实施方案中,将基于所述流体重量为约0.05-10重量%的破胶剂用于压裂应用中,这取决于待压裂的地层温度和破胶剂的类型。
为了根据本发明在地下地层上进行压裂操作,将所述改性淀粉基聚合物胶凝剂在约0.5-70°C的温度下,在另一实施方案中在大约环境温度下,以最小搅拌分散于含水流体中。在淀粉发生水合后,所述流体的粘度开始增大。然后将交联剂的源、破胶剂、支撑剂和其他添加剂添加至增稠的流体中。所述增稠流体的粘度在1/100s剪切速率下可高达10,000cp,这取决于淀粉和交联剂的使用水平。然后将所述增稠流体注入钻井中并在高压下置于其中,随后将流体上的压力提高至超过地层压裂压力的压力,由此使得地层压裂。所得裂缝向富油区段的更远生产区域延伸;由此提高了渗透性并因此提高了油井的产量。由于经增稠的压裂流体与支撑剂-充填体可一起堵塞经支撑的裂缝,从而影响其渗透性,因此可任选使用破胶剂从而以极低的残留将粘度降至极低的值,并使所述支撑剂保留在原地以使裂缝保持敞开。理想的是包封的破胶剂,因为其仅在压裂处理结束时才具有活性。
现在,通过下文的非限制性实施例例示本发明的低残留水力压裂流体的性能。
实施例1—制备氧化丙烯改性的且用三氯氧磷交联的蜡质淀粉衍生物
在室温下,使蜡质淀粉(1000g)在硫酸钠水溶液(200g,于1500g水中)中淤浆化。向经搅拌的淤浆中缓慢加入3%的氢氧化钠溶液(500g);此时,所述淤浆的pH值应至少为11.50(或者25mL反应淤浆应需要25-30mL的0.1N含水盐酸以在酚酞终点处中和)。将氧化丙烯(70g或基于淀粉为7重量%)添加至所述淤浆中,并使所述反应混合物在40°C下反应至少16小时。然后,将该后反应的淤浆冷却至室温,检测其碱度且需要的话,根据需要使用3%氢氧化钠溶液调节至上述终点。然后添加三氯氧磷(0.05g或0.005%,按溶液重量计算)并使所述混合物再反应1小时。用10%盐酸溶液将最终反应混合物中和至pH5.5。然后将所述经改性的淀粉过滤,清洗并干燥。
根据测试(A)使用C.W.Brabender Visco-Amylo Graph分析所述经改性/交联的蜡质淀粉试样以测定其峰值粘度,发现峰值粘度为1100布氏单位。
然后将所述经改性/交联的蜡质淀粉在水中淤浆化至无水固体含量为20-30重量%,并使用蒸汽注入/双或单雾化工艺或所谓的预团聚法喷雾干燥以预胶凝。
然后,根据测试(B)使用C.W.Brabender Visco-Amylo Graph进一步分析所述预胶凝的改性/交联蜡质淀粉试样以测定其峰值粘度,发现峰值粘度为2700布氏单位。
表1制备经改性的蜡质淀粉
基体 分子量 用PO改性 用POCl3交联 使用预团聚法
淀粉#1 蜡质玉米淀粉 90-100百万
淀粉#2 蜡质马铃薯淀粉 95-110百万
淀粉#3 蜡质玉米淀粉 75百万
淀粉#4 蜡质玉米淀粉 200,000
实施例2—经改性的蜡质淀粉在2%KCl溶液中的粘度曲线
将经改性的蜡质淀粉分散于2%KCl溶液中并混合。借助布鲁克菲尔德型DV-III可编程流变仪或Grace M3600A-2高温高压流变仪测量所述淀粉溶液的粘度。
表2用2%KCl改性的蜡质淀粉溶液在25°C下的粘度
在2%KCl中的浓度(重量%) 在2%KCl溶液中的分散性 粘度(cP,1/100s)
淀粉#1 2.7 优异 70.4
淀粉#2 2.5 缓慢 38.4
淀粉#3 8 中等 83
淀粉#4 19 中等 29
实施例3用硼酸或AlCl 3 交联的改性蜡质淀粉在2%KCl溶液中的粘度曲线
将经改性的蜡质淀粉分散于2%KCl溶液中并混合。在调节pH值后,将硼酸或AlCl3水溶液缓慢添加至所述淀粉溶液中。借助布鲁克菲尔德型DV-III可编程流变仪测量交联淀粉溶液的粘度。
用硼酸交联的淀粉#1在pH12和25°C下的结果示于图1中。
用硼酸交联的淀粉#2在pH12和25°C下的结果示于图2中。
2重量%的用0.8重量%AlCl3交联的淀粉#2在25°C下的粘度示于图3中。
实施例4改性蜡质淀粉在2%KCl溶液中的高温高压(HTHP)粘度曲线
将经改性的蜡质淀粉分散于2%KCl溶液中并混合。在调节pH值后,将金属离子交联剂的水溶液缓慢添加至所述淀粉溶液中。借助GraceM3600A-2HTHP流变仪测量所述淀粉溶液的HTHP粘度。
2.5重量%的用0.3%硼酸交联的改性蜡质淀粉#2在pH12和400psi下粘度示于图4中。
4重量%的不具有金属离子交联剂的改性蜡质淀粉#1在pH7和400psi下的粘度示于图5中。
2.5重量%的具有0.675重量%金属离子交联剂的改性蜡质淀粉#1在pH10和400psi下的粘度示于图6中。
实施例5在pH12下用过硫酸铵破胶剂处理的以硼酸交联的改性蜡质淀粉
在pH值12下,将2.5重量%的改性蜡质淀粉分散于2%KCl溶液中并混合。将1.22%(基于淀粉重量)的硼酸交联剂水溶液缓慢添加至所述淀粉溶液中,所述溶液的粘度增大。在淀粉溶液的粘度稳定后,在搅拌的同时,将0.6%过硫酸铵缓慢添加至该增稠溶液中。然后在50°C下将所述混合物搅拌1小时以备用过滤试验。
为了进行对比,在pH12下,将0.5重量%的市售瓜尔胶分散于2%KCl溶液中并混合。分别将0.45%(基于瓜尔胶重量)和0.63%(基于瓜尔胶重量)的硼酸交联剂水溶液缓慢添加至瓜尔胶#1和瓜尔胶#2溶液中,所述溶液的粘度增大。在瓜尔胶溶液的粘度稳定后,在搅拌的同时,将0.6%过硫酸铵缓慢添加至该增稠溶液中。然后在50°C下将所述混合物搅拌1小时以备用过滤试验中。
借助布鲁克菲尔德型DV-III可编程流变仪测定所述多糖凝胶溶液的粘度。
在过硫酸铵处理之前和之后,在环境温度和300psi背压下类似于American Petroleum Institute(API)Recommended Practice13B(RP13B),第12版(09/01/1988),High-Temperature/High-Pressure Filtration Test的3.4节,第11-13页进行所述交联淀粉溶液的过滤试验,不同之处在于使用孔径为20-25μm的Whatman级#4滤纸。
表3在过硫酸铵处理之前和之后,交联的改性淀粉和
瓜尔胶的加压过滤结果
Figure BDA00002950319900081

Claims (15)

1.一种低残留水力压裂流体,其包含含水流体和至少一种聚合物胶凝剂,其中所述聚合物胶凝剂包含至少一种经交联的改性淀粉。
2.根据权利要求1的压裂流体,其额外包含破胶剂、支撑剂或者破胶剂和支撑剂二者。
3.根据权利要求1或2的压裂流体,其中所述经交联的改性淀粉衍生自可水合淀粉与至少一种氧化烯反应以获得经改性的淀粉,随后用至少一种多官能交联剂将所述经改性的淀粉交联以获得经交联的改性淀粉。
4.根据前述权利要求中任一项的压裂流体,其中所述淀粉衍生自玉米(玉蜀黍)、马铃薯、大麦、小麦、木薯及其混合物。
5.根据前述权利要求中任一项的压裂流体,其中所述淀粉为基于该淀粉直链含有小于10重量%淀粉的高分子量蜡质马铃薯淀粉或玉米淀粉。
6.根据权利要求3-5中任一项的压裂流体,其中所述氧化烯选自氧化乙烯、氧化丙烯、氧化丁烯及其组合或混合物。
7.根据权利要求3-6中任一项的压裂流体,其中所述可水合改性淀粉的分子量为约100,000-500百万。
8.根据前述权利要求中任一项的压裂流体,其中至少一种多官能交联剂选自三卤氧磷、三偏磷酸钠、聚磷酸钠、乙二醛、表氯醇、二缩水甘油醚型双环氧化物、双环氧丁烯、含有多个N-甲醇基团的化合物及其组合或混合物。
9.根据权利要求3-8中任一项的压裂流体,其中使用基于所述淀粉重量为约0.1-30重量%的氧化烯改性所述淀粉,并使用基于所述淀粉重量为1-1000ppm的交联剂以交联所述改性淀粉。
10.根据前述权利要求中任一项的压裂流体,其中将所述经交联的改性淀粉喷雾干燥。
11.根据前述权利要求中任一项的压裂流体,其中所述聚合物胶凝剂额外包含至少一种任选包封且仅在压裂结束时才具有活性的破胶剂。
12.根据权利要求11的压裂流体,其包含基于所述流体重量为0.01-20%的破胶剂。
13.一种压裂地下地层的方法,其包括在足以压裂所述地层的压力下,将根据权利要求1-12中任一项的压裂流体注入所述地层中,随后破坏所述流体的粘度以获得具有改善的渗透性的压裂地层。
14.根据权利要求13的方法,其中将所述聚合物胶凝剂与所述含水流体组合之前,将所述聚合物胶凝剂干燥喷雾。
15.根据权利要求13或14的方法,其中所述压裂流体包含基于所述流体重量为0.01-20%的破胶剂。
CN201180045649XA 2010-10-07 2011-10-04 低残留地层压裂 Pending CN103119124A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US39065810P 2010-10-07 2010-10-07
US61/390,658 2010-10-07
EP10196234 2010-12-21
EP10196234.8 2010-12-21
PCT/EP2011/067257 WO2012045711A1 (en) 2010-10-07 2011-10-04 Low residue formation fracturing

Publications (1)

Publication Number Publication Date
CN103119124A true CN103119124A (zh) 2013-05-22

Family

ID=43929101

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180045649XA Pending CN103119124A (zh) 2010-10-07 2011-10-04 低残留地层压裂

Country Status (7)

Country Link
US (1) US20130186630A1 (zh)
EP (1) EP2625243A1 (zh)
CN (1) CN103119124A (zh)
AU (1) AU2011311626B2 (zh)
CA (1) CA2810964A1 (zh)
EA (1) EA201390449A1 (zh)
WO (1) WO2012045711A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106062306A (zh) * 2014-01-24 2016-10-26 斯伦贝谢技术有限公司 再利用水力压裂中未处理的产出水的方法
CN113445980A (zh) * 2021-07-08 2021-09-28 徐州工程学院 一种强化地面钻井水力压裂增透效果的方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2971792A1 (en) 2014-12-23 2016-06-30 Agrana Beteiligungs-Aktiengesellschaft Process fluid with environmentally friendly biostabilisator
US20180237686A1 (en) * 2015-08-31 2018-08-23 Halliburton Energy Services, Inc. Method for stimulation treatment using polymer-surfactant combination
EP3184601A1 (de) 2015-12-23 2017-06-28 Agrana Beteiligungs- Aktiengesellschaft Prozessfluid mit umweltverträglichem biostabilisator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5851959A (en) * 1997-01-03 1998-12-22 Chemstar Products Company High temperature stable modified starch polymers and well drilling fluids employing same
CN1989219A (zh) * 2004-07-22 2007-06-27 赫尔克里士公司 水基钻井液
CN100999659A (zh) * 2006-12-29 2007-07-18 中国科学院长春应用化学研究所 一种接枝型压裂液及制备方法
WO2009089267A2 (en) * 2008-01-10 2009-07-16 M-I L.L.C. Viscoelastic surfactant based wellbore fluids and methods of use

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4169798A (en) 1976-11-26 1979-10-02 Celanese Corporation Well-treating compositions
US4600472A (en) 1979-12-14 1986-07-15 General Foods Corporation Apparatus for cooking or gelatinizing materials
US4280851A (en) 1979-12-14 1981-07-28 General Foods Corporation Process for cooking or gelatinizing materials
US4659811A (en) 1984-05-29 1987-04-21 Henkel Corporation Alkaline refined gum and use thereof in improved well-treating compositions
US4946604A (en) 1988-11-23 1990-08-07 Halliburton Company Method for treating a well bore
US5149799A (en) 1990-01-26 1992-09-22 National Starch And Chemical Investment Holding Corporation Method and apparatus for cooking and spray-drying starch
US5460226A (en) 1994-05-18 1995-10-24 Shell Oil Company Formation fracturing
US5929002A (en) * 1994-07-28 1999-07-27 Dowell, A Division Of Schlumberger Technology Corporation Fluid loss control
US5681796A (en) 1994-07-29 1997-10-28 Schlumberger Technology Corporation Borate crosslinked fracturing fluid and method
US5547026A (en) 1995-04-19 1996-08-20 Bj Services Company Crosslinked guar based blocking gel system for use at low to high temperatures
US5881813A (en) 1996-11-06 1999-03-16 Bj Services Company Method for improved stimulation treatment
EP0949311A1 (en) * 1998-04-09 1999-10-13 Coöperatieve Verkoop- en Productievereniging van Aardappelmeel en Derivaten 'AVEBE' B.A. Drilling fluids
GB2351098B (en) * 1999-06-18 2004-02-04 Sofitech Nv Water based wellbore fluids
US6818594B1 (en) * 1999-11-12 2004-11-16 M-I L.L.C. Method for the triggered release of polymer-degrading agents for oil field use
CA2432160C (en) 2001-01-09 2010-04-13 Bj Services Company Well treatment fluid compositions and methods for their use
US6488091B1 (en) 2001-06-11 2002-12-03 Halliburton Energy Services, Inc. Subterranean formation treating fluid concentrates, treating fluids and methods
US6810959B1 (en) 2002-03-22 2004-11-02 Bj Services Company, U.S.A. Low residue well treatment fluids and methods of use
US6913080B2 (en) 2002-09-16 2005-07-05 Halliburton Energy Services, Inc. Re-use recovered treating fluid
US7340656B2 (en) * 2003-07-08 2008-03-04 Tektronix, Inc. Method and apparatus for probing a computer bus
US7632787B2 (en) 2005-04-13 2009-12-15 Schlumberger Technology Corporation Low damage treatment fluids and methods of using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5851959A (en) * 1997-01-03 1998-12-22 Chemstar Products Company High temperature stable modified starch polymers and well drilling fluids employing same
CN1989219A (zh) * 2004-07-22 2007-06-27 赫尔克里士公司 水基钻井液
CN100999659A (zh) * 2006-12-29 2007-07-18 中国科学院长春应用化学研究所 一种接枝型压裂液及制备方法
WO2009089267A2 (en) * 2008-01-10 2009-07-16 M-I L.L.C. Viscoelastic surfactant based wellbore fluids and methods of use

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106062306A (zh) * 2014-01-24 2016-10-26 斯伦贝谢技术有限公司 再利用水力压裂中未处理的产出水的方法
CN113445980A (zh) * 2021-07-08 2021-09-28 徐州工程学院 一种强化地面钻井水力压裂增透效果的方法

Also Published As

Publication number Publication date
CA2810964A1 (en) 2012-04-12
EP2625243A1 (en) 2013-08-14
EA201390449A1 (ru) 2013-11-29
WO2012045711A1 (en) 2012-04-12
US20130186630A1 (en) 2013-07-25
AU2011311626A1 (en) 2013-03-28
AU2011311626B2 (en) 2014-09-11

Similar Documents

Publication Publication Date Title
US7316275B2 (en) Well treating compositions containing water superabsorbent material and method of using the same
US5851959A (en) High temperature stable modified starch polymers and well drilling fluids employing same
US20080103068A1 (en) Crosslinker Suspension Compositions and Uses Thereof
EA020211B1 (ru) Буровые растворы на основе вязкоупругого поверхностно-активного вещества и способы применения
US7956016B2 (en) Methods to control fluid loss in a well bore
CN103119124A (zh) 低残留地层压裂
US20170190956A1 (en) Aqueous emulsions for crosslinking
CN105849224A (zh) 交联的丙烯酰胺聚合物或共聚物凝胶和破碎剂组合物及使用方法
CN105658760A (zh) 包含锆交联剂的井处理流体及其使用方法
WO2015189656A1 (en) Water-based wellbore servicing fluids with high temperature fluid loss control additive
AU2015255973A1 (en) High temperature stabilizer for polymer-based treatment fluids
CA2914807C (en) Fracturing fluid viscosity-controlling agent in tablet form and containing a polyalkylene oxide and a viscosity reducing agent
US20040157748A1 (en) Aqueous-based oil well drilling fluids containing high amylose starch polymers
Inemugha et al. The effect of pH and salinity on the rheological properties of drilling mud formulation from natural polymers
US10150909B2 (en) Use of a boron cross linker in an emulsion system
US11746282B2 (en) Friction reducers, fracturing fluid compositions and uses thereof
US11518930B2 (en) Methods and thermally stable aqueous borate-based cross-linking suspensions for treatment of subterranean formations
US20150203746A1 (en) Methods for using polymers in boron-laden fluids
US11118104B2 (en) Clay control additive for wellbore fluids
US20120028853A1 (en) Drilling fluid, drilling fluid additive, methods of making and using, such fluid and additive, methods of operating a well
US20120090846A1 (en) Modification of solid polysaccharide with transesterification agent
US20140262276A1 (en) Viscosity enhancement of polysaccharide fluids
Andrew Synthesis and Characterization of Self-Breaking Temporary Gel-Poly (Vinyl Alcohol)-Succinic Acid with Chromium (III) Crosslinker as a Novel Hydraulic Fracturing Fluid
Edy Rheological characterization of borate crosslinked fluids using oscillatory measurements
WO2018128537A1 (en) Crosslinker slurry compositions and applications

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20130522