CN103102908B - Two-stage hydrogenation method for producing low aromatic hydrocarbon solvent oil from biological oil - Google Patents

Two-stage hydrogenation method for producing low aromatic hydrocarbon solvent oil from biological oil Download PDF

Info

Publication number
CN103102908B
CN103102908B CN201110353671.2A CN201110353671A CN103102908B CN 103102908 B CN103102908 B CN 103102908B CN 201110353671 A CN201110353671 A CN 201110353671A CN 103102908 B CN103102908 B CN 103102908B
Authority
CN
China
Prior art keywords
oil
reaction zone
hydrogen
reaction
hydrogenation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201110353671.2A
Other languages
Chinese (zh)
Other versions
CN103102908A (en
Inventor
刘涛
彭冲
李扬
曾榕辉
张学辉
郭蓉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Sinopec Fushun Research Institute of Petroleum and Petrochemicals
Original Assignee
China Petroleum and Chemical Corp
Sinopec Fushun Research Institute of Petroleum and Petrochemicals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Fushun Research Institute of Petroleum and Petrochemicals filed Critical China Petroleum and Chemical Corp
Priority to CN201110353671.2A priority Critical patent/CN103102908B/en
Publication of CN103102908A publication Critical patent/CN103102908A/en
Application granted granted Critical
Publication of CN103102908B publication Critical patent/CN103102908B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

The present invention relates to a two-stage hydrogenation method for producing a low aromatic hydrocarbon solvent oil from a biological oil. The method is characterized in that a biological oil raw material and hydrogen pass through a first stage hydrogenation reaction zone containing at least two hydrogenation reactors, wherein the mixture passes through a low temperature operation reactor, and then passes through a high temperature operation reactor; the hydrogen-rich gas is recycled at the first stage; the liquid enters a second stage hydrocracking reaction zone; the sub-hydrogen gas of the stream generated from hydrocracking is recycled at the second stage; the liquid product is subjected to fractionation to obtain the low aromatic hydrocarbon solvent oil; and under a reaction state, active components of the hydrogenation catalyst used at the first stage are one or a plurality of materials selected from reduction state W, Mo, Ni and Co, and active components of the hydrogenation catalyst used at the second stage are one or a plurality of materials selected from sulfurization state W, Mo, Ni and Co. Compared to the method in the prior art, the method of the present invention has the following advantages that: low aromatic hydrocarbon solvent oil production methods are increased, activity stability of the catalyst can be ensured, and stable and long period device operation can be ensured.

Description

Bio-oil produces the two-stage method method of hydrotreating of low aromatic solvent naphtha
Technical field
The present invention relates to a kind of method of hydrotreating, particularly a kind of is stock oil with bio-oil, the two-stage method method of hydrotreating of direct production low aromatic solvent naphtha.
Background technology
World economy sustainable development, in current global range, the main source of Chemicals is fossil energy, wherein most importantly oil and coal.These two kinds of fossil energies all belong to Nonrenewable energy resources, not only resource is day by day exhausted, and heaviness and in poor quality aggravation, difficulty of processing and tooling cost increase gradually, new oil substitutes is found except carrying out existing oil Refining Technologies improving, produce satisfactory product with minimum cost, especially the development and utilization of renewable resources obtains paying attention to more and more widely.
Bio-oil is as renewable resources, and main composition is carbon, hydrogen and oxygen, very similar to the composition of alkane, alcohol, ether etc., and each research unit and enterprise are all making great efforts to carry out its research as clean energy.The method production biofuel (being generally fatty acid methyl ester) utilizing transesterify has been proven technique, but because fatty acid methyl ester oxygen level is high, although many countries and regions have put into effect the standard of biofuel successively, and are not suitable for all oil engines.Bio-oil produces automotive fuel by the method for hydrogenation, and all remove by oxygen or partly remove the product produced and meet automotive fuel standard, this method directly can meet the requirement of existing market.
Existing animal-plant oil hydrogenation method produces the processing technology of automotive fuel, US20060186020, EP1693432, CN101321847A, CN200710012090.6, CN200680045053.9, CN200710065393.4, CN200780035038.0, CN200710012208.5, CN200780028314.0 and CN101029245A etc. disclose vegetables oil hydroconversion process, adopt coker naphtha, diesel oil distillate (straight-run diesel oil, LCO and coker gas oil), the petroleum hydrocarbon cuts such as wax oil cut and bio-oil are mixed into hydrogenation catalyst bed, produce diesel product or preparing ethylene by steam cracking raw material etc.US5705722 discloses the diesel oil blending component producing diesel oil distillate scope containing the vegetables oil such as unsaturated fatty acids, fat and animal oil mixing back end hydrogenation.EP1741767 and EP1741768 discloses a kind of method of producing low freezing point diesel fuel cut with animal-plant oil.
Comprise in the bio-oil hydrogenation process of aforesaid method, one of subject matter run into is that bed carbon distribution causes shorten running period, needs more catalyst changeout of often stopping work, and the main purpose product of these technology is automotive fuel.
Solvent oil is important petroleum products, and its added value is higher than fuel product, and particularly the added value of high-grade low aromatic solvent naphtha is higher.The low aromatic solvent naphtha raw materials for production of current top grade are limited (is generally only limitted to gasoline fraction or the kerosene(oil)fraction of paraffinic crude, or reforming raffinate oil etc.), owing to requiring aromaticity content lower (some solvent oil index request aromaticity content is lower than 0.1%), therefore need to adopt complicated processing route, condition is harsh, production cost is high, limits the production of high-grade low aromatic solvent naphtha.
In prior art, bio-oil usually passes through separately or produces the method for automotive fuel with the method for other petroleum products mixing back end hydrogenations.The present invention is by optimizing the grating technology and operational condition that use reduction-state hydrogenation catalyst, and first paragraph hydrotreatment (hydrogenation catalyst of grating), second segment hydrocracking can be directly raw material production low aromatic solvent naphtha with bio-oil.The present invention extends the raw material sources of high added value low aromatic solvent naphtha, and production cost is low, can improve added value of product further.
Summary of the invention
For the deficiencies in the prior art, the invention provides the two-stage method method of hydrotreating that a kind of bio-oil produces aromatic solvent naphtha, first paragraph uses reduction-state hydrogenation catalyst, second segment uses sulphided state non-precious metal catalyst, can be separately stock oil with animal-plant oil, the method of direct production low aromatic solvent naphtha under the condition of hydrogenation, has hydrogenation process and stablizes, the features such as running period is long.
The two-stage method method of hydrotreating that bio-oil of the present invention produces low aromatic solvent naphtha comprises following content:
A one or more in () bio-oil are stock oil;
B () is under Hydroprocessing conditions, stock oil and hydrogen pass through the first paragraph reaction zone of at least two hydrogenators, hydrogenation catalyst is loaded in hydrogenator, stock oil and hydrogen are first by the hydrogenator of cold operation, then by the hydrogenator of high-temperature operation, under response behaviour, the active ingredient of hydrogenation catalyst is one or more in W, Mo, Ni and Co of reduction-state;
C () first paragraph reaction zone hydrogenation effluent is separated into gas phase and liquid phase, recycle in first paragraph reaction zone after gas-phase dehydration process, the second segment reaction zone using hydrocracking catalyst is entered after liquid phase mixes with circulation gas, under response behaviour, the active metal component of hydrocracking catalyst is one or more in W, Mo, Ni and Co of sulphided state;
D gas phase that the reaction effluent gas-liquid separation of () second segment reaction zone obtains recycles in second segment reaction zone, and liquid phase fractionation in separation column that the reaction effluent gas-liquid separation of second segment reaction zone obtains obtains low aromatic solvent naphtha.
E () supplements S-contained substance in second segment reaction mass, to maintain hydrogen sulfide content in the circulation gas of second segment reaction zone.
In the inventive method step (a), the bio-oil used can comprise vegetables oil or animal grease, vegetables oil comprises one or more in soybean oil, peanut oil, Viscotrol C, rapeseed oil, Semen Maydis oil, sweet oil, plam oil, Oleum Cocois, tung oil, oleum lini, sesame oil, Oleum Gossypii semen, sunflower seed oil and rice bran wet goods, and animal grease comprises one or more in butter, lard, sheep oil and fish oil etc.
In the inventive method step (b), the Hydroprocessing conditions of the hydrotreating reactor of cold operation is generally reaction pressure 3.0MPa ~ 20.0MPa, and hydrogen to oil volume ratio is 200:1 ~ 3000:1, and volume space velocity is 0.3h -1~ 6.0h -1, average reaction temperature 120 DEG C ~ 280 DEG C; The operational condition of the hydrotreating reactor of high-temperature operation is reaction pressure 3.0MPa ~ 20.0MPa, hydrogen to oil volume ratio 200:1 ~ 3000:1, volume space velocity 0.3h -1~ 6.0h -1, average reaction temperature is higher than the hydrotreating reactor of cold operation 50 DEG C ~ 300 DEG C, preferably high 80 ~ 220 DEG C.Process furnace or interchanger are set between the hydrotreating reactor of cold operation and the hydrotreating reactor of high-temperature operation, to adjust the temperature of reaction of the hydrotreating reactor of high-temperature operation.First paragraph reaction zone can arrange 2 ~ 5 reactors.
Reaction mass first by the hydrogenator of cold operation, hydrogenation active component with the weight content of oxide basis for 3% ~ 10%.Multiple catalysts grating can be used in the hydrogenator of cold operation to use.In the hydrogenator of high-temperature operation, the active component content of catalyzer is in element quality, higher than the catalyzer in cold operation hydrogenator 3 ~ 25 percentage points.The carrier of hydrogenation catalyst is generally aluminum oxide, amorphous silicon aluminium, silicon oxide, titanium oxide etc., can contain other auxiliary agent, as P, Si, B, Ti, Zr etc. simultaneously.Can commercial catalyst be adopted, also can by the existing method preparation in this area.The business hydrogenation catalyst that first reaction zone uses mainly contains, as Fushun Petrochemical Research Institute (FRIPP) develop 3926, 3936, CH-20, FF-14, FF-18, FF-24, FF-26, FF-36, FH-98, FH-UDS, the hydrogenation catalysts such as FZC-41, the HR-416 of Inst Francais Du Petrole, the hydrogenation catalysts such as HR-448, the ICR174 of CLG company, ICR178, the hydrogenation catalysts such as ICR179, Uop Inc. is newly developed HC-P, HC-K UF-210/220, the TK-525 of Topsor company, TK-555, the hydrogenation catalysts such as TK-557, the KF-752 of AKZO company, KF-840, KF-848, KF-901, the hydrogenation catalysts such as KF-907.
In the inventive method step (b), catalyzer uses hydrogen 200 DEG C ~ 500 DEG C temperature before use, reduces under preferably 220 DEG C ~ 450 DEG C conditions.Whenever forbid in first paragraph system, inject sulfur-bearing, nitrogenous medium, avoid poisoning of catalyst.
In the inventive method step (c), the Hydroprocessing conditions of second segment reaction zone is generally reaction pressure 3.0MPa ~ 20.0MPa, and hydrogen to oil volume ratio is 200:1 ~ 3000:1, and volume space velocity is 0.3h -1~ 6.0h -1, average reaction temperature 180 DEG C ~ 465 DEG C; Preferred operational condition is reaction pressure 3.0MPa ~ 18.0MPa, hydrogen to oil volume ratio 300:1 ~ 2500:1, volume space velocity 0.4h -1~ 4.0h -1, average reaction temperature 200 DEG C ~ 445 DEG C.The working pressure of second segment reaction zone can be identical with first paragraph, also can be different.
In the inventive method step (c), the hydrocracking catalyst of second segment reaction zone has cracking function, as containing the component such as Y zeolite and/or ZSM-5 molecular sieve.The hydrogenation active metals component of hydrocracking catalyst is generally 5% ~ 40% with the weight content of oxide basis.The weight content of molecular sieve component in hydrocracking catalyst is generally 5% ~ 60%.Other refractory inorganic oxides can be contained in hydrocracking catalyst simultaneously.Second segment reaction zone use commercial catalysts mainly contain, as Fushun Petrochemical Research Institute (FRIPP) develop 3971,3976, FC-12, FC-18, FC-24, FC-26, FC-32, FC-46, FC-50, FDW-1 etc.
In the inventive method step (c), second segment reaction zone hydrogenation active component is the catalyzer of oxidation state, carries out conventional sulfidizing before the use, makes hydrogenation active component be converted into sulphided state, or use the catalyzer that ex situ presulfiding is good.
In the inventive method step (d), the low aromatic solvent naphtha obtained is mixed solvent oil distillate, can continue fractionation according to the actual requirements and obtain vegetable oil extraction solvent, No. 90 solvent oils, No. 120 solvent oils, No. 200 solvent oils, D30, D40 etc. trade mark low aromatic solvent naphthas.Specifically specifically can determine according to the boiling range of mixed solvent oil.If there is unconverted oil, unconverted oil can go out system, also capable of circulation time reactive system.
The sulfur-containing medium supplemented in reaction mass (optimum is dosed in stock oil) in the inventive method step (e) can be the compound of sulfur-bearing, as DMDS, CS 2deng, also can be the oil light-end products of sulfur-bearing, as the boat coal, diesel oil etc. of sulfur-bearing.Supplementing by sulphur, can ensure that the hydrogen sulfide content in the circulation gas of second segment reaction zone is not less than 0.005v%, preferred 0.01v% ~ 2.0v%.
Accompanying drawing explanation
Fig. 1 is the two-stage method method of hydrotreating principle flow chart that bio-oil of the present invention produces low aromatic solvent naphtha.
Fig. 2 is the another one principle flow chart that bio-oil of the present invention produces the two-stage method method of hydrotreating of low aromatic solvent naphtha.
Embodiment
Method of the present invention is specific as follows: with the mixing oil of one or more in bio-oil for stock oil, under Hydroprocessing conditions, stock oil and hydrogen are by loading low temperature and the high temperature hydrogenation reactor of reduction-state hydrogenation catalyst, the hydrogenated oil obtained is separated in high-pressure separator (abbreviation high score) gas obtained and recycles at first paragraph after processed, the liquid fractionation obtained and hydrogen are mixed into the second segment reaction zone comprising and have cracking performance hydrocracking catalyst, obtain hydrocracking logistics to be separated in high-pressure separator (abbreviation high score) gas obtained and to recycle at second segment, the liquid fractionation obtained obtains low aromatic solvent naphtha.The bio-oil that embodiment uses is commercially available prod, uses front filtering solid impurity.
Particular case of the present invention is further illustrated below by embodiment.
The main composition of table 1 hydrogenation catalyst and character.
Catalyzer Catalyzer 1 Catalyzer 2 Catalyzer 3 Cracking catalyst 1 Cracking catalyst 2
Catalyzer forms ? ? ? ? ?
MoO 3,wt% 10.5 22.5 3.5 14.2 26.0
CoO,wt% ? ? 1.1 ? 4.8
NiO,wt% 2.5 4.6 ? 2.7 ?
ZSM-5 molecular sieve, wt% ? ? ? 25.0 ?
Y molecular sieve, wt% ? ? ? ? 8.0
Alumina supporter, wt% Surplus Surplus Surplus Surplus Surplus
The main character of catalyzer ? ? ? ? ?
Specific surface, m 2/g >160 >160 >160 >160 >160
Pore volume, ml/g >0.30 >0.30 >0.30 >0.30 >0.30
Table 2 embodiment processing condition and test-results.
Processing condition Embodiment 1 Embodiment 2 Embodiment 3 Embodiment 4
Stock oil Rapeseed oil Oleum Gossypii semen Soybean oil Tung oil+10% turning oil
First paragraph reaction zone operational condition ? ? ? ?
Cold operation reactor ? ? ? ?
Catalyzer Catalyzer 3 Catalyzer 3/ catalyzer 1 Catalyzer 3/ catalyzer 1 Catalyzer 1
Catalyst volume ratio 100 20:80 50:50 100
Reaction pressure, MPa 15.0 10.0 8.0 12.0
Entrance hydrogen to oil volume ratio 2000:1 300:1 1000:1 800:1
Volume space velocity, h -1 2.0 1.5 1.0 0.4
Average reaction temperature, DEG C 220 240 260 280
High-temperature operation reactor ? ? ? ?
Catalyzer Catalyzer 1 Catalyzer 1 Catalyzer 2 Catalyzer 2
Reaction pressure, MPa 15.0 10.0 8.0 12.0
Entrance hydrogen to oil volume ratio 2000:1 300:1 1000:1 1000:1
Volume space velocity, h -1 1.0 3.0 0.5 2.0
Average reaction temperature, DEG C 360 320 340 380
Second segment reaction zone operational condition ? ? ? ?
Catalyzer Cracking catalyst 1 Cracking catalyst 1 Cracking catalyst 2 Cracking catalyst 2
Reaction pressure, MPa 15.0 4.0 8.0 12.0
Entrance hydrogen to oil volume ratio 1000 500 800 2000
Volume space velocity, h -1 2.0 4.5 1.5 3.5
Average reaction temperature, DEG C 360 320 350 310
Sulfur-containing medium DMDS DMDS CS 2 CS 2
Hydrogen sulfide content in circulation gas, μ L/L 100 6000 1000 500
Spirit fraction ? ? ? ?
Yield, quality % 86 78 82 75
Aromaticity content Do not detect Do not detect Do not detect Do not detect
Sulphur content, μ g/g Do not detect Do not detect Do not detect Do not detect
Boiling range scope, DEG C 61~175 61~150 61~175 61~120
Table 3 embodiment processing condition and test-results.
Processing condition Embodiment 5 Comparative example 1 Comparative example 2 Comparative example 3
Stock oil Rapeseed oil Rapeseed oil Rapeseed oil Rapeseed oil
Cold operation reactor ? ? ? ?
Catalyzer Catalyzer 3 ? ? ?
Reaction pressure, MPa 8.0 ? ? ?
Entrance hydrogen to oil volume ratio 1000:1 ? ? ?
Volume space velocity, h -1 2.0 ? ? ?
Average reaction temperature, DEG C 260 ? ? ?
High-temperature operation reactor ? ? ? ?
Catalyzer Catalyzer 2 Catalyzer 2 Catalyzer 2 Catalyzer 2
Reaction pressure, MPa 8.0 8.0 8.0 8.0
Entrance hydrogen to oil volume ratio 1000:1 1000:1 1000:1 1000:1
Volume space velocity, h -1 1.0 0.67 0.67 0.67
Average reaction temperature, DEG C 320 320 320 320
Two step process condition ? ? ? ?
Catalyzer Cracking catalyst 1 Cracking catalyst 1 Cracking catalyst 1 Cracking catalyst 1
Reaction pressure, MPa 8.0 8.0 8.0 8.0
Entrance hydrogen to oil volume ratio 1000:1 1000:1 1000:1 1000:1
Cumulative volume air speed, h -1 2.0 2.0 2.0 2.0
Average reaction temperature, DEG C 320 320 320 320
Sulfur-containing medium DMDS DMDS DMDS DMDS
Hydrogen sulfide content in circulation gas, μ L/L 500 500 500 500
Runtime, h 1000 200 400 600
Spirit fraction ? ? ? ?
Yield, quality % 86 86 49 26
Aromaticity content Do not detect Do not detect Do not detect Do not detect
Sulphur content, μ g/g Do not detect Do not detect Do not detect Do not detect
Boiling range scope, DEG C 61~170 61~170 61~170 61~170
Yield with second segment reaction zone feeds for benchmark.
As can be seen from embodiment, bio-oil can the various low aromatic solvent oil production of direct production by the method for hydrotreating of this technology, by selecting different bio-oils, can produce high-quality low aromatic solvent naphtha, and running is stable.

Claims (9)

1. bio-oil produces a two-stage method method of hydrotreating for low aromatic solvent naphtha, it is characterized in that comprising following content:
A one or more in () bio-oil are stock oil;
B () is under Hydroprocessing conditions, stock oil and hydrogen pass through the first paragraph reaction zone of at least two hydrogenators, hydrogenation catalyst is loaded in hydrogenator, stock oil and hydrogen are first by the hydrogenator of cold operation, then by the hydrogenator of high-temperature operation, under response behaviour, the active ingredient of hydrogenation catalyst is the W of reduction-state, Mo, in Ni and Co one or more, in the hydrogenator of the cold operation that first reaction mass passes through, hydrogenation active component with the weight content of oxide basis for 3% ~ 10%, in the hydrogenator of high-temperature operation, the active component content of catalyzer is in element quality, higher than the catalyzer in cold operation hydrogenator 3 ~ 25 percentage points,
C () first paragraph reaction zone hydrogenation effluent is separated into gas phase and liquid phase, recycle in first paragraph reaction zone after gas-phase dehydration process, the second segment reaction zone using hydrocracking catalyst is entered after liquid phase mixes with circulation gas, under response behaviour, the active metal component of hydrocracking catalyst is one or more in W, Mo, Ni and Co of sulphided state;
D gas phase that the reaction effluent gas-liquid separation of () second segment reaction zone obtains recycles in second segment reaction zone, and liquid phase fractionation in separation column that the reaction effluent gas-liquid separation of second segment reaction zone obtains obtains low aromatic solvent naphtha;
E () supplements S-contained substance in second segment reaction mass, to maintain hydrogen sulfide content in the circulation gas of second segment reaction zone.
2. in accordance with the method for claim 1, it is characterized in that: in step (a), the bio-oil of use comprises vegetables oil or animal grease.
3. in accordance with the method for claim 1, it is characterized in that: in step (b), the reaction pressure 3.0MPa ~ 20.0MPa of the hydrotreating reactor of cold operation, hydrogen to oil volume ratio is 200:1 ~ 3000:1, and volume space velocity is 0.3h -1~ 6.0h -1, average reaction temperature 120 DEG C ~ 280 DEG C; The operational condition of the hydrotreating reactor of high-temperature operation is reaction pressure 3.0MPa ~ 20.0MPa, hydrogen to oil volume ratio 200:1 ~ 3000:1, volume space velocity 0.3h -1~ 6.0h -1, average reaction temperature is higher than the hydrotreating reactor of cold operation 50 DEG C ~ 300 DEG C.
4. according to the method described in claim 1 or 3, it is characterized in that: in step (b), the average reaction temperature of the hydrotreating reactor of high-temperature operation is higher than the hydrotreating reactor of cold operation 80 ~ 220 DEG C.
5. according to the method described in claim 1 or 3, it is characterized in that: the first paragraph reaction zone in step (b) arranges 2 ~ 5 reactors.
6. in accordance with the method for claim 1, it is characterized in that: in step (c), the reaction pressure of second segment reaction zone is 3.0MPa ~ 20.0MPa, and hydrogen to oil volume ratio is 200:1 ~ 3000:1, and volume space velocity is 0.3h -1~ 6.0h -1, average reaction temperature 180 DEG C ~ 465 DEG C.
7. in accordance with the method for claim 6, it is characterized in that: in step (c), the reaction pressure of second segment reaction zone is 3.0MPa ~ 18.0MPa, and hydrogen to oil volume ratio is 300:1 ~ 2500:1, and volume space velocity is 0.4h -1~ 4.0h -1, average reaction temperature is 200 DEG C ~ 445 DEG C.
8. according to the method described in claim 1 or 6, it is characterized in that: in step (c), the hydrocracking catalyst of second segment reaction zone has cracking function, and hydrocracking catalyst contains Y zeolite and/or ZSM-5 molecular sieve component; The hydrogenation active metals component of hydrocracking catalyst is with the weight content of oxide basis for 5% ~ 40%, and the weight content of molecular sieve component in hydrocracking catalyst is 5% ~ 60%.
9. in accordance with the method for claim 1, it is characterized in that: the sulfur-containing medium supplemented in reaction mass is the compound of sulfur-bearing, or the oil light-end products of sulfur-bearing, and in the circulation gas of second segment reaction zone, hydrogen sulfide content is not less than 0.005v%.
CN201110353671.2A 2011-11-10 2011-11-10 Two-stage hydrogenation method for producing low aromatic hydrocarbon solvent oil from biological oil Active CN103102908B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110353671.2A CN103102908B (en) 2011-11-10 2011-11-10 Two-stage hydrogenation method for producing low aromatic hydrocarbon solvent oil from biological oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110353671.2A CN103102908B (en) 2011-11-10 2011-11-10 Two-stage hydrogenation method for producing low aromatic hydrocarbon solvent oil from biological oil

Publications (2)

Publication Number Publication Date
CN103102908A CN103102908A (en) 2013-05-15
CN103102908B true CN103102908B (en) 2015-01-14

Family

ID=48311115

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110353671.2A Active CN103102908B (en) 2011-11-10 2011-11-10 Two-stage hydrogenation method for producing low aromatic hydrocarbon solvent oil from biological oil

Country Status (1)

Country Link
CN (1) CN103102908B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101617029A (en) * 2007-02-20 2009-12-30 国际壳牌研究有限公司 Produce the method for paraffinic hydrocarbons
CN102027098A (en) * 2008-03-17 2011-04-20 环球油品公司 Production of transportation fuel from renewable feedstocks
CN102186950A (en) * 2006-07-14 2011-09-14 艾伯塔大学校董 Methods for producing fuels and solvents

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090300971A1 (en) * 2008-06-04 2009-12-10 Ramin Abhari Biorenewable naphtha
US8772555B2 (en) * 2008-07-24 2014-07-08 Chevron U.S.A. Inc. Conversion of vegetable oils to base oils and transportation fuels

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102186950A (en) * 2006-07-14 2011-09-14 艾伯塔大学校董 Methods for producing fuels and solvents
CN101617029A (en) * 2007-02-20 2009-12-30 国际壳牌研究有限公司 Produce the method for paraffinic hydrocarbons
CN102027098A (en) * 2008-03-17 2011-04-20 环球油品公司 Production of transportation fuel from renewable feedstocks

Also Published As

Publication number Publication date
CN103102908A (en) 2013-05-15

Similar Documents

Publication Publication Date Title
CN103102920B (en) The two-stage method method of hydrotreating of production high-quality solvent oil
CN103102918B (en) Two-stage hydrogenation method for producing solvent oil
CN103102901B (en) Hydrogenation method for producing low aromatic hydrocarbon solvent oil from biological oil
CN103102902B (en) Hydrocracking method for producing low aromatic hydrocarbon solvent oil from biological oil
CN103102898B (en) Hydrocracking method for producing low aromatic hydrocarbon solvent oil from biological oil
CN103102908B (en) Two-stage hydrogenation method for producing low aromatic hydrocarbon solvent oil from biological oil
CN103102922B (en) Two-stage hydrogenation method for producing solvent oil
CN103102907B (en) Two-stage hydrogenation method for producing low aromatic hydrocarbon solvent oil from biological oil
CN103102912B (en) Two-stage hydrogenation method for producing high quality low freezing point motor fuel
CN103102900B (en) Hydrogenation method for producing high quality solvent oil from biological oil
CN103102916B (en) Two-stage hydrogenation method for producing low freezing point motor fuel
CN103102904B (en) Two-stage hydrogenation method for producing high quality low freezing point motor fuel from biological oil
CN103102910B (en) Two-stage hydrogenation method for producing low freezing point motor fuel from biological oil
CN103102906B (en) The two-stage method method of hydrotreating of bio-oil production high-quality solvent oil
CN103102917B (en) Produce the two-stage method method of hydrotreating of low condensation point automotive fuel
CN103102959B (en) Residual oil hydrogenation method for high quality diesel oil yield increase
CN103102911B (en) Bio-oil produces the method for hydrotreating of low aromatic solvent naphtha
CN103102919B (en) Two-stage hydrogenation method for producing high quality solvent oil
CN103102903B (en) A kind of two-stage method method of hydrotreating of bio-oil production high-quality solvent oil
CN103102969B (en) Wax oil hydrotreating method for high quality diesel oil by-production
CN103102921B (en) Two-stage hydrogenation method for producing high quality low freezing point motor fuel
CN103102914B (en) Wax oil hydrotreating method for high quality diesel oil yield increase
CN103102909B (en) Two-stage hydrogenation method for producing low freezing point motor fuel from biological oil
CN103102899B (en) Hydrogenation method for producing high quality solvent oil from biological oil
CN103102968B (en) Wax oil hydrotreating method for high quality diesel oil yield increase

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant