CN103112180A - 基于数字化导向模版的复合材料预制件及其制备方法 - Google Patents

基于数字化导向模版的复合材料预制件及其制备方法 Download PDF

Info

Publication number
CN103112180A
CN103112180A CN2012105768920A CN201210576892A CN103112180A CN 103112180 A CN103112180 A CN 103112180A CN 2012105768920 A CN2012105768920 A CN 2012105768920A CN 201210576892 A CN201210576892 A CN 201210576892A CN 103112180 A CN103112180 A CN 103112180A
Authority
CN
China
Prior art keywords
fiber
fairleads
prefabricated component
composite material
fairlead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012105768920A
Other languages
English (en)
Other versions
CN103112180B (zh
Inventor
单忠德
刘丰
陈思思
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advanced Manufacture Technology Center China Academy of Machinery Science and Technology
Original Assignee
Advanced Manufacture Technology Center China Academy of Machinery Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Manufacture Technology Center China Academy of Machinery Science and Technology filed Critical Advanced Manufacture Technology Center China Academy of Machinery Science and Technology
Priority to CN201210576892.0A priority Critical patent/CN103112180B/zh
Publication of CN103112180A publication Critical patent/CN103112180A/zh
Application granted granted Critical
Publication of CN103112180B publication Critical patent/CN103112180B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Woven Fabrics (AREA)

Abstract

本发明公开了一种基于数字化导向模版的复合材料预制件及其制备方法。其中,该复合材料预制件包括多根导向套和缠绕在多根导向套间的纤维,纤维呈扁平带状,纤维沿多根导向套之间的间隙穿行铺设并形成多个叠置的铺设层,纤维的带面在铺设层内延伸,导向套的延伸方向与铺设层交叉。应用本发明的技术方案,纤维沿多根导向套之间的间隙穿行铺设并形成多个叠置的铺设层,纤维的带面在铺设层内延伸,导向套的延伸方向与铺设层交叉,因此,空隙较小,通过这种铺放的形式,可以根据叠加纤维束的层数来设计预制件的厚度。同时,缠绕纤维也极大的提高了复合材料预制件的纤维体积含量,也就极大的提高了复合材料预制件的力学性能。

Description

基于数字化导向模版的复合材料预制件及其制备方法
技术领域
本发明涉及复合材料制备技术领域,具体而言,涉及一种基于数字化导向模版的复合材料预制件及其制备方法。
背景技术
三维织造复合材料预制件的制作是三维织造复合材料制备的基础,而且预制件的性能(包括制作方法和工艺)在根本上决定了所制作的复合材料的性能。所以从20世纪80年代以来,对复合材料预制件织造成形方法能织造大尺寸、形状复杂、高性能、轻量化的预制件的要求也越来越高。目前预制件的形式也是多种多样的,主要分为三维编织预制件、正交三向编织预制件、缝合织物预制件等。
其中,三维编织预制件是通过一组带有编织纱的锭子在编织平面按设定的运动程序不断改变相互间的位置使编织纱在空间相互交缠形成的立体织物。由于采用三维编织工艺制作的增强预制件显著地提高了材料的强度和刚度,使材料具有优良的抗冲击损伤性能、力学性能和耐烧蚀性能,特别是层间连接强度远远优于其它层合材料。然而,对于结构复杂的预制件,需通过在编织过程中改变纤维排布或数量,使得加工工序复杂化,不易于自动化控制,所以三维编织技术更多地只用于加工截面尺寸变化较小的预制件。
正交三向织物是由沿空间直角坐标X、Y、Z三个方向的碳纤维在空间不断重叠延伸而形成的立体织物。美国、澳大利亚、日本等国家开展了较多的研究。Shikishima Canvas公司开发的正交交织技术工艺简单,成本低,可在传统的二维编织机上加以改装以实现加工。然而,该技术的不足之处是预制件在分层上仅有几排纤维束互相交织,分层的厚度受到了限制,不适用于大尺寸制件的加工。
缝合织物预制件是利用成熟的缝纫工艺将二维平面织物加工成三维预制件,将得到的预制件经树脂浸渍后最终形成制件。其生产工艺简单,成本较低,被各国认定是一种有潜力的加工技术。此方法在分层上仅有几排纤维束互相交织,并且由于受到缝合工艺的限定,仅被应用在加工垂直方向的缝合,对于曲面预制件的加工仍有局限性,对预制件的厚度有一定的限制。
三维织造预制件是以整体织物作为增强体的复合材料,是20世纪80年代发展起来的一种新型复合材料织造成形技术。采用此技术可以直接编织出各种形状、不同尺寸的整体异型预制件。用这些预制件制成的三维织造复合材料制件不需再加工,这就避免了由于加工所造成的纤维损伤。而且采用此方法制备的三维织造复合材料具有高强度、基体损伤不易扩展、高抗冲击性能和综合力学性能好,以及耐烧蚀、抗高温、热绝缘性能好等独特的优点,目前已经引起了美国、德国等世界各国的关注。
在现有技术中,首先由于传统三维织造的工艺和织造机器本身的尺寸限制,现阶段三维织造预制件厚度难以超过50mm,难以实现厚度较大的预制件织造。同时,由于现有技术中用于三维织造预制件的纤维通常是带状的,在三维织造预制件的织造过程中在拉力的作用下,纤维较宽的面通常是贴附在导向套上,使纤维层与层之间的间隙较大,即使后续还有压实的工序,预制件的纤维体积含量仍得不到很大的提高,因此,三维织造预制件的力学性能的提高也受到阻碍。
发明内容
本发明旨在提供一种基于数字化导向模版的复合材料预制件及其制备方法,以解决现有技术中预制件的厚度受限和纤维体积含量得不到较大提高的技术问题。
为了实现上述目的,根据本发明的一个方面,提供了一种基于数字化导向模版的复合材料预制件。该复合材料预制件包括多根导向套和缠绕在多根导向套间的纤维,纤维呈扁平带状,纤维沿多根导向套之间的间隙穿行铺设并形成多个叠置的铺设层,纤维的带面在铺设层内延伸,导向套的延伸方向与铺设层垂直。
进一步地,多根导向套按照预定路径排列形成预定形状。
进一步地,每相邻的3根导向套形成三角形,三角形经阵列后组成数字化导向模版,纤维在多根导向套间沿三角形的边所在的直线铺放,且纤维缠绕在位于预定形状外周的导向套上。
进一步地,每相邻的4根导向套形成四边形,四边形经阵列后组成数字化导向模版,纤维在多根导向套间沿四边形的边所在的直线或对角线所在的直线铺放,且纤维缠绕在位于预定形状外周的导向套上。
进一步地,每相邻的6根导向套形成六边形,六边形经阵列后组成数字化导向模版,纤维在多根导向套间沿六边形的边所在的直线或对角线所在的直线铺放,且纤维缠绕在位于预定形状外周的导向套上。
进一步地,导向套的外表面上设置有用于定位纤维的定位凹槽。
进一步地,导向套为中空结构或实心结构。
根据本发明的另一个方面,提供一种上述复合材料预制件的制备方法。该复合材料预制件的制备方法包括以下步骤:将多根导向套按预定路径固定在导向模版上形成预定形状;将纤维沿多根导向套之间的间隙穿行铺设并形成多个叠置的铺设层,纤维的带面在铺设层内延伸,导向套的延伸方向与铺设层交叉;对缠绕在多根导向套间的纤维进行压实处理,得到复合材料预制件。
进一步地,每相邻的3根导向套形成三角形,纤维在多根导向套间沿三角形的边所在的直线铺放,且纤维缠绕在位于预定形状外周的导向套上。
进一步地,每相邻的4根导向套形成四边形,纤维在多根导向套间沿四边形的边所在的直线或对角线所在的直线铺放,且纤维缠绕在位于预定形状外周的导向套上。
进一步地,每相邻的6根导向套形成六边形,纤维在多根导向套间沿六边形的边所在的直线或对角线所在的直线铺放,且纤维缠绕在位于预定形状外周的导向套上。
根据本发明的再一个方面,提供一种复合材料。该复合材料包括复合材料预制件和填充在复合材料预制件中的基体,复合材料预制件为如权利要求至中任一项的复合材料预制件。
应用本发明的技术方案,纤维沿多根导向套之间的间隙穿行铺设并形成多个叠置的铺设层,纤维的带面在铺设层内延伸,导向套的延伸方向与铺设层交叉,即扁平带状的纤维较宽的面是垂直于或近似垂直于导向套的轴向,纤维层与层之间是通过较宽的带面贴合,因此,空隙较小,通过这种铺放的形式,可以根据叠加纤维束的层数来设计预制件的厚度,同时,缠绕纤维也极大的提高了复合材料预制件的纤维体积含量,也就极大的提高了复合材料预制件的力学性能。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示出了根据本发明一实施例的纤维三角形铺放路径示意图;
图2示出了根据本发明再一实施例的纤维四边形铺放路径示意图;
图3示出了根据本发明又一实施例的纤维四边形铺放路径示意图;
图4示出了根据本发明又一实施例的纤维四边形铺放路径示意图;
图5示出了根据本发明又一实施例的纤维六边形铺放路径示意图;
图6示出了根据本发明又一实施例的设置有导向套的六边形导向模版的俯视图结构示意图;
图7示出了根据本发明又一实施例的六边形导向模版上的纤维铺放路径示意图;
图8a示出了根据本发明实施例的T型粱主视结构示意图;
图8b示出了根据图8a的T型粱左视结构示意图。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
根据本发明一种典型的实施方式,提供一种基于数字化导向模版的复合材料预制件。该复合材料预制件包括多根导向套10和缠绕在多根导向套10件间的纤维20,纤维20呈扁平带状,纤维20沿多根导向套10之间的间隙穿行铺设并形成多个叠置的铺设层,纤维的带面在铺设层内延伸,导向套的延伸方向与铺设层交叉,即纤维是铺放设置在导向套20间。如图1所示。应用本发明的技术方案,由于纤维是铺放缠绕在多根导向套间,即扁平带状的纤维较宽的面是垂直与导向套的轴向,纤维层与层之间是通过较宽的带面贴合,因此,空隙较小,通过这种铺放的形式缠绕纤维就极大的提高了复合材料预制件的纤维体积含量,也就极大的提高了复合材料预制件的力学性能。
优选地,多根导向套10按照预定路径排列形成预定形状,导向套的延伸方向垂直于铺设层,这样可以最大限度的增加纤维体积含量。针对投影截面由圆弧组成的预制件,如圆形预制件、圆管形预制件和扇环预制件等,优先地,选着梯形路径。根据本发明一种典型的实施方式,每相邻的4根导向套形成梯形,纤维在多根导向套间沿梯形的边所在的直线边分别进行铺放,且纤维缠绕在位于预定形状外周的导向套上。
针对投影截面由直线组成的预制件,为方便快速织造成形,其导向套呈现规律几何形排布,因此优选地,本发明根据平面密铺定理来设置纤维的铺放路径。其中,平面密铺定理是如果用同种的正n边形来密铺地面,在一个顶点周围集中了m个正n边形的角,由于这些角的和为360°,所以有以下等式:
即:(其中m,n∈N且m>2,n>2)
当n-2=1,即n=3时,m=6,此为正三角形;
当n-2=2,即n=4时,m=4,此为正四边形(正方形);
当n-2=4,即n=6时,m=3,此为正六边形。
又因为当n增大时,m减小,而m>2,所以m只能取到6、4、3,也即:若只用一种正多边形密铺地面,则可能存在三种情况:①由六个正三角形密铺;②由四个正方形密铺;③由三个正六边形密铺,并且上述三者中,当它们面积相同时,正六边形有最小的周长。综上所述,要使导向套呈现规律几何形排布,则三维织造导向套密集阵列只能为正三角形、正四边形和正六边形。
基于平面密铺定理,根据本发明一种典型的实施方式,每相邻的3根导向套10形成三角形,优选地,形成正三角形,三角形经阵列后组成数字化导向模版,纤维20在多根导向套10间沿三角形的边所在的直线铺放,且纤维20缠绕在位于预定形状外周的导向套10上,如图1所示。根据本发明一种典型的实施方式,每相邻的4根导向套10形成四边形,优选地,形成正方形,四边形经阵列后组成数字化导向模版,纤维20在多根导向套10间沿四边形的边所在的直线或对角线所在的直线铺放,且纤维20缠绕在位于预定形状外周的导向套10上,如图2到4所示,其中,图2中纤维20的铺放角度为0°,180°,45°,135°;图3中纤维20的铺放角度为90°,180°;图4中纤维20的铺放角度为45°,135°。根据本发明一种典型的实施方式,每相邻的6根导向套10形成六边形,优选地,形成正六边形,六边形经阵列后组成数字化导向模版,纤维20在多根导向套10间沿六边形的边所在的直线或对角线所在的直线铺放,且纤维20缠绕在位于预定形状外周的导向套10上,如图5所示。图6示出了根据本发明一实施例的设置有导向套10的六边形导向模版50的俯视图结构示意图;图7示出了根据本发明又一实施例的六边形导向模版上的纤维20铺放路径示意图。通过上述纤维20路径的设计,可以极大的提高复合材料预制体的纤维20体积含量。
导向套的结构是可以设计的,其结构形式可以是多样的,如外部既可以是光滑的,优选地,导向套的外表面上设置有用于定位纤维的凹槽,可有效地防止缠绕在导向套上的纤维滑动。导向套内部可以是实心的,也可以是中空的,优选地,导向套为中空结构,可以在织造完成后,用纤维穿梭相邻导向套,进行缝制锁紧;当然,导向套高度、直径、截面形状等参数也可以根据预制件的三维模型设计。
本发明的导向套的材料可以根据预制件的功能作用选择不同材质,可以是如刚度和强度较高的传统金属材料,也可以是用于热防护的碳/碳、碳/酚醛、碳/陶瓷等复合材料。
可用于本发明的纤维的材料的种类很多,包括碳纤维、碳化硅纤维、石英纤维、芳纶纤维、玻璃纤维等可以实现织造的复合材料增强纤维,纤维粗度也可以根据织造要求进行选择。
根据本发明一种典型的实施方式,提供一种复合材料预制件的制备方法。该制备方法包括以下步骤:将多根导向套10按照预定路径固定在导向模版上形成预定形状;将纤维20沿多根导向套10之间的间隙穿行铺设并形成多个叠置的铺设层,纤维的带面在铺设层内延伸,导向套的延伸方向与铺设层交叉(即纤维是铺放设置在导向套20间);对缠绕在多根导向套10间的纤维20进行压实处理,得到复合材料预制件。应用本发明的技术方案,由于纤维是铺放缠绕在多根导向套间,可以根据铺放纤维叠加的层数来控制预制件的厚度,实现大厚度立体预制件的织造。同时,扁平带状的纤维较宽的面是垂直或近似垂直于导向套的轴向,纤维层与层之间是通过较宽的带面贴合,因此,空隙较小,通过这种铺放的形式缠绕纤维就极大的提高了复合材料预制件的纤维体积含量,也就极大的提高了复合材料预制件的力学性能。
针对投影截面由圆弧组成的预制件,如圆形预制件、圆管形预制件和扇环预制件等,根据本发明一种典型的实施方式,每相邻的4根导向套10形成梯形,纤维20在多根导向套10间沿梯形的边所在的直线铺放,且纤维20缠绕在位于预定形状外周的导向套10上。
针对投影截面由直线组成的预制件,基于平面密铺定理,根据本发明一种典型的实施方式,每相邻的3根导向套10形成三角形,优选地,形成正三角形,纤维20在多根导向套10间沿三角形的边所在的直线铺放,且纤维20缠绕在位于预定形状外周的导向套10上;或每相邻的4根导向套10形成四边形,优选地,形成正方形,纤维20在多根导向套10间沿四边形的边所在的直线或对角线所在的直线铺放,且纤维20缠绕在位于预定形状外周的导向套10上;或每相邻的6根导向套10形成六边形,优选地,形成正六边形,纤维20在多根导向套10间沿六边形的边所在的直线或对角线所在的直线铺放,且纤维20缠绕在位于预定形状外周的导向套10上。通过上述纤维路径的设计,可以极大的提高复合材料预制体的纤维体积含量。
根据本发明一种典型的实施方式,该复合材料预制件在实际制作过程中具体还可以包括如下步骤:按照本领域的常规手段根据预制件的形状及尺寸对预制件模型分层,根据预制件形状特征确定铺放方式及每层最优铺放角度,由每层铺放方式设计导向模版形状及尺寸,然后在导向模板上布置具有等间距的导向套阵列,当前层内的铺放纤维以导向套为支点,纤维分别沿预设铺放路径,以平行一排或一列导向套的方式穿梭导向套阵列间,完成一层铺放后,再进行下一层导向套阵列之间的铺放,完成预制件整体结构件初步织造后,将预制件连同导向模版一起取下,进行压实和切边处理,完成复合材料预制件的三维织造。根据本方法可以快速的实现各种形状的预制件制作,编织工艺简单,且预制件纤维体积含量高,力学性能优异。
根据本发明一种典型的实施方式,提供一种复合材料。该复合材料包括复合材料预制件和填充在复合材料预制件中的基体,复合材料预制件为本发明的复合材料预制件。
下面将结合实施例进一步对本发明的技术方案进行描述。
实施例
利用本发明的技术方案制造一个复合材料T型梁预制件,如图8a和8b所示-该T型梁预制件包括横梁部41和立粱部42。具体步骤如下:
1)将T型梁预制件模型进行分层,由于其厚度为40mm,一层铺放纱的厚度为1mm,因此将其分为40层。
2)根据零部件的外形特征和T型梁受力特点,选用铺放角度为90°,180°,45°,135°,四层为一个周期的纤维纱线铺放方式,即四边形铺放路径。
3)根据四边形铺放路径和T型梁尺寸设计导向模版的形状和尺寸,导向模版为的截面为矩形,尺寸为600×500mm,在导向模版中间设计导向套排布孔,孔间距为4mm。
4)根据铺放规则、等间隔的将导向套布置在导向模板上,选用的导向套直径尺寸为5mm。
5)选取6k规格的碳纤维选作为铺放纤维,测量得到6k纱束的截面积为2mm;当前层以导向套为支点,将铺放纤维按照预设路线,平行铺放在一列或一行导向套缝隙间,完成一层的织造;
6)当一个周期四层的厚织造完成后,继续采用步骤5)进行下一层的织造;
7)完成预制件整体结构件初步织造后,将预制件连同导向套模版一起取下,进行压实处理,完成复合材料预制件的最终织造。
综上,本发明的复合材料预制件与现有复合材料预制件相比具有以下优点:
1)与现有技术中的缝合织物预制件相比,本发明的复合材料预制件分层织造方法工艺简单、易于实现自动化,大大提高的织造效率;
2)与传统三维织造预制件相比,本发明的复合材料预制件尺寸不受厚度方向的限制,可实现各种截面形状的预制件快速织造;
3)通过铺放纤维的反复填充,可以使导向套间隙完全布满,使预制件纤维体积含量大大提升,力学性能得到提高;
4)如果采用有凹槽的导向套或者中空的导向套,层间方向的力学性能也将得到增强,预制件整体性能优异。
本方法主要是既可以满足各种截面形状、厚度尺寸大的预制件的快速织造,又提高了复合材料预制件的纤维体积含量,从而提高了预制件整体的力学性能,缩短了织造周期,解决的了复合材料预制件织造的关键技术难点。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (12)

1.一种基于数字化导向模版的复合材料预制件,包括多根导向套(10)和缠绕在多根所述导向套(10)间的纤维(20),所述纤维(20)呈扁平带状,其特征在于,所述纤维(20)沿多根所述导向套(10)之间的间隙穿行铺设并形成多个叠置的铺设层,所述纤维的带面在所述铺设层内延伸,所述导向套的延伸方向与所述铺设层垂直。
2.根据权利要求1所述的复合材料预制件,其特征在于,多根所述导向套(10)按照预定路径排列形成预定形状。
3.根据权利要求2所述的复合材料预制件,其特征在于,每相邻的3根所述导向套(10)形成三角形,所述三角形经阵列后组成数字化导向模版,所述纤维(20)在多根所述导向套(10)间沿所述三角形的边所在的直线铺放,且所述纤维(20)缠绕在位于所述预定形状外周的所述导向套(10)上。
4.根据权利要求2所述的复合材料预制件,其特征在于,每相邻的4根所述导向套(10)形成四边形,所述四边形经阵列后组成数字化导向模版,所述纤维(20)在多根所述导向套(10)间沿所述四边形的边所在的直线或对角线所在的直线铺放,且所述纤维(20)缠绕在位于所述预定形状外周的所述导向套(10)上。
5.根据权利要求2所述的复合材料预制件,其特征在于,每相邻的6根所述导向套(10)形成六边形,所述六边形经阵列后组成数字化导向模版,所述纤维(20)在多根所述导向套(10)间沿所述六边形的边所在的直线或对角线所在的直线铺放,且所述纤维(20)缠绕在位于所述预定形状外周的所述导向套(10)上。
6.根据权利要求1所述的复合材料预制件,其特征在于,所述导向套(10)的外表面上设置有用于定位所述纤维(20)的定位凹槽。
7.根据权利要求1所述的复合材料预制件,其特征在于,所述导向套(10)为中空结构或实心结构。
8.一种如权利要求1至7中任一项所述的复合材料预制件的制备方法,其特征在于,包括以下步骤:
将多根导向套(10)按预定路径固定在导向模版上形成预定形状;
将纤维(20)沿多根所述导向套(10)之间的间隙穿行铺设并形成多个叠置的铺设层,所述纤维的带面在所述铺设层内延伸,所述导向套的延伸方向与所述铺设层交叉;
对缠绕在多根所述导向套(10)间的所述纤维(20)进行压实处理,得到所述复合材料预制件。
9.根据权利要求8所述的制备方法,其特征在于,每相邻的3根所述导向套(10)形成三角形,所述纤维(20)在多根所述导向套(10)间沿所述三角形的边所在的直线铺放,且所述纤维(20)缠绕在位于所述预定形状外周的所述导向套(10)上。
10.根据权利要求8所述的复合材料预制件,其特征在于,每相邻的4根所述导向套(10)形成四边形,所述纤维(20)在多根所述导向套(10)间沿所述四边形的边所在的直线或对角线所在的直线铺放,且所述纤维(20)缠绕在位于所述预定形状外周的所述导向套(10)上。
11.根据权利要求8所述的复合材料预制件,其特征在于,每相邻的6根所述导向套(10)形成六边形,所述纤维(20)在多根所述导向套(10)间沿所述六边形的边所在的直线或对角线所在的直线铺放,且所述纤维(20)缠绕在位于所述预定形状外周的所述导向套(10)上。
12.一种复合材料,包括复合材料预制件和填充在所述复合材料预制件中的基体,其特征在于,所述复合材料预制件为如权利要求1至7中任一项所述的复合材料预制件。
CN201210576892.0A 2012-12-26 2012-12-26 基于数字化导向模版的复合材料预制件及其制备方法 Active CN103112180B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210576892.0A CN103112180B (zh) 2012-12-26 2012-12-26 基于数字化导向模版的复合材料预制件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210576892.0A CN103112180B (zh) 2012-12-26 2012-12-26 基于数字化导向模版的复合材料预制件及其制备方法

Publications (2)

Publication Number Publication Date
CN103112180A true CN103112180A (zh) 2013-05-22
CN103112180B CN103112180B (zh) 2015-06-17

Family

ID=48410600

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210576892.0A Active CN103112180B (zh) 2012-12-26 2012-12-26 基于数字化导向模版的复合材料预制件及其制备方法

Country Status (1)

Country Link
CN (1) CN103112180B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014101006A1 (zh) * 2012-12-26 2014-07-03 机械科学研究总院先进制造技术研究中心 复合材料预制件、其制备方法和复合材料
CN108591335A (zh) * 2018-03-25 2018-09-28 哈尔滨工程大学 一种具有拉胀特性的金属编织网缓冲结构及其制备方法
CN109505057A (zh) * 2018-12-29 2019-03-22 北京机科国创轻量化科学研究院有限公司 一种截面内外轮廓均为凸多边形的预制体多针织造方法
CN113787717A (zh) * 2021-08-16 2021-12-14 西安交通大学 连续纤维增强复合材料多层级轻质结构、设计及制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000199151A (ja) * 1999-01-08 2000-07-18 Toyota Autom Loom Works Ltd 三次元繊維構造体の積層糸群の繊維配列方法及び繊維配列装置
CN102517761A (zh) * 2011-12-31 2012-06-27 机械科学研究总院先进制造技术研究中心 一种复合材料预制件层间增强织造成形方法
CN102517760A (zh) * 2011-12-31 2012-06-27 机械科学研究总院先进制造技术研究中心 一种复合材料预制件分层织造成形方法
CN102725131A (zh) * 2010-01-28 2012-10-10 国家航空航天实验室基金会 制造复合材料的方法、复合材料以及最终产品

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000199151A (ja) * 1999-01-08 2000-07-18 Toyota Autom Loom Works Ltd 三次元繊維構造体の積層糸群の繊維配列方法及び繊維配列装置
CN102725131A (zh) * 2010-01-28 2012-10-10 国家航空航天实验室基金会 制造复合材料的方法、复合材料以及最终产品
CN102517761A (zh) * 2011-12-31 2012-06-27 机械科学研究总院先进制造技术研究中心 一种复合材料预制件层间增强织造成形方法
CN102517760A (zh) * 2011-12-31 2012-06-27 机械科学研究总院先进制造技术研究中心 一种复合材料预制件分层织造成形方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
单忠德,刘丰,乔娟娟: "《复合材料三维织造成型技术及装备》", 《2011年"天山重工杯"全国机电企业工艺年会暨第五届机械工业节能减排工艺技术研讨会论文集》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014101006A1 (zh) * 2012-12-26 2014-07-03 机械科学研究总院先进制造技术研究中心 复合材料预制件、其制备方法和复合材料
CN108591335A (zh) * 2018-03-25 2018-09-28 哈尔滨工程大学 一种具有拉胀特性的金属编织网缓冲结构及其制备方法
CN109505057A (zh) * 2018-12-29 2019-03-22 北京机科国创轻量化科学研究院有限公司 一种截面内外轮廓均为凸多边形的预制体多针织造方法
CN113787717A (zh) * 2021-08-16 2021-12-14 西安交通大学 连续纤维增强复合材料多层级轻质结构、设计及制造方法

Also Published As

Publication number Publication date
CN103112180B (zh) 2015-06-17

Similar Documents

Publication Publication Date Title
EP2549004B1 (en) Three-dimensional weave-molding method for composite material
CN102517761B (zh) 一种复合材料预制件层间增强织造成形方法
CN101473078B (zh) 用于复合材料部件的具有复缎编织的增强纤维结构
US8770081B2 (en) Closed tubular fibrous architecture and manufacturing method
CN102666050B (zh) 编织预制件、复合材料、及其制造方法
CN102648080B (zh) 编织预制件、复合材料、及其制造方法
CN103031651B (zh) 厚顶转薄壁封顶织物的仿形编织成型方法
CN102517760B (zh) 一种复合材料预制件分层织造成形方法
CN109518339B (zh) 一种复合材料三维预制体的多针织造方法
CN102371686A (zh) 制造复合结构组件的方法
CN103112180B (zh) 基于数字化导向模版的复合材料预制件及其制备方法
AU1568892A (en) Asymmetric braiding of improved fiber reinforced products
CN106393727A (zh) 一种三维预制体
CN205086375U (zh) 一种三维预制体
CN102634928A (zh) 整体三维多向结构平顶预制体的制备方法
CN103061045B (zh) 一种纵向增强的复合材料预制件制备方法和复合材料
CN112779646A (zh) 一种管状立体织物及其快速成型制备方法
CN109811466A (zh) 一种用于复合材料的变截面新结构立体编织方法
CN111501195A (zh) 基于数字化导向模板的三维织造中空结构预制体及其成形方法
CN103088546A (zh) 一种新结构立体织物及编织方法
CN102899778A (zh) 一种整体环形三维织物及其织造方法
CN102051763A (zh) 三维编织异形预制件的添纱编织方法
KR101135406B1 (ko) 무권축 함침 가능 보강 직물과 이로부터 만들어진 복합보강재
CN102693345A (zh) 具有仿生结构的复合材料预制体的建模方法
CN102729494A (zh) 具有仿生结构的复合材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant