CN103112949A - Sbr半短程硝化过程控制方法 - Google Patents

Sbr半短程硝化过程控制方法 Download PDF

Info

Publication number
CN103112949A
CN103112949A CN2013100428471A CN201310042847A CN103112949A CN 103112949 A CN103112949 A CN 103112949A CN 2013100428471 A CN2013100428471 A CN 2013100428471A CN 201310042847 A CN201310042847 A CN 201310042847A CN 103112949 A CN103112949 A CN 103112949A
Authority
CN
China
Prior art keywords
sbr
ammonia nitrogen
aeration
time
semi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013100428471A
Other languages
English (en)
Other versions
CN103112949B (zh
Inventor
彭永臻
唐晓雪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201310042847.1A priority Critical patent/CN103112949B/zh
Publication of CN103112949A publication Critical patent/CN103112949A/zh
Application granted granted Critical
Publication of CN103112949B publication Critical patent/CN103112949B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Activated Sludge Processes (AREA)

Abstract

本发明提供了一种SBR半短程硝化过程控制方法,属于污水生物处理技术领域,适用于城市生活污水等低氨氮废水的半短程硝化处理。SBR半短程硝化过程控制方法包括,进水搅拌及初始氨氮浓度的输入、曝气搅拌、沉淀、排水及静置5个阶段,通过公式ta=tCOD+0.56αS0/((S0-Sn)/(n-tCOD))计算好氧曝气时间,及时停止曝气,实现半短程硝化,出水亚硝与氨氮的比例维持在0.9~1.5之间。该工艺管理操作方便,系统抗冲击负荷强。与传统SBR过程控制技术相比,半短程硝化反应器高亚硝积累率的维持更为稳定。解决生活污水生物处理技术无法控制半短程硝化出水亚硝与氨氮浓度比例的问题,为自养脱氮系统在城市污水这类低氨氮废水中稳定运行提供必要的进水保障。

Description

SBR半短程硝化过程控制方法
技术领域
本发明涉及一种含氮废水的SBR半短程硝化过程控制方法,属于污水生物处理技术领域,适用于城市生活污水等低氨氮废水的半短程硝化处理。
背景技术
由水体中氮、磷含量超标引起的富营养化问题,是当今世界各国面临的最主要的水体污染问题。现阶段污水中氮元素的去除主要通过生物硝化与反硝化过程的联合作用,然而为了进一步实现脱氮过程的高效节能可持续发展,人们开发了多项新型生物脱氮技术如短程硝化及厌氧氨氧化。与传统脱氮工艺相比,短程硝化技术节约了25%的耗氧量及40%的反硝化碳源。另一方面,短程硝化工艺可与厌氧氨氧化工艺串联,通过自养脱氮过程实现系统中氮元素的去除。由于厌氧氨氧化技术具有供氧量低、运行费用低、无需外加碳源、耗氧量少等诸多优点,是一种高效、经济的脱氮途径,近年来,人们广泛的将其应用于污水深度脱氮处理工艺中,特别是低碳比高氮废水如垃圾渗滤液、污泥消化液及医药废水。
厌氧氨氧化反应(ANAMMOX)是厌氧氨氧化细菌在厌氧条件下,以亚硝作为电子受体将氨氮氧化为氮气的生物过程。为实现厌氧氨氧化过程的高效稳定运行,需保证厌氧氨氧化微生物的底物基质中亚硝与氨氮的比例维持在0.9~1.5之间。由于厌氧氨氧化细菌无法实现对进水中硝态氮的去除,前段的半短程硝化反应器需维持较高亚硝积累率。高亚硝积累率的维持,需要在适宜的条件下实现AOB的积累及NOB的抑制与淘洗,主要技术手段包括,低溶解氧,高温,实时控制技术,游离氨抑制等。然而,城市污水的半短程硝化难以实现,与传统实时控制技术不同,半短程硝化是在硝化反应未完全结束前停止曝气,其好氧过程终点无法通过pH曲线的“氨谷”或DO曲线的突越点来指示。在高氨氮废水如污泥消化液的处理中,由于进水中碱度不足,可通过调节进水中碱度与氨氮的浓度比例实现半段程硝化,而生活污水中碱度充足,可实现全部硝化,无法通过该方法实现半短程硝化。
发明内容
本发明的目的是通过实时控制策略合理控制半短程硝化系统好氧硝化时间,使SBR反应器排放废水符合自养脱氮系统进水需求,即SBR反应器出水中亚硝与氨氮浓度的比值处于0.9~1.5之间。在此基础上,开发出一种SBR半短程硝化过程控制装置,解决生活污水生物处理无法控制半短程硝化出水亚硝与氨氮浓度比例的问题,为自养脱氮系统在城市污水这类低氨氮废水中稳定运行提供必要的保障。
本发明的技术原理
SBR半短程硝化工艺过程控制原理,其特征在于:在系统DO浓度恒定的条件下,通过好氧过程pH曲线的峰值、初始和反应n min SBR系统内氨氮浓度计算好氧过程所需曝气时间,指示系统好氧反应曝气时间,实现处理污水的半短程硝化,具体原理如下:
(1)当原水进入SBR反应器后,启动搅拌装置,通过反硝化作用降低部分原水碳源,厌氧搅拌结束后,启动鼓风机进行曝气。系统在好氧过程中,先进行有机物的降解后进行硝化作用。在有机物去除阶段,异养菌迅速增殖,对有机物进行分解代谢、合成代谢及内源代谢反应,三种代谢的末端产物均伴随着CO2的产生,由于不断的曝气作用,将代谢产物CO2吹脱,引起了除碳有机物阶段pH值的上升。而在SBR进入有机物难降解阶段后,短程硝化细菌活性不断提高,硝化反应碱度的消耗,导致了废水pH值不断降低。pH曲线峰值指示了好氧硝化过程的起点,如附图1所示。
(2)在半短程硝化过程中,氨氮的降解与亚硝态氮的积累符合零级反应方程式,氨氮浓度降解曲线与亚硝积累曲线均为一条直线(R2>0.99),见附图2所示。根据Lawrence McCarry方程(公式2),硝化过程微生物的反应速率与底物浓度,溶解氧浓度,硝化细菌的半饱和常数Ks与Ko直接相关。半短程硝化系统中,主要硝化菌群为AOB,其Ks与Ko值远小于实际半短程硝化SBR反应器中氨氮与溶解氧的浓度,因此Ks与S的和近似等于S,Ko与DO的和近似等于DO,即系统的硝化速率按最大硝化反应速率进行。
v = v max · S K NH 4 + S · DO K O + DO - - - ( 2 )
(3)根据(1)与(2)中所述特点,提出半短程硝化过程好氧曝气时间计算公式,见公式2,其中S0与Sn分别为厌氧搅拌结束与好氧反应n min时反应器内氨氮浓度。
首先将好氧过程分为有机物降解及好氧硝化两部分,有机物降解时间可通过pH曲线峰值确定。厌氧氨氧化反应要求进水水质中亚硝与氨氮的浓度比例达到1.32,因此硝化系统仅需氧化56%的进水氨氮。由于系统硝化速率恒定,可根据好氧阶段氨氮降解量(S0-Sn)及硝化时间(n-tCOD)计算。另一方面,由于微生物的增殖及同步硝化反硝化作用存在,需对好氧硝化时间进行校正,校正系数为α。根据公式1,可准确的把握系统有机物去除及硝化进程,实现含氮废水的半短程硝化。
本发明提供的一种SBR半短程硝化过程控制方法,其特征在于,包括以下步骤:
Ⅰ进水搅拌及初始氨氮浓度的输入
启动进水泵及搅拌器,将待处理废水注入SBR半短程硝化反应器,达到SBR半短程硝化反应器有效容积的30%-70%后,关闭进水泵;当达到预先设定的厌氧反应时间20-60min后,通过氨氮浓度测定仪,测定反应器中氨氮浓度,将该值作为初始氨氮浓度S0自动输入计算机数据处理系统,进入曝气搅拌阶段;
Ⅱ曝气搅拌
启动气泵,对反应系统进行好氧曝气,维持系统内DO浓度恒定,同时记录pH变化曲线;将pH传感器数字信号输入过程控制器,通过滤波处理,计算得到实时控制变量,当pH一阶导数由正变为负时,记录好氧曝气时间,将该值自动输入计算机数据处理系统,并赋值于有机物去除时间tCOD;接下来在好氧反应进行至n min时通过氨氮浓度测定仪,测定反应器中氨氮浓度,将该值自动输入计算机数据处理系统,并赋值于氨氮浓度Sn;通过检测好氧过程pH曲线的峰值及初始和反应n min的SBR系统内氨氮浓度,利用公式1计算好氧过程所需的曝气时间ta;当曝气时间达到ta后,实现含氮废水的半短程硝化,系统停止曝气及搅拌,进入沉淀阶段;
t a = t COD + 0.56 α S 0 ( S 0 - S n n - t COD ) - - - ( 1 )
式中:
ta--好氧硝化反应时间
tCOD--有机物去除阶段反应时间
α--校正系数,等于氨氮降解速率除以亚硝累积速率;
Ⅲ沉淀
当达到预先设定的沉淀时间30-60min后,进入排水阶段;
Ⅳ排水
开启排水阀门,将处理后的含氮污水排出SBR反应器,当达到预先设定的排水时间10-30min后,关闭排水阀门,进入静置阶段;
Ⅴ静置
当达到预先设定的静置时间10-120min后,系统开始读取SBR半短程硝化反应循环次数,若未达到预先设定循环次数2-8,则继续由工序Ⅰ开始运行;当达到预先设定的反应循环次数后,系统停止运行。
本发明设计的SBR半短程硝化过程控制方法与现有技术相比,具有下列优点:
(1)解决现有技术无法有效控制半短程硝化反应器出水亚硝与氨氮浓度比例的技术难题。通过SBR半短程硝化过程控制方法,稳定实现低氨氮废水半短程硝化,半短程硝化系统出水亚硝与氨氮的比例维持在1.0~1.5之间,可为自养脱氮反应器的稳定运行提供必要的保障。
(2)与传统SBR过程控制技术相比,半短程硝化反应器高亚硝积累率的维持更为稳定。由于厌氧氨氧化细菌无法实现对进水中硝态氮的去除,高亚硝积累率的维持,可提高后续厌氧氨氧化反应器总氮去除率。
(3)整个工艺由实时控制系统完成,管理操作方便,系统抗冲击负荷强。
附图说明
图1实施例具体试验数据图。
图2氨氮浓度降解曲线与亚硝积累曲线图。
图3本发明装置示意图。
具体实施方式
下面结合附图和具体实施方式对本发明作进一步详细的说明。
如图3所示结构图,进水泵1通过进水管2连接SBR反应器3;出水管4设置出水阀门5;曝气头24、曝气管13、气体流量计14与曝气泵15顺序相连;反应器内配有排水管11与排泥管12;
SBR反应器内置pH与DO测定仪10(与pH传感器6及溶解氧浓度DO传感器7通过导线相连)、氨氮测定仪8、搅拌器9;pH与DO测定仪10与氨氮测定仪8通过导线与计算机16的数据信号输入接口21连接,计算机的数据信号输出接口22经导线连接过程控制器23,过程控制器的搅拌继电器17、排水继电器18、进水继电器19及曝气继电器经接口分别与搅拌器9、排水阀5、进水泵1及曝气泵15相连。
SBR反应器半短程硝化方法具体包括以下步骤:
以某大学家属区排放的实际生活污水为实验对象,COD260~300mg/L,TN65~80mg/L。将具有60%亚硝积累率的活性污泥投加至半短程硝化SBR反应器,反应器内污泥浓度MLSS=2500-5000mg/L;每周期厌氧搅拌10~30min,随后曝气搅拌50~90min,曝气过程维持系统内DO恒定,沉淀后排水静置,排水比为50%。运行12d后系统亚硝积累率>95%,继续稳定运行20d后完成半短程硝化SBR反应器的启动。通过单周期运行数据,计算出矫正系数α为1.04(氨氮降解速率除以亚硝累积速率)。开启实时控制装置,进行生活污水的半短程硝化,以运行第20d第4周期运行数据为例,具体试验数据如图1所示。
Ⅰ进水搅拌及初始氨氮浓度的输入
首先开启进水泵,到达预先设定的进水时间10min后,(达到SBR半短程硝化反应器有效容积的50%后,)关闭进水设备。启动搅拌器进行10min的厌氧搅拌,在厌氧搅拌过程实现了全部硝态氮的反硝化。此时通过氨氮浓度测定仪,测得反应器内氨氮浓度为38.5mg/L,将初始氨氮浓度S0自动输入计算机数据处理系统,S0赋值为38.5,进入第二阶段。
Ⅱ曝气搅拌
启动气泵,对反应系统进行好氧曝气,维持系统内DO浓度恒定,并在线记录pH变化曲线。将pH传感器数字信号输入过程控制器,通过滤波处理,计算得到实时控制变量,当好氧反应进行17min后,pH曲线的一阶导数由正转负,将有机物去除时间tCOD赋值为17min,在好氧60min时(n=60)通过氨氮浓度测定仪测得反应器内氨氮浓度为23.9mg/L,将S60赋值为23.9。此时利用公式1进行好氧时间计算,得出所需好氧时间为84min,当曝气时间达到84min后关闭曝气泵,进入沉淀阶段。
Ⅲ沉淀
当达到预先设定的沉淀时间45min后,进入排水阶段。
Ⅳ排水
开启排水阀门,将处理后的含氮污水排出SBR反应器,当达到预先设定的排水时间10min后,关闭排水阀门,进入静置阶段。
Ⅴ静置
当达到预先设定的静置时间后,系统开始读取SBR半短程硝化反应循环次数,若未达到预先设定值,则继续由工序Ⅰ开始运行。当达到预先设定的反应循环次数后,系统停止运行。
通过流动注射分析仪测定SBR半短程硝化反应器出水中亚硝与氨氮浓度,实测亚硝与氨氮浓度比例为1.16,亚硝与氨氮浓度比例均处于0.9~1.5的范围之间。反应器每天运行8周期,在60d的运行过程中,出水稳定,满足自养多脱氮系统进水标准。

Claims (1)

1.一种SBR半短程硝化过程控制方法,其特征在于,包括以下步骤:
Ⅰ进水搅拌及初始氨氮浓度的输入
启动进水泵及搅拌器,将待处理废水注入SBR半短程硝化反应器,达到SBR半短程硝化反应器有效容积的30%-70%后,关闭进水泵;当达到预先设定的厌氧反应时间20-60min后,通过氨氮浓度测定仪,测定反应器中氨氮浓度,将该值作为初始氨氮浓度S0自动输入计算机数据处理系统,进入曝气搅拌阶段;
Ⅱ曝气搅拌
启动气泵,对反应系统进行好氧曝气,维持系统内DO浓度恒定,同时记录pH变化曲线;将pH传感器数字信号输入过程控制器,通过滤波处理,计算得到实时控制变量,当pH一阶导数由正变为负时,记录好氧曝气时间,将该值自动输入计算机数据处理系统,并赋值于有机物去除时间tCOD;接下来在好氧反应进行至n min时通过氨氮浓度测定仪,测定反应器中氨氮浓度,将该值自动输入计算机数据处理系统,并赋值于氨氮浓度Sn;通过检测好氧过程pH曲线的峰值及初始和反应n min的SBR系统内氨氮浓度,利用公式1计算好氧过程所需的曝气时间ta;当曝气时间达到ta后,实现含氮废水的半短程硝化,系统停止曝气及搅拌,进入沉淀阶段;
t a = t COD + 0.56 α S 0 ( S 0 - S n n - t COD ) - - - ( 1 )
式中:
ta--好氧硝化反应时间
tCOD--有机物去除阶段反应时间
α--校正系数,等于氨氮降解速率除以亚硝累积速率;
Ⅲ沉淀
当达到预先设定的沉淀时间30-60min后,进入排水阶段;
Ⅳ排水
开启排水阀门,将处理后的含氮污水排出SBR反应器,当达到预先设定的排水时间10-30min后,关闭排水阀门,进入静置阶段;
Ⅴ静置
当达到预先设定的静置时间10-120min后,系统开始读取SBR半短程硝化反应循环次数,若未达到预先设定循环次数2-8次,则继续由工序Ⅰ开始运行;当达到预先设定的反应循环次数后,系统停止运行。
CN201310042847.1A 2013-02-03 2013-02-03 Sbr半短程硝化过程控制方法 Active CN103112949B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310042847.1A CN103112949B (zh) 2013-02-03 2013-02-03 Sbr半短程硝化过程控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310042847.1A CN103112949B (zh) 2013-02-03 2013-02-03 Sbr半短程硝化过程控制方法

Publications (2)

Publication Number Publication Date
CN103112949A true CN103112949A (zh) 2013-05-22
CN103112949B CN103112949B (zh) 2014-03-05

Family

ID=48411361

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310042847.1A Active CN103112949B (zh) 2013-02-03 2013-02-03 Sbr半短程硝化过程控制方法

Country Status (1)

Country Link
CN (1) CN103112949B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105217882A (zh) * 2015-09-13 2016-01-06 北京工业大学 好氧吸磷与半短程硝化耦合厌氧氨氧化双颗粒污泥系统深度脱氮除磷的方法
CN105731630A (zh) * 2014-12-25 2016-07-06 川崎重工业株式会社 水处理系统以及该系统的曝气风量控制方法
CN107032497A (zh) * 2017-06-23 2017-08-11 长春工程学院 提前停止硝化进程的sbr深度脱氮在线控制方法
CN108217925A (zh) * 2018-01-17 2018-06-29 苏州科技大学 一种匹配厌氧氨氧化型亚硝化的自动化实时控制策略
CN111320269A (zh) * 2020-03-20 2020-06-23 中国科学院生态环境研究中心 一种含氨废水脱氮的方法
CN111995083A (zh) * 2020-08-25 2020-11-27 浙江京禾水务科技有限公司 一种用于厌氧氨氧化反应工艺的智能实时曝气控制方法
CN116161777A (zh) * 2022-09-07 2023-05-26 北京工业大学 一种基于进水氨氮浓度和水温控制城市污水部分短程硝化曝气时间的控制系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5499449A (en) * 1978-01-23 1979-08-06 Hitachi Ltd Roduction of liquid crystal display element
CN101264978A (zh) * 2008-04-25 2008-09-17 北京工业大学 一种快速实现sbr法短程深度脱氮的方法
CN101531983A (zh) * 2009-04-17 2009-09-16 北京工业大学 一种处理生活污水亚硝化好氧颗粒污泥的培养方法
CN101555068A (zh) * 2009-04-17 2009-10-14 北京工业大学 生活污水常低温同时脱氮除磷好氧颗粒污泥的培养方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5499449A (en) * 1978-01-23 1979-08-06 Hitachi Ltd Roduction of liquid crystal display element
CN101264978A (zh) * 2008-04-25 2008-09-17 北京工业大学 一种快速实现sbr法短程深度脱氮的方法
CN101531983A (zh) * 2009-04-17 2009-09-16 北京工业大学 一种处理生活污水亚硝化好氧颗粒污泥的培养方法
CN101555068A (zh) * 2009-04-17 2009-10-14 北京工业大学 生活污水常低温同时脱氮除磷好氧颗粒污泥的培养方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
杨庆等: "SBR法短程深度脱氮过程分析与控制模式的确立", 《环境科学》, vol. 30, no. 04, 30 April 2009 (2009-04-30), pages 1084 - 1089 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105731630B (zh) * 2014-12-25 2019-08-30 川崎重工业株式会社 水处理系统以及该系统的曝气风量控制方法
CN105731630A (zh) * 2014-12-25 2016-07-06 川崎重工业株式会社 水处理系统以及该系统的曝气风量控制方法
CN105217882B (zh) * 2015-09-13 2017-04-19 北京工业大学 好氧吸磷与半短程硝化耦合厌氧氨氧化双颗粒污泥系统深度脱氮除磷的方法
CN105217882A (zh) * 2015-09-13 2016-01-06 北京工业大学 好氧吸磷与半短程硝化耦合厌氧氨氧化双颗粒污泥系统深度脱氮除磷的方法
CN107032497A (zh) * 2017-06-23 2017-08-11 长春工程学院 提前停止硝化进程的sbr深度脱氮在线控制方法
CN107032497B (zh) * 2017-06-23 2019-02-19 长春工程学院 提前停止硝化进程的sbr深度脱氮在线控制方法
CN108217925A (zh) * 2018-01-17 2018-06-29 苏州科技大学 一种匹配厌氧氨氧化型亚硝化的自动化实时控制策略
CN108217925B (zh) * 2018-01-17 2021-02-26 苏州科技大学 一种匹配厌氧氨氧化型亚硝化的自动化实时控制策略
CN111320269A (zh) * 2020-03-20 2020-06-23 中国科学院生态环境研究中心 一种含氨废水脱氮的方法
CN111320269B (zh) * 2020-03-20 2021-11-05 中国科学院生态环境研究中心 一种含氨废水脱氮的方法
CN111995083A (zh) * 2020-08-25 2020-11-27 浙江京禾水务科技有限公司 一种用于厌氧氨氧化反应工艺的智能实时曝气控制方法
CN111995083B (zh) * 2020-08-25 2022-05-06 浙江京禾水务科技有限公司 一种用于厌氧氨氧化反应工艺的智能实时曝气控制方法
CN116161777A (zh) * 2022-09-07 2023-05-26 北京工业大学 一种基于进水氨氮浓度和水温控制城市污水部分短程硝化曝气时间的控制系统
CN116161777B (zh) * 2022-09-07 2024-04-19 北京工业大学 一种基于进水氨氮浓度和水温控制城市污水部分短程硝化曝气时间的控制系统

Also Published As

Publication number Publication date
CN103112949B (zh) 2014-03-05

Similar Documents

Publication Publication Date Title
CN103112949B (zh) Sbr半短程硝化过程控制方法
CN101759290B (zh) 连续流工艺中快速实现并稳定维持短程硝化的方法
CN109110922B (zh) 一种反硝化深床滤池双碳源投加方法及系统
CN109809560B (zh) 一种多点进水多级a/o工艺的碳源精确投加控制装置及方法
CN103708682B (zh) 一种耦合反硝化除磷和短程硝化的方法
CN112250175B (zh) 一体化短程硝化-厌氧氨氧化耦合内源短程反硝化实现城市污水深度脱氮的装置和方法
CN105036334A (zh) 多次进水sbr充分利用原水碳源处理城市生活污水的装置和方法
Yang et al. Simulation and optimization of ammonia removal at low temperature for a double channel oxidation ditch based on fully coupled activated sludge model (FCASM): A full-scale study
CN103011507A (zh) 短程硝化联合厌氧氨氧化对垃圾渗滤液深度脱氮处理的控制方法及装置
CN102583745B (zh) 改良型循环式活性污泥法原位剩余污泥减量控制方法
CN202953870U (zh) 一种改良cast水处理集成装置
CN103723821A (zh) 一种将全程硝化污泥快速诱变为自养亚硝化污泥的方法
CN112794444B (zh) 一种a2o生物脱氮除磷回流比的优化方法
CN201842731U (zh) 强化脱氮除磷污水处理系统
CN104370422A (zh) 一种短程反硝化除磷耦合厌氧氨氧化的装置和方法
CN113402021A (zh) 原位污泥水解酸化耦合短程反硝化厌氧氨氧化一体化实现污水脱氮及污泥减量的装置与方法
CN101113053A (zh) 盐度抑制结合模糊控制快速实现短程生物脱氮装置及方法
Wu et al. Nutrient removal performance and microbial community analysis of a combined ABR–MBR (CAMBR) process
CN105366811A (zh) 一种污水处理厂污泥处理系统及其处理方法
CN102344198B (zh) 处理低c/n污水好氧生物膜a2o工艺的实时控制装置与方法
CN108101310B (zh) 一种火电厂脱硫脱硝废水的处理装置和方法
CN106348440B (zh) 一种测定全程自养脱氮工艺菌群脱氮贡献率及活性的方法
Chanakya et al. Achieving biological nutrient removal in an old sewage treatment plant through process modifications–A simulation and experimental study
Yang et al. Rapid and stable achievement of mainstream nitritation at low temperature using the competitive inhibition caused by the organics
KR20180104413A (ko) 하모니서치 알고리즘을 이용한 활성슬러지 공정의 산소공급량 제어 시스템

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant