CN103093042B - 一种基于纤维模型的巨型组合构件收缩徐变计算方法 - Google Patents

一种基于纤维模型的巨型组合构件收缩徐变计算方法 Download PDF

Info

Publication number
CN103093042B
CN103093042B CN201310006982.0A CN201310006982A CN103093042B CN 103093042 B CN103093042 B CN 103093042B CN 201310006982 A CN201310006982 A CN 201310006982A CN 103093042 B CN103093042 B CN 103093042B
Authority
CN
China
Prior art keywords
section
cross
fiber element
sigma
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310006982.0A
Other languages
English (en)
Other versions
CN103093042A (zh
Inventor
赵昕
姜世鑫
郑毅敏
周瑛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Architecture Design and Research Institute of Tongji University Group Co Ltd
Original Assignee
Architecture Design and Research Institute of Tongji University Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Architecture Design and Research Institute of Tongji University Group Co Ltd filed Critical Architecture Design and Research Institute of Tongji University Group Co Ltd
Priority to CN201310006982.0A priority Critical patent/CN103093042B/zh
Publication of CN103093042A publication Critical patent/CN103093042A/zh
Application granted granted Critical
Publication of CN103093042B publication Critical patent/CN103093042B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明涉及一种基于纤维模型的巨型组合构件收缩徐变计算方法,包括如下步骤:1)根据组合构件截面的材料组成、徐变参数与受力特点对巨型组合构件进行纤维单元划分,计算每个纤维单元的形心和面积;2)根据截面内力、截面材料特性计算每个纤维单元的初始弹性应变与应力;3)根据每个纤维单元的初始应力,按照收缩徐变模型计算每个纤维单元的收缩徐变值,并与弹性应变迭加得到每个纤维单元的总应变量;4)计算每个纤维单元的虚拟应力,并积分得到截面上的虚拟内力,通过虚拟内力计算出巨型组合构件截面的总应变。与现有技术相比,本发明具有计算过程简单、计算结果精确等优点。

Description

一种基于纤维模型的巨型组合构件收缩徐变计算方法
技术领域
[0001] 本发明涉及一种建筑结构的分析计算方法,尤其是涉及一种基于纤维模型的巨型 组合构件收缩徐变计算方法。
背景技术
[0002] 目前国内的超高层建筑普遍采用了巨型框架-核心筒-伸臂桁架抗侧力结构体 系,巨型框架中的巨柱与核心筒中的剪力墙等巨型竖向构件由于承载较大的竖向力,截面 尺寸巨大,且为了更好地满足承载力及轴压比要求,巨型竖向构件一般采用型钢与混凝土 组合构件。
[0003] 巨型组合构件除受荷载作用外还受到非荷载作用,主要包括混凝土的收缩和徐 变、结构温度变化、地基差异沉降。非荷载效应具有时变性,会引起构件之间的竖向变形差 异,导致幕墙、隔墙、机电管道和电梯等非结构构件受损,造成耐久性和建筑外观方面的问 题;竖向差异变形将影响楼屋面的水平度,在联系巨柱和核心筒的水平构件(如伸臂桁架) 中引起附加内力,从而导致竖向构件的内力重分布,严重时会导致结构局部失效或者不适 宜于继续使用,造成较大的经济损失。
[0004] 在所有的非荷载作用中,混凝土的收缩与徐变会产生较大的差异变形,一般来讲, 若荷载作用较大且一直持续下去,徐变变形是瞬时弹性变形的1~3倍。国内外对收缩与 徐变作用均有较深入的研究,但其研究主要集中于试验研究与模型预测。对于工程结构设 计,目前存在三个方面的问题:一是选用的混凝土收缩徐变预测模型落后,预测值不准确; 二是没有考虑钢骨对混凝土的约束作用造成部分混凝土处于密闭状态,干燥变形少,收缩 徐变不均匀,进而影响构件整体的收缩徐变值;三是竖向变形的过程中没有考虑偏心荷载 的作用,偏心荷载产生的弯矩同样会使竖向构件变形不均匀,对水平构件产生次弯矩的影 响。
[0005] 超高层结构中的巨柱以及核心筒等巨型组合构件通常是由内埋的组合型钢与混 凝土构成的。组合型钢一般都含有封闭区域,使其内部的混凝土处于密闭状态,造成混凝土 内的水分难以流失,相对湿度大,干燥收缩与干燥徐变应变都很小,构件截面上的徐变应变 不均匀,进而影响构件的整体收缩徐变值。同时,超高层结构的结构形式一般为向上收进 的,在自重等其他恒荷载的作用下会产生持续作用的偏心压力,这种偏心压力同样会造成 构件截面的收缩徐变不均匀,进而影响水平构件产生附加内力。
发明内容
[0006] 本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种计算过程简明、 计算结果精确的基于纤维模型的巨型组合构件收缩徐变计算方法。
[0007] 本发明的目的可以通过以下技术方案来实现:
[0008] -种基于纤维模型的巨型组合构件收缩徐变计算方法,包括如下步骤:
[0009] 1)根据组合构件截面的材料组成、徐变参数与受力特点对巨型组合构件进行纤维 单元划分,计算每个纤维单元的形心和面积;
[0010] 2)根据截面内力、截面材料特性计算每个纤维单元的初始弹性应变与应力;
[0011] 3)根据每个纤维单元的初始应力,按照收缩徐变模型计算每个纤维单元的收缩徐 变值,并与弹性应变迭加得到每个纤维单元的总应变量;
[0012] 4)计算每个纤维单元的虚拟应力,并积分得到截面上的虚拟内力,通过虚拟内力 计算出巨型组合构件截面的总应变。
[0013] 所述的对巨型组合构件进行纤维单元划分的规律为:
[0014] a)截面内的混凝土与钢材划分为不同的纤维单元;
[0015] b)截面内徐变参数不同的混凝土划分为不同的纤维单元
[0016] c)对于不同的受力特点,采用不同的纤维单元划分方法:
[0017] 对于轴心受压构件,按材料的不同以及收缩徐变参数的不同划分纤维单元;
[0018] 对于偏心受压构件,根据偏心力作用的位置划分纤维单元:若偏心力作用在截面 的对称轴上,则相同材料垂直于对称轴方向的应力是相同的,将纤维单元沿着该对称轴方 向均匀划分;若偏心压力作用在截面的任意位置,则根据截面的形状特征将截面沿不同方 向划分为多个纤维单元。
[0019] 所述的步骤2)的具体计算方法如下:
[0020] 各纤维单元截面上形心(x,y)处的纤维应变ε (x,y)可以用截面形心位置的弹性 应变ε c和绕截面形心轴的曲率(巧,処)表达为:
[0021]
Figure CN103093042BD00061
[0022] 对应于应变ε (X,y)的应力σ (X,y)通过弹性模量E (X,y)求得:
[0023]
Figure CN103093042BD00062
[0024] 截面上所有由纤维束的应力σ (X,y)所引起的截面内力和弯矩由积分求得:
[0025]
Figure CN103093042BD00063
[0026] 其中N为截面内力,My、Mj别为截面上绕y轴与绕X轴作用的弯矩,K 3为截面刚 度矩阵,A为纤维单元的面积:
[0027]
Figure CN103093042BD00064
[0028]
Figure CN103093042BD00071
[0029] 通过矩阵求逆可以得到截面柔度矩阵Ks1,然后根据纤维单元截面所受的力即求 得纤维单元截面的弹性应变:
[0030]
Figure CN103093042BD00072
[0031] 根据纤维单元截面的弹性应变和材料的弹性模量可以计算出纤维单元的初始应 力:σ 0= E ε 0〇
[0032] 所述的步骤3)中计算收缩徐变值的具体计算方法如下:
[0033] 加载龄期为t'时常应力作用下的应变ε (t);
[0034] ε (t) = J(t,t' ) σ + ε sh(t)
[0035] 其中,〇为轴向应力,ε sh(t)为收缩应变,J(t,C )为徐变函数;
[0036] 随时间变化的收缩应变利用极限收缩乘以考虑相对湿度、时间效应以及尺寸效应 的相关系数来表示:
[0037] ε Sh (t) = - ε sh " khS (t)
[0038] 其中ε sh"为极限收缩应变,kh为湿度影响系数,S(t)为收缩随时间变化的函数; 徐变函数J(t,t')的公式为:
[0039]
Figure CN103093042BD00073
[0040] 其中A为瞬时弹性应变柔度函数,E(t')为加载龄期t'时混凝土的弹性模 量,Cjt,C )为基本徐变柔度函数,Cd(t,C,t。)为干燥徐变柔度函数,t表示混凝土龄 期,t'表示混凝土加载龄期,t。为养护龄期。
[0041] 所述的步骤4)的具体计算方法如下:
[0042] 41)根据纤维总应变值计算出纤维的虚拟应力值;
[0043] 42)通过虚拟应力积分得出构件截面上的虚拟内力A、來*
[0044] V一 J J ,
Figure CN103093042BD00074
' .....'
[0045] 43)根据虚拟内力计算出纤维截面的应变值:
Figure CN103093042BD00075
[0046]
[0047] 与现有技术相比,本发明具有以下优点:
[0048] 1、本发明在混凝土收缩徐变B3预测模型与纤维模型分析方法的基础上推导了巨 型组合构件的收缩徐变计算方法,并将其应用于超高层结构的竖向变形差异计算当中,该 方法计算过程简明、计算结果精确,能够应用于任意截面形式的组合构件收缩徐变计算当 中,具有工程应用的可操作性,更好的满足工程建筑发展需要;
[0049] 2、本发明收缩徐变模型采用Bazant提出的B3模型,B3模型公式概念明确、物理 意义清晰。经过美国西北大学收缩徐变数据库内试验数据的拟合检验,并与ACI模型和 CEB-FIP (1990)模型相比较,证明其预测精度最高。
附图说明
[0050] 图1为本发明计算方法流程图;
[0051] 图2为本发明实施例中的巨型柱选取的示意图;
[0052] 图3为本发明纤维单元划分的示例;
[0053] 图4为本发明实施例1实施后得到的徐变随时间的变化规律示意图;
[0054] 图5为本发明实施例2中的截面形式以及纤维单元的划分与标号示意图;
[0055] 图6为本发明实施例2中为验算巨柱截面弹性变形而在软件中模拟的纤维模型示 意图。
[0056] 图2中,图2a为巨型柱示意图,图2b为图2a中A处截面图,图2c为图2b中B处 放大图;
[0057] 图3中,图3a为轴心受压构件的纤维单元划分示意图,图3b为单轴偏心受压构件 的纤维单元划分示意图,图3c为任意位置偏心受压构件的纤维单元划分示意图。
具体实施方式
[0058] 下面结合附图和具体实施例对本发明进行详细说明。本实施例以本发明技术方案 为前提进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于 下述的实施例。
[0059] 实施例1
[0060] 如图1所示,一种基于纤维模型的巨型组合构件收缩徐变计算方法,该方法考虑 了构件中钢骨对于混凝土的影响,一部分混凝土处于封闭的钢骨内,相对湿度较大,干燥收 缩与徐变应变小,同外部暴露于空气中的混凝土收缩徐变参数不同,计算时分开考虑,并按 照平截面假定协调最终变形,包括如下步骤:
[0061] 第一步,根据组合构件截面的材料组成、徐变参数与受力特点对巨型组合构件进 行纤维单元划分,计算每个纤维单元的形心和面积。
[0062] 对巨型组合构件进行纤维单元划分的规律为:
[0063] a)截面内的混凝土与钢材划分为不同的纤维单元;
[0064] b)截面内徐变参数不同的混凝土划分为不同的纤维单元 [0065] c)对于不同的受力特点,采用不同的纤维单元划分方法:
[0066] 对于轴心受压构件,按材料的不同以及收缩徐变参数的不同划分纤维单元;
[0067] 对于偏心受压构件,根据偏心力作用的位置划分纤维单元:若偏心力作用在截面 的对称轴上,则相同材料垂直于对称轴方向的应力是相同的,将纤维单元沿着该对称轴方 向均匀划分;若偏心压力作用在截面的任意位置,则根据截面的形状特征将截面沿不同方 向划分为多个纤维单元。
[0068] 第二步,根据截面内力、截面材料特性计算每个纤维单元的初始弹性应变与应力, 具体计算方法如下:
[0069] 各纤维单元截面上形心(x,y)处的纤维应变ε (x,y)可以用截面形心位置的轴向 应变ε c和绕截面形心轴的曲率表达为:
Figure CN103093042BD00091
[0070] ⑴
[0071] 对应于应变ε (X,y)的应力σ (X,y)通过弹性模量E (X,y)求得:
Figure CN103093042BD00092
[0072] (2)
[0073] 截面上所有由纤维束的应力σ (X,y)所引起的截面内力和弯矩由积分求得:
[0074] V. V f ·
Figure CN103093042BD00093
·* - ·-
[0075] 其中N为截面内力,My、Mj别为截面上绕y轴与绕X轴作用的弯矩,K 3为截面刚 度矩阵,A为纤维单元的面积:
Figure CN103093042BD00094
[0076]
[0077]
[0078] 通过矩阵求逆可以得到截面柔度矩阵Ks1,然后根据纤维单元截面所受的力即可 求得纤维单元截面的弹性应变:
[0079]
Figure CN103093042BD00095
[0080] 第三步,根据每个纤维单元的初始应力,按照收缩徐变模型计算每个纤维单元的 收缩徐变值,并与弹性应变迭加得到每个纤维单元的总应变量,收缩徐变模型采用Bazant 提出的B3模型,B3模型将混凝土的应变分为弹性应变、徐变应变、收缩应变,徐变应变包括 基本徐变应变和干燥徐变应变。
[0081] 计算收缩徐变值的具体计算方法如下:
[0082] 加载龄期为t'时常应力作用下的应变;
[0083] ε (t) = J(t,t' )σ + ε sh(t) (6)
[0084] σ为轴向应力,ε⑴为应变,ε sh(t)为收缩应变;
[0085] 随时间变化的收缩应变可以利用极限收缩乘以考虑相对湿度、时间效应以及尺寸 效应的相关系数来表示:
[0086] ε sh(t,t。)= - ε sh〇QkhS(t) (7)
[0087] ε sh"为极限收缩应变,kh为湿度影响系数,S (t)为收缩随时间变化的函数;
[0088] 对于由荷载引起的变形,包括弹性变形、基本徐变变形以及干燥徐变变形,可以用 徐变函数J(t,t')表示:
[0089]
Figure CN103093042BD00101
(容)
[0090] A为瞬时弹性应变柔度函数,其中E(t')为加载龄期t'时混凝土的弹性模 量,Cjt,C )为基本徐变柔度函数,Cd(t,C,t。)为干燥徐变柔度函数,t表示混凝土龄 期,t'表示混凝土加载龄期,t。为养护龄期。
[0091] 第四步,利用纤维模型的方法逆向求解巨型组合构件的整体截面应变值,首先根 据每个纤维单元的收缩徐变应变计算其虚拟应力,并积分得到截面上的虚拟内力,通过虚 拟内力计算出巨型组合构件截面的总应变,具体计算方法如下:
[0092] 41)根据纤维总应变值计算出纤维的虚拟应力值"X,y)代 表纤维单元的形心坐标数据;
Figure CN103093042BD00102
[0093] 42)通过虚拟应力积分得出构件截面上的虚拟内力
[0094]
Figure CN103093042BD00103
.(分.)
[0095] 43)根据虚拟内力计算出纤维截面的应变值:
[0096]
Figure CN103093042BD00104
[0097] 由于纤维模型适用于不同类型的截面与材料特性,且其计算结果也能较好地模拟 构件的受力与变形之间的关系,针对巨型组合构件复杂的截面形态与受力特性,提出将巨 型组合构件的截面离散成纤维单元,针对每个纤维单元不同的受力特点与徐变参数分别计 算每个纤维单元的收缩与徐变,最终对所有纤维单元进行积分计算得到构件整体变形。纤 维模型理论在结构构件动力荷载下的弹塑性分析中应用广泛,若能将其理论与计算方法应 用于收缩与徐变这种非荷载作用工况下,一定能够得到更为准确的预测结果,并应用于工 程实践,避免非荷载作用下的不利效应。
[0098] 选取某超高层建筑结构底部的典型位置巨柱,如图2所示,按照上述方法进行巨 型构件在轴向压力作用下的收缩徐变计算。
[0099] 1.假设条件
[0100] 为简化计算过程,本实例基本假设条件如下:
[0101] (1)假设巨柱所受轴向压力P = 100MN,并且不随时间变化。
[0102] (2)考虑到施工过程逐层加载对收缩徐变的影响,假定构件的加载龄期为1年,即 构件饶筑完成一年后开始加载。
[0103] (3)构件截面形式如图2所示,假定构件外部混凝土相对湿度为60%,内部密闭混 凝土湿度为90%。
[0104] ⑷构件截面尺寸为5mX 3m ;钢骨尺寸:2200 X 850 X 40 X 40 (mm);钢骨水平间距: 1650mm ;钢板竖直间距:1400mm ;配筋面积:0. 42m2。由以上截面信息可以得出:钢材面积 (钢骨+钢筋面积)为I. 14m2,内部密闭混凝土面积为4. 38m2,外部混凝土面积为9. 48m2。
[0105] 2.计算过程
[0106] 上述巨型构件在轴向压力作用下的收缩徐变计算具体步骤为:
[0107] (1)划分纤维单元。如图3a所示,在轴心受压的情况下,将截面分为三个纤维单 元,即外部混凝土纤维单元1、内部密闭混凝土纤维单元2、钢材纤维单元3。
[0108] (2)计算纤维单元的弹性应变值。由于构件截面只受轴向压力,三个纤维单元的弹 性应变值均为:
[0109]
Figure CN103093042BD00111
[0110] 其中E。、A。为混凝土的弹性模量与面积,这里的混凝土弹性模量需考虑其时变性 能;E S、As为钢材的弹性模量与面积。
[0111] (3)计算纤维单元的收缩徐变值。由于钢材不产生收缩徐变,因此其收缩徐变值为 0。按照B3模型分别计算外部混凝土与内部密闭混凝土的收缩徐变值,得到外部混凝土收 缩E shl、徐变与内部混凝土收缩ε sh2、徐变ε"2,其中内部混凝土是密闭在钢骨内的, 因此取其相对湿度为90%,体表比为m。
[0112] (4)计算截面整体应变值。首先计算每个纤维单元的总应变值:
[0113] eI= ε 〇+ ε shl+ ε crl;
[0114] ε 2= ε 0+ ε sh2+ ε cr2;
[0115] ε 3= ε 0〇
[0116] 然后计算每个纤维单元的虚拟应力:
Figure CN103093042BD00112
[0117]
[0118]
[0119] ^ 0
[0120] 接下来计算截面的虚拟内力:
[0121] ^i2Ai+SyAi ;
[0122] 其中A为每个纤维单元的截面面积。
[0123] 最终得到截面整体的应变值:
[0124]
Figure CN103093042BD00121
[0125] 3.计算结果
[0126] 按照上述方法计算出巨型混合构件在轴向压力作用下的收缩徐变值如下表所 示:
[0127;
Figure CN103093042BD00122
[0128] 表中ε '为不考虑钢骨对混凝土的封闭的影响所得到的截面整体应变值,即内部 混凝土与外部混凝土看作一个纤维单元,采用相同的湿度参数与体表比参数。
[0129] 由上表可以看出,随着时间的延长,ε与ε '之间的误差逐渐增大。主要原因是 随着时间的累积,干燥徐变在总徐变值中所占的比重越来越大,而内部密闭混凝土由于相 对湿度较大而产生较少的收缩与干燥徐变,与外部混凝土收缩徐变值差异越来越显著,因 此误差也越来越大,具体变化趋势可参见图4。由此可见,考虑内部密闭混凝土对整体收缩 徐变的影响是非常必要的,在计算时需划分为不同的纤维单元。
[0130] 实施例2
[0131] 本实施例选取的巨柱截面与材料等参数的假设条件同实例1。
[0132] L假设条件
[0133] 本实施例的截面受力为:P = 100ΜΝ,Mx= 30ΜΝ · m,My= 50ΜΝ · m。
[0134] 2.计算过程与结果
[0135] (1)划分纤维单元。在偏心受压的情况下,应将截面均匀划分为多个纤维单元,同 时将内部混凝土、外部混凝土与钢材分开划分纤维单元。具体的截面纤维单元划分与标号 如图5所示。
[0136] (2)计算纤维单元的弹性应变值。提取纤维单元的面积、形心以及材料的弹性模量 等数据,根据式(4)求出截面刚度矩阵K s,按照截面所受的内力与式(5)求出截面的弹性应 变 ε。= L 19X10 4,
Figure CN103093042BD00123
[0137] 为验证本例中纤维单元划分的合理性,选用截面纤维模型计算软件对计算结果进 行复核,如图6所示,在软件中施加相同的荷载,计算出的截面弹性应变为:
[0138] ε 0=1·24Χ10
Figure CN103093042BD00124
[0139] 由以上结果可以看出,本例中采用的纤维单元截面(图5)所计算出的结果较合 理,与软件模拟(图6)得出的结果差值在5 %以内,满足精度要求,因此该纤维截面可以被 用来继续计算收缩徐变应变。
[0140] (3)计算纤维单元的收缩徐变值。根据纤维单元弹性应变计算出纤维单元的应力; 取混凝土的龄期为20年,加载龄期为1年,计算出纤维单元的收缩与徐变值,其中钢材纤维 的收缩徐变值为0。
[0141] (4)计算截面整体应变值。根据求出的弹性应变与收缩徐变应变,按照式(9)求出 截面的虚拟内力 ,_
Figure CN103093042BD00131
.. 。最终按照式(10)计算 出偏心荷载下考虑截面收缩彳全亦的点、命亦为·
[0142] ε,0= 3. 17X10
Figure CN103093042BD00132
[0143] 由以上应变值可以看出,在考虑收缩徐变作用后,构件截面除产生较大轴向应变 外,沿X轴与y轴的曲率均增大约2. 2倍,变化规律与轴向应变类似,所以收缩徐变对于弯 曲变形的影响同样较大,在偏心荷载作用下考虑截面曲率的变化是非常必要的,因为这会 引起构件内力的重分配。

Claims (4)

1. 一种基于纤维模型的巨型组合构件收缩徐变计算方法,其特征在于,包括如下步 骤: 1) 根据组合构件截面的材料组成、徐变参数与受力特点对巨型组合构件进行纤维单元 划分,计算每个纤维单元的形心和面积; 2) 根据截面内力、截面材料特性计算每个纤维单元的初始弹性应变与应力,具体为: 各纤维单元截面上形心(x,y)处的纤维应变e(x,y)可以用截面形心位置的弹性应变 e。和绕截面形心轴的曲率(%必)表达为:
Figure CN103093042BC00021
对应于应变e(x,y)的应力〇 (x,y)通过弹性模量E(x,y)求得:
Figure CN103093042BC00022
截面上所有由纤维束的应力〇 (x,y)所引起的截面内力和弯矩由积分求得:
Figure CN103093042BC00023
其中N为截面内力,My、Mx*别为截面上绕y轴与绕x轴作用的弯矩,Ks为截面刚度矩 阵,A为纤维单元的面积:
Figure CN103093042BC00024
通过矩阵求逆可以得到截面柔度矩阵!^1,然后根据纤维单元截面所受的力即求得纤 维单元截面的弹性应变:
Figure CN103093042BC00025
根据纤维单元截面的弹性应变和材料的弹性模量可以计算出纤维单元的初始应力: 0 〇=Ee〇; 3) 根据每个纤维单元的初始应力,按照收缩徐变模型计算每个纤维单元的收缩徐变 值,并与弹性应变迭加得到每个纤维单元的总应变量; 4) 计算每个纤维单元的虚拟应力,并积分得到截面上的虚拟内力,通过虚拟内力计算 出巨型组合构件截面的总应变。
2. 根据权利要求1所述的一种基于纤维模型的巨型组合构件收缩徐变计算方法,其特 征在于,所述的对巨型组合构件进行纤维单元划分的规律为: a) 截面内的混凝土与钢材划分为不同的纤维单元; b) 截面内徐变参数不同的混凝土划分为不同的纤维单元 c) 对于不同的受力特点,采用不同的纤维单元划分方法: 对于轴心受压构件,按材料的不同以及收缩徐变参数的不同划分纤维单元; 对于偏心受压构件,根据偏心力作用的位置划分纤维单元:若偏心力作用在截面的对 称轴上,则相同材料垂直于对称轴方向的应力是相同的,将纤维单元沿着该对称轴方向均 匀划分;若偏心压力作用在截面的任意位置,则根据截面的形状特征将截面沿不同方向划 分为多个纤维单元。
3. 根据权利要求1所述的一种基于纤维模型的巨型组合构件收缩徐变计算方法,其特 征在于,所述的步骤3)中计算收缩徐变值的具体计算方法如下: 加载龄期为t'时常应力作用下的应变e(t):e(t) =J(t,t' ) 〇 +esh(t) 其中,。为轴向应力,esh(t)为收缩应变,J(t,t')为徐变函数; 随时间变化的收缩应变利用极限收缩乘以考虑相对湿度、时间效应以及尺寸效应的相 关系数来表示: esh(t) = -esh〇〇khS(t) 其中esh"为极限收缩应变,kh为湿度影响系数,S(t)为收缩随时间变化的函数; 徐变函数的公式为:
Figure CN103093042BC00031
其中^为瞬时弹性应变柔度函数,E(t')为加载龄期t'时混凝土的弹性模量,t(t、 (:。^〖')为基本徐变柔度函数,(^(〖,〖',〖。)为干燥徐变柔度函数4表示混凝土龄期,〖'表 示混凝土加载龄期,t。为养护龄期。
4. 根据权利要求3所述的一种基于纤维模型的巨型组合构件收缩徐变计算方法,其特 征在于,所述的步骤4)的具体计算方法如下: 41) 根据纤维总应变值计算出纤维的虚拟应力值:凡vv) = ; 42) 通过虚拟应力积分得出构件截面上的虚拟内力#、M,.、
Figure CN103093042BC00032
43) 根据虚拟内力计算出纤维截面的应变值:
Figure CN103093042BC00041
CN201310006982.0A 2013-01-08 2013-01-08 一种基于纤维模型的巨型组合构件收缩徐变计算方法 Active CN103093042B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310006982.0A CN103093042B (zh) 2013-01-08 2013-01-08 一种基于纤维模型的巨型组合构件收缩徐变计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310006982.0A CN103093042B (zh) 2013-01-08 2013-01-08 一种基于纤维模型的巨型组合构件收缩徐变计算方法

Publications (2)

Publication Number Publication Date
CN103093042A CN103093042A (zh) 2013-05-08
CN103093042B true CN103093042B (zh) 2015-11-25

Family

ID=48205602

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310006982.0A Active CN103093042B (zh) 2013-01-08 2013-01-08 一种基于纤维模型的巨型组合构件收缩徐变计算方法

Country Status (1)

Country Link
CN (1) CN103093042B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103530459A (zh) * 2013-10-11 2014-01-22 同济大学建筑设计研究院(集团)有限公司 考虑湿度分布的巨型组合构件收缩徐变计算方法
CN104850707A (zh) * 2015-05-24 2015-08-19 华东建筑设计研究院有限公司 一种超高层混凝土结构施工过程模拟分析方法
CN112699454B (zh) * 2021-03-23 2021-06-18 上海建工集团股份有限公司 超高层建筑竖向变形施工监控方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102287029A (zh) * 2011-06-20 2011-12-21 北京工业大学 内置高强钢筋超高性能混凝土梁构件

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102287029A (zh) * 2011-06-20 2011-12-21 北京工业大学 内置高强钢筋超高性能混凝土梁构件

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
基于B3模型的竖向构件差异变形分析;赵昕等;《建筑科学与工程学报》;20100315;第27卷(第1期);全文 *
钢筋混凝土框架结构非线性分析纤维模型研究;张强等;《结构工程师》;20080229;第24卷(第1期);第16-17页 *

Also Published As

Publication number Publication date
CN103093042A (zh) 2013-05-08

Similar Documents

Publication Publication Date Title
Bui et al. An efficient meshfree method for vibration analysis of laminated composite plates
Mohr et al. A frame element model for the analysis of reinforced concrete structures under shear and bending
Ji et al. Seismic behavior and modeling of steel reinforced concrete (SRC) walls
Chacón et al. Transversally stiffened plate girders subjected to patch loading. Part 1. Preliminary study
CN103093042B (zh) 一种基于纤维模型的巨型组合构件收缩徐变计算方法
Liu et al. Resistance of special-shaped concrete-filled steel tube columns under compression and bending
CN104408286A (zh) 基于正交分解理论的平面构件变形分解与振型识别方法
Du et al. Advanced flexibility-based beam-column element allowing for shear deformation and initial imperfection for direct analysis
CN103615054A (zh) 一种基于区格剪切变形的屈曲约束支撑布置方法
Rooshenas Comparing pushover methods for irregular high-rise structures, partially infilled with masonry panels
Zhang et al. Nonlinear finite element analyses of steel/FRP-reinforced concrete beams by using a novel composite beam element
Li et al. Wind-induced collapse mechanism and failure criteria of super-large cooling tower based on layered shell element model
Trentadue et al. Simplified lateral-torsional buckling analysis in special truss-reinforced composite steel-concrete beams
Park et al. Equivalent static wind loads vs. database-assisted design of tall buildings: An assessment
CN109252441B (zh) 一种变截面箱梁剪力滞效应的分析方法
CN110287637A (zh) 一种弹塑性屈曲承载力计算方法
CN103530459A (zh) 考虑湿度分布的巨型组合构件收缩徐变计算方法
Zhang et al. Eccentric compressive distortional buckling and design of non-symmetric cold-formed angular column with complex edges
Suo et al. Parametric analysis on hysteresis performance and restoring force model of LYP steel plate shear wall with two-side connections
Erduran et al. Component damage functions for reinforced concrete frame structures
Cheng et al. Mechanical behavior of T-shaped CFST column to steel beam joint
Du et al. 05.05: A flexibility‐based element for second‐order inelastic analysis using plastic hinge method
Lu et al. Centrifuge study of p–y curves for vertical–horizontal static loading of piles in sand
Chan et al. Application and recent research on direct analysis with completed projects in Macau and Hong Kong
Chen et al. A consistent tapered beam-column element allowing for different variations and initial imperfections

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant