CN103092744A - 一种动态电源管理策略性能评估方法 - Google Patents

一种动态电源管理策略性能评估方法 Download PDF

Info

Publication number
CN103092744A
CN103092744A CN2012105573759A CN201210557375A CN103092744A CN 103092744 A CN103092744 A CN 103092744A CN 2012105573759 A CN2012105573759 A CN 2012105573759A CN 201210557375 A CN201210557375 A CN 201210557375A CN 103092744 A CN103092744 A CN 103092744A
Authority
CN
China
Prior art keywords
state
power consumption
performance
time
transformed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012105573759A
Other languages
English (en)
Other versions
CN103092744B (zh
Inventor
刘发贵
林锦标
邢晓勇
林俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201210557375.9A priority Critical patent/CN103092744B/zh
Publication of CN103092744A publication Critical patent/CN103092744A/zh
Application granted granted Critical
Publication of CN103092744B publication Critical patent/CN103092744B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明属于计算机动态电源管理技术领域,具体涉及一种动态电源管理策略性能评估方法。所述方法基于动态电源管理框架实现,在动态电源管理框架上设置有策略评估层,所述策略评估层实时检测并计算获取系统部件处于不同动态电源管理策略下的性能参数,根据性能参数对不同动态电源管理策略的性能进行评估分析。本发明在已有的动态电源管理框架上进行扩展,增加策略评估层,采用不同的性能参数对动态电源管理策略的性能进行评估,能够实现实时及多能耗状态下系统动态电源管理策略性能的评估。

Description

一种动态电源管理策略性能评估方法
技术领域
本发明属于计算机动态电源管理技术领域,具体涉及一种动态电源管理策略性能评估方法。
背景技术
动态电源管理(Dynamic Power Management,DPM)是一种系统级低功耗技术,DPM根据系统实际运行的工作量来决定电源的状况。动态电源管理本质是通过将空闲的系统部件关闭或转入低能耗状态,来达到降低系统能耗的目的。
在动态电源管理中,DPM策略决定了设备何时切换以及如何切换设备的能耗状态,策略的性能直接决定动态电源管理技术的省点效果。由此,针对不同情况,不同性能的动态电源管理策略被提出。现有的动态单元管理框架中并不具备策略性能评估的功能,如中国专利CN20061012202.3,名称为“一种基于嵌入式系统的动态电源管理架构”,所述架构包括了操作点管理、操作状态管理、策略管理、设备约束管理、系统负荷检测以及策略优化,其是根据系统的运行负荷来实现策略优化的,但是所选择的不同策略在实时的运行环境中的性能如何,所述架构无法检测和评估,现有技术中都是通过理论证明或仿真的方式来评估策略的性能,但是这并不能反应策略在多变的真实环境下的性能。
发明内容
本发明解决的技术问题是克服现有技术的不足,提供一种在线对不同动态电源管理策略的性能进行实时评估的动态电源管理策略性能评估方法。
为解决上述技术问题,本发明的技术方案如下:
一种动态电源管理策略性能评估方法,所述方法基于动态电源管理框架实现,在动态电源管理框架上设置有策略评估层,所述策略评估层实时检测并计算获取系统部件处于不同动态电源管理策略下的性能参数,根据性能参数对不同动态电源管理策略的性能进行评估分析。本发明在已有的动态电源管理框架上进行扩展,增加策略评估层,采用不同的性能参数对动态电源管理策略的性能进行评估,能够实现实时及多能耗状态下系统动态电源管理策略性能的评估。
上述方案中,所述性能参数包括能耗评估参数、时间评估参数和状态转换次数评估参数。
上述方案中,根据能耗评估参数对策略功耗性能进行评估,其具体是对能耗评估参数中的系统运行平均功率进行比较分析,系统运行平均功率越小,其对应的动态电源管理策略越节能,其中,所述系统运行平均功率通过策略评估层直接检测获取。
上述方案中,述策略功耗性能还通过能耗评估参数中的实际效率值EVij进行评估,实际效率值EVij表示高功耗状态i转换到低功耗状态j的效率,其中i<j<n,n表示系统部件功耗状态总数,0代表能耗最高的状态,n-1代表能耗最低的状态,其具体获取方式为:
检测并记录系统部件的功耗参数,包括高功耗状态i的功率Pi、低功耗状态j的功率Pj、从高功耗状态i转换到低功耗状态j的功率Pij、从低功耗状态j转换到高功耗状态i的功率Pji
检测并记录系统部件的状态时间参数,包括系统部件处于低功耗状态j的时间TSj、从高功耗状态i转换到低功耗状态j的时间Tij、从低功耗状态j转换到高功耗状态i的时间Tji
检测并记录系统部件的状态转换参数,包括从高功耗状态i转换到低功耗状态j的转换次数Nij,从低功耗状态j转换到高功耗状态i的转换次数Nji
根据检测并记录到的参数,计算从高功耗状态i转换到低功耗状态j的总能量消Eij=Nij*Tij*Pij+Nji*Tji*Pji+TSj*Pj
根据检测并记录到的参数,计算不发生状态转换时保持高功耗状态i的总能耗Eji=(Nij*Tij+Nji*Tji+TSj)*Pi
计算获取实际效率值EVij=Eij/Eji,当EVij<1时,表示系统部件运行过程中从高功耗状态i转换到低功耗状态j是省电的。
上述方案中,所述策略功耗性能还通过能耗评估参数中的实际效率值与理想效率值差值进行评估,实际效率值EVij与理想效率值EVIij差值EVij-EVIij,用于评估实际效率与理想效率的差距,其值越小,表示其对应的动态电源管理策略的状态转换能耗越小;
其中,理想效率值EVIij表示从高功耗状态i转换到低功耗状态j的时间Tij和从低功耗状态j转换到高功耗状态i的时间Tji均为0时的高功耗状态i转换到低功耗状态j的效率,EVIij=Eij/Eji=TSj*Pj/(TSj*Pi)=Pj/Pi
上述方案中,根据所述时间评估参数对策略预测性能进行评估,其具体是对时间评估参数中的各功耗状态平均维持时间进行比较分析,功耗状态平均维持时间越大,其对应的动态电源管理策略预测性能越优,功耗状态平均维持时间的具体获取方式为:
检测并获取系统部件在各个功耗状态的维持时间;
检测并获取系统部件从其他功耗状态转换到各功耗状态的次数;
根据系统部件在各个功耗状态的维持时间和从其他功耗状态转到各功耗状态的次数,计算各功耗状态平均维持时间。所述各功耗状态的平均时间可评估策略预测性能,该参数越大,表明系统部件处于该功耗状态的时间更长,表示该策略预测性能越优。
上述方案中,根据所述时间评估参数对策略响应性能进行评估,其具体是对时间评估参数中的系统部件转入低功耗状态前处于高功耗状态的平均等待时间进行比较分析,系统部件转入低功耗状态前处于高功耗状态的平均等待时间越小,对应的动态电源管理策略响应越快,其具体获取方式为:
检测并获取低功耗状态转换前处于高功耗状态的等待时间;
检测并获取高功耗状态转换到低功耗状态的转换次数;
计算系统部件转入低功耗状态前处于高功耗状态的平均等待时间。所述系统部件转入低功耗状态前处于较高功耗状态的平均等待时间可以评估策略响应性能,该参数越小,策略响应性能越好,表明策略对低功耗状态的转换反应更快,能够减少等待转换过程中能量的消耗。
上述方案中,根据状态转换次数评估参数对策略的系统影响性能进行评估,其具体是通过状态转换次数评估参数中的系统部件转换到低功耗状态次数进行比较分析,系统部件转换到低功耗状态次数越少,对应的动态电源管理策略对系统造成的性能损失越小;系统部件转换到低功耗状态次数表示从高功耗状态i转换到低功耗状态j的次数,其通过策略评估层直接检测获取,其中,其中i<j<n,n表示系统部件功耗状态总数,0代表能耗最高的状态,n-1代表能耗最低的状态。频繁的状态转换会对系统性能产生较大的影响,因此,该参数值越小,表明系统部件的状态转换的频率越小,策略对系统造成的性能损失也越小。
上述方案中,根据状态转换次数评估参数对策略的决策性能进行评估,其具体是通过状态转换次数评估参数中的策略错误状态转换次数进行比较分析,当从高功耗状态转换到低功耗状态后系统部件所维持的时间小于不同功耗状态的时间阈值Tbe时,表明此次状态转换的决策是错误的,统计策略错误状态转换次数,其值越小,对应的动态电源管理策略的决策性能越优;
其中,从高功耗状态转换到低功耗状态后系统部件所维持的时间通过策略评估层实时检测获取;
不同功耗状态的时间阈值Tbe的具体获取方式为:
获取存储在策略评估层中的关闭系统部件所消耗的能量Esd、唤醒系统部件所消耗的能量Ewu、关闭系统部件所消耗的时间Tsd、唤醒系统部件所消耗的时间Twu
检测并获取当前工作状态的功耗PW
检测并获取由当前工作状态转换到低功耗状态的功耗Ps;设不同功耗状态的时间阈值为Tbe,根据PW×Tbe=Esd+Ewu+Ps×(Tbe-Tsd-Twu),获取时间阈值Tbe的值。
与现有技术相比,本发明技术方案的有益效果是:
本发明在已有的动态电源管理框架上进行扩展,增加策略评估层,采用不同的性能参数对动态电源管理策略的性能进行评估,包括对策略功耗性能、策略预测性能、策略响应性能、策略对系统影响性能和策略状态转换的准确率进行实时评估,能够实现多能耗状态下系统动态电源管理策略性能的评估。
附图说明
图1为本发明的系统结构图;
图2为本发明中某时刻状态转换的功耗示意图;
图3为本发明中不同功耗状态的时间阈值定义图。
具体实施方式
下面结合附图和实施例对本发明的技术方案做进一步的说明。
如图1所示,为本发明中一种动态电源管理策略性能评估方法的系统架构图,所述方法基于动态电源管理框架实现,在动态电源管理框架上设置有策略评估层,策略评估层实时检测并计算获取系统部件处于不同动态电源管理策略下的性能参数,根据性能参数对不同动态电源管理策略的性能进行评估分析。其中,性能参数包括能耗评估参数、时间评估参数和状态转换次数评估参数,根据不同的性能参数对不同动态电源管理策略的性能进行评估,包括对对策略功耗性能、策略预测性能、策略响应性能、策略对系统影响性能和策略状态转换的准确率进行实时评估,具体地:
根据能耗评估参数对策略功耗性能进行评估,其具体是对能耗评估参数中的系统运行平均功率进行比较分析,系统运行平均功率越小,其对应的动态电源管理策略越节能,其中,系统运行平均功率通过策略评估层直接检测获取。
策略功耗性能还通过能耗评估参数中的实际效率值EVij进行评估,实际效率值EVij表示高功耗状态i转换到低功耗状态j的效率,其中i<j<n,n表示系统部件功耗状态总数,0代表能耗最高的状态,n-1代表能耗最低的状态,实际效率值EVij具体获取方式为:
检测并记录系统部件的功耗参数,包括高功耗状态i的功率Pi、低功耗状态j的功率Pj、从高功耗状态i转换到低功耗状态j的功率Pij、从低功耗状态j转换到高功耗状态i的功率Pji
检测并记录系统部件的状态时间参数,包括系统部件处于低功耗状态j的时间TSj、从高功耗状态i转换到低功耗状态j的时间Tij、从低功耗状态j转换到高功耗状态i的时间Tji
检测并记录系统部件的状态转换参数,包括从高功耗状态i转换到低功耗状态j的转换次数Nij,从低功耗状态j转换到高功耗状态i的转换次数Nji
根据检测并记录到的参数,计算从高功耗状态i转换到低功耗状态j的总能量消Eij=Nij*Tij*Pij+Nji*Tji*Pji+TSj*Pj
根据检测并记录到的参数,计算不发生状态转换时保持高功耗状态i的总能耗Eji=(Nij*Tij+Nji*Tji+TSj)*Pi
计算获取发生状态转换的效率值EVij=Eij/Eji,当EVij<1时,表示系统部件运行过程中从高功耗状态i转换到低功耗状态j是省电的。
策略功耗性能还通过能耗评估参数中的实际效率值与理想效率值差值进行评估,实际效率值EVij与理想效率值EVIij差值EVij-EVIij,用于评估实际效率与理想效率的差距,差值越小,表示对应的动态电源管理策略的状态转换能耗越小;其中,理想效率值EVIij表示从高功耗状态i转换到低功耗状态j的时间Tij和从低功耗状态j转换到高功耗状态i的时间Tji均为0时的高功耗状态i转换到低功耗状态j的效率,EVIij=Eij/Eji=TSj*Pj/(TSj*Pi)=Pj/Pi
根据时间评估参数对策略预测性能进行评估,其具体是对时间评估参数中的各功耗状态平均维持时间进行比较分析,功耗状态平均维持时间越大,其对应的动态电源管理策略预测性能越优,功耗状态平均维持时间的具体获取方式为:
检测并获取系统部件在各个功耗状态的维持时间;
检测并获取系统部件从其他功耗状态转换到各功耗状态的次数;
根据系统部件在各个功耗状态的维持时间和从其他功耗状态转到各功耗状态的次数,计算各功耗状态平均维持时间。各功耗状态的平均时间可评估策略预测性能,该参数越大,表明系统部件处于该功耗状态的时间更长,表示该策略预测性能越优。
根据时间评估参数对策略响应性能进行评估,其具体是对时间评估参数中的系统部件转入低功耗状态前处于高功耗状态的平均等待时间进行比较分析,系统部件转入低功耗状态前处于高功耗状态的平均等待时间越小,对应的动态电源管理策略响应越快,其具体获取方式为:
检测并获取低功耗状态转换前处于高功耗状态的等待时间;
检测并获取高功耗状态转换到低功耗状态的转换次数;
计算系统部件转入低功耗状态前处于高功耗状态的平均等待时间。系统部件转入低功耗状态前处于较高功耗状态的平均等待时间可以评估策略响应性能,该参数越小,策略响应性能越好,表明策略对低功耗状态的转换反应更快,能够减少等待转换过程中能量的消耗。
根据状态转换次数评估参数对策略的系统影响性能进行评估,其具体是通过状态转换次数评估参数中的系统部件转换到低功耗状态次数进行比较分析,系统部件转换到低功耗状态次数越少,对应的动态电源管理策略对系统造成的性能损失越小;系统部件转换到低功耗状态次数表示从高功耗状态i转换到低功耗状态j的次数,其通过策略评估层直接检测获取,其中,其中i<j<n,n表示系统部件功耗状态总数,0代表能耗最高的状态,n-1代表能耗最低的状态。频繁的状态转换会对系统性能产生较大的影响,因此,该参数值越小,表明系统部件的状态转换的频率越小,策略对系统造成的性能损失也越小。
根据状态转换次数评估参数对策略的决策性能进行评估,其具体是通过状态转换次数评估参数中的策略错误状态转换次数进行比较分析,当从高功耗状态转换到低功耗状态后系统部件所维持的时间小于不同功耗状态的时间阈值Tbe时,表明此次状态转换的决策是错误的,统计策略错误状态转换次数,其值越小,对应的动态电源管理策略的决策性能越优;
其中,从高功耗状态转换到低功耗状态后系统部件所维持的时间通过策略评估层实时检测获取;
如图2所示,为不同功耗状态的时间阈值Tbe的定义图,具体获取方式为:
获取存储在策略评估层中的关闭系统部件所消耗的能量Esd、唤醒系统部件所消耗的能量Ewu、关闭系统部件所消耗的时间Tsd、唤醒系统部件所消耗的时间Twu
检测并获取当前工作状态的功耗PW
检测并获取由当前工作状态转换到低功耗状态的功耗Ps
不同功耗状态的时间阈值为Tbe,根据PW×Tbe=Esd+Ewu+Ps×(Tbe-Tsd-Twu),获取时间阈值Tbe的值。
下面结合具体的实施例对本发明加以详细说明,应指出的是,所描述的实施例旨在便于对本发明的理解,对本发明不起限定作用。
现有技术中一般将系统部件的状态划分为Active、idle、Standby和Sleep四种状态,设置系统部件的状态集合S={0,1,…n-1}={0,1,2,3},0代表能耗最高的状态,n-1代表能耗最低的状态,0,1,2,3分别表示Active、idle、Standby和Sleep,定义i<j<n。通过在动态电源管理框架中增加策略评估层,使得动态电源管理模块支持在线策略性能评估,可在多变的现实环境中实时评估不同动态电源管理策略的性能。在策略评估层中预备数据结构,具体地:
用一个二维数组B表示不同功耗状态的时间阀值(Tbe),B[i][j]表示由状态i转换到状态j的时间阀值。
用一个二维数组EVI表示理想效率值,EVI[i][j]表示Pj/Pi(其中i<j)。
用一个二维数组T表示状态转换的时间,T[i][j]表示由状态i转换到状态j的的时间。
用一个二维数组P表示功率,P[i][j]表示:(1)当i==j,表示状态i的功率,(2)当i!=j,表示由状态i转换到状态j的的功率;
设备功耗状态总数n;
实时更新的数据结构:
用一个二维数组N保存状态转换信息,N[i][j]表示从状态i转换到状态j的次数;
用一个一维数组TS保存各功耗维持时间,TS[i]为处于功耗状态i的时间;
用一个二维数组TB保存功耗状态转换前处于高功耗的时间,TB[i][j]表示转入低功耗状态j前处于较高功耗i的时间;
用Nwd表示策略错误转换次数;
用E表示系统的总能耗;
用一个二维数组EV表示转换的实际效率值,EV[i][j]表示从状态i转换到状态j的效率值(其中i<j);
用一个一维数组TSA保存各功耗平均维持时间,TSA[i]为处于功耗状态i的平均维持时间
用一个二维数组TBA保存功耗状态转换前处于高功耗的平均时间,TBA[i][j]表示转入低功耗状态j前处于较高功耗i的平均时间;
辅助数组更新实现:
a表示当前状态,b表示要转换到的状态,time表示状态a维持的时间,伪代码如下:
评估参数更新实现:
伪代码实现如下:
Figure BDA00002614590300112
Figure BDA00002614590300131
下面基于笔记本电脑对硬盘进行动态电源管理,利用本发明的策略性能评估方法对动态电源管理经典策略---超时策略、指数平均策略、半马尔科夫模型策略、更新理论模型策略进行性能评估,并根据评估结果对各个策略进行比较。
1)测试环境如下表1所示:
表1测试环境
Figure BDA00002614590300132
2)硬盘状态转换时间和功耗表
表2硬盘各状态功耗表
State △T Power
Active NA 2.5W
idle 1.0ms 2.0W
Standby 2.0s 0.25W
Sleep 6.0s 0.1W
表3硬盘状态转换功耗表
Figure BDA00002614590300141
3)实验方法
测试时间大约8分钟(500秒),在此时间内播放一段长约5分20秒的视频,接着编写一段helloworld代码,启动gcc编译helloworld代码,执行此代码,最后大约一分半钟什么都不做。此方法可同时测试算法在以下情况的性能:第一,硬盘在一段时间内较忙;第二,硬盘空闲。
4)实验结果
●能耗评估参数
表4策略能耗评估表
策略 P(W) E01 E02 E12
Timeout(2s) 1.72 0.8 0.199 0.227
自适应Timeout 1.63 0.8 0.118 0.195
指数平均算法 1.85 0.8 0.153 0.233
DTMDP 1.90 0.8 0.294 0.457
更新理论模型 1.60 0.8 0.179 0.236
表5策略效率比较表
策略 E01-EVI01 E02-EVI02 E12-EVI12
Timeout(2s) 0.000 0.099 0.102
自适应Timeout 0.000 0.018 0.070
指数平均算法 0.000 0.053 0.108
DTMDP 0.000 0.194 0.332
更新理论模型 0.000 0.079 0.111
由于由active与idle的转换时间是微秒级的,可忽略不计,因此E01-EVI01均为0,从平均功耗P列可看出,更新理论模型节能效果最好,且从表5可看出更新理论模型效率值与理想效率值差值不大,综合看,在能耗评估参数下,更新理论的节能效果最好。
●时间评估参数
表6策略低功耗时间比较表
Figure BDA00002614590300161
TSA值越大,策略性能越好,这表明设备处于低功耗状态的时间更长,而TBA值越小,策略性能好,表明策略对低功耗转换的反映更快,能减少等待转换过程中消耗的能量,因此从表6看,更新理论的响应是最快的,且处于低功耗的时间较理想,所以更新理论模型效果最好。
3)转换次数评估参数
表7策略状态转换次数评估参数
策略 N01 N02 N10 N12 N20 N21 Nwd
Timeout(2s) 160 0 144 35 16 19 23
自适应Timeout 136 0 134 17 3 14 11
指数平均算法 134 0 129 17 5 12 11
DTMDP 151 0 143 25 8 17 18
更新理论模型 156 0 141 40 15 25 21
N01的转换是设备硬件实现的,策略控制的是idle到standby的转换,即N12,算法应该尽量降低Nwd的值从而使N12中有效进入低功耗状态次数更多,更新理论模型中Nwd的值在N12中的比重是最小。综合上述实验结果,无论从能耗、时间或状态转换次数来看,更新理论模型的性能是最好的。

Claims (9)

1.一种动态电源管理策略性能评估方法,所述方法基于动态电源管理框架实现,其特征在于,在动态电源管理框架上设置有策略评估层,所述策略评估层实时检测并计算获取系统部件处于不同动态电源管理策略下的性能参数,根据性能参数对不同动态电源管理策略的性能进行评估分析。
2.根据权利要求1所述的动态电源管理策略性能评估方法,其特征在于,所述性能参数包括能耗评估参数、时间评估参数和状态转换次数评估参数。
3.根据权利要求2所述的动态电源管理策略性能评估方法,其特征在于,根据能耗评估参数对策略功耗性能进行评估,其具体是对能耗评估参数中的系统运行平均功率进行比较分析,系统运行平均功率越小,其对应的动态电源管理策略越节能,其中,所述系统运行平均功率通过策略评估层直接检测获取。
4.根据权利要求3所述的动态电源管理策略性能评估方法,其特征在于,所述策略功耗性能还通过能耗评估参数中的实际效率值EVij进行评估,实际效率值EVij表示高功耗状态i转换到低功耗状态j的效率,其中i<j<n,n表示系统部件功耗状态总数,0代表能耗最高的状态,n-1代表能耗最低的状态,其具体获取方式为:
检测并记录系统部件的功耗参数,包括高功耗状态i的功率Pi、低功耗状态j的功率Pj、从高功耗状态i转换到低功耗状态j的功率Pij、从低功耗状态j转换到高功耗状态i的功率Pji
检测并记录系统部件的状态时间参数,包括系统部件处于低功耗状态j的时间TSj、从高功耗状态i转换到低功耗状态j的时间Tij、从低功耗状态j转换到高功耗状态i的时间Tji
检测并记录系统部件的状态转换参数,包括从高功耗状态i转换到低功耗状态j的转换次数Nij,从低功耗状态j转换到高功耗状态i的转换次数Nji
根据检测并记录到的参数,计算从高功耗状态i转换到低功耗状态j的总能量消Eij=Nij*Tij*Pij+Nji*Tji*Pji+TSj*Pj
根据检测并记录到的参数,计算不发生状态转换时保持高功耗状态i的总能耗Eji=(Nij*Tij+Nji*Tji+TSj)*Pi
计算获取实际效率值EVij=Eij/Eji,当EVij<1时,表示系统部件运行过程中从高功耗状态i转换到低功耗状态j是省电的。
5.根据权利要求4所述的动态电源管理策略性能评估方法,其特征在于,所述策略功耗性能还通过能耗评估参数中的实际效率值与理想效率值差值进行评估,实际效率值EVij与理想效率值EVIij差值EVij-EVIij,用于评估实际效率与理想效率的差距,其值越小,表示其对应的动态电源管理策略的状态转换能耗越小;
其中,理想效率值EVIij表示从高功耗状态i转换到低功耗状态j的时间Tij和从低功耗状态j转换到高功耗状态i的时间Tji均为0时的高功耗状态i转换到低功耗状态j的效率,EVIij=Eij/Eji=TSj*Pj/(TSj*Pi)=Pj/Pi
6.根据权利要求2所述的动态电源管理策略性能评估方法,其特征在于,根据所述时间评估参数对策略预测性能进行评估,其具体是对时间评估参数中的各功耗状态平均维持时间进行比较分析,功耗状态平均维持时间越大,其对应的动态电源管理策略预测性能越优,功耗状态平均维持时间的具体获取方式为:
检测并获取系统部件在各个功耗状态的维持时间;
检测并获取系统部件从其他功耗状态转换到各功耗状态的次数;
根据系统部件在各个功耗状态的维持时间和从其他功耗状态转到各功耗状态的次数,计算各功耗状态平均维持时间。
7.根据权利要求2所述的动态电源管理策略性能评估方法,其特征在于,根据所述时间评估参数对策略响应性能进行评估,其具体是对时间评估参数中的系统部件转入低功耗状态前处于高功耗状态的平均等待时间进行比较分析,系统部件转入低功耗状态前处于高功耗状态的平均等待时间越小,对应的动态电源管理策略响应越快,其具体获取方式为:
检测并获取低功耗状态转换前处于高功耗状态的等待时间;
检测并获取高功耗状态转换到低功耗状态的转换次数;
计算系统部件转入低功耗状态前处于高功耗状态的平均等待时间。
8.根据权利要求2所述的动态电源管理策略性能评估方法,其特征在于,根据状态转换次数评估参数对策略的系统影响性能进行评估,其具体是通过状态转换次数评估参数中的系统部件转换到低功耗状态次数进行比较分析,系统部件转换到低功耗状态次数越少,对应的动态电源管理策略对系统造成的性能损失越小;系统部件转换到低功耗状态次数表示从高功耗状态i转换到低功耗状态j的次数,其通过策略评估层直接检测获取,其中,其中i<j<n,n表示系统部件功耗状态总数,0代表能耗最高的状态,n-1代表能耗最低的状态。
9.根据权利要求2所述的动态电源管理策略性能评估方法,其特征在于,根据状态转换次数评估参数对策略的决策性能进行评估,其具体是通过状态转换次数评估参数中的策略错误状态转换次数进行比较分析,当从高功耗状态转换到低功耗状态后系统部件所维持的时间小于不同功耗状态的时间阈值Tbe时,表明此次状态转换的决策是错误的,统计策略错误状态转换次数,其值越小,对应的动态电源管理策略的决策性能越优;
其中,从高功耗状态转换到低功耗状态后系统部件所维持的时间通过策略评估层实时检测获取;
不同功耗状态的时间阈值Tbe的具体获取方式为:
获取存储在策略评估层中的关闭系统部件所消耗的能量Esd、唤醒系统部件所消耗的能量Ewu、关闭系统部件所消耗的时间Tsd、唤醒系统部件所消耗的时间Twu
检测并获取当前工作状态的功耗PW
检测并获取由当前工作状态转换到低功耗状态的功耗Ps
设不同功耗状态的时间阈值为Tbe,根据PW×Tbe=Esd+Ewu+Ps×(Tbe-Tsd-Twu),获取时间阈值Tbe的值。
CN201210557375.9A 2012-05-09 2012-12-19 一种动态电源管理策略性能评估方法 Active CN103092744B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210557375.9A CN103092744B (zh) 2012-05-09 2012-12-19 一种动态电源管理策略性能评估方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201210142917 2012-05-09
CN2012101429176 2012-05-09
CN201210142917.6 2012-05-09
CN201210557375.9A CN103092744B (zh) 2012-05-09 2012-12-19 一种动态电源管理策略性能评估方法

Publications (2)

Publication Number Publication Date
CN103092744A true CN103092744A (zh) 2013-05-08
CN103092744B CN103092744B (zh) 2015-06-03

Family

ID=48205345

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210557375.9A Active CN103092744B (zh) 2012-05-09 2012-12-19 一种动态电源管理策略性能评估方法

Country Status (1)

Country Link
CN (1) CN103092744B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109116966A (zh) * 2018-08-03 2019-01-01 芜湖英特杰智能科技有限公司 一种计算机硬盘动态电源管理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050268063A1 (en) * 2004-05-25 2005-12-01 International Business Machines Corporation Systems and methods for providing constrained optimization using adaptive regulatory control
CN1932721A (zh) * 2006-09-08 2007-03-21 华南理工大学 一种基于嵌入式系统的动态电源管理架构
CN101067758A (zh) * 2007-06-14 2007-11-07 华南理工大学 一种嵌入式系统的能耗管理方法
CN101697095A (zh) * 2009-10-30 2010-04-21 华南理工大学 一种基于Linux嵌入式系统的动态电源管理的方法
CN101937266A (zh) * 2010-09-10 2011-01-05 华南理工大学 一种基于嵌入式系统的无线网卡动态电源管理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050268063A1 (en) * 2004-05-25 2005-12-01 International Business Machines Corporation Systems and methods for providing constrained optimization using adaptive regulatory control
CN1932721A (zh) * 2006-09-08 2007-03-21 华南理工大学 一种基于嵌入式系统的动态电源管理架构
CN101067758A (zh) * 2007-06-14 2007-11-07 华南理工大学 一种嵌入式系统的能耗管理方法
CN101697095A (zh) * 2009-10-30 2010-04-21 华南理工大学 一种基于Linux嵌入式系统的动态电源管理的方法
CN101937266A (zh) * 2010-09-10 2011-01-05 华南理工大学 一种基于嵌入式系统的无线网卡动态电源管理方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘发贵: "《动态电源管理框架的扩展与实现》", 《华南理工大学学报(自然科学版)》 *
江琦: "《动态电源管理的随机切换模型与策略优化》", 《计算机辅助设计与图形学学报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109116966A (zh) * 2018-08-03 2019-01-01 芜湖英特杰智能科技有限公司 一种计算机硬盘动态电源管理方法

Also Published As

Publication number Publication date
CN103092744B (zh) 2015-06-03

Similar Documents

Publication Publication Date Title
CN101495958B (zh) 用于控制处理器低功率状态的系统和方法
US10509576B2 (en) Method, apparatus, and system for energy efficiency and energy conservation including autonomous hardware-based deep power down in devices
Chetsa et al. Exploiting performance counters to predict and improve energy performance of HPC systems
TWI550518B (zh) 用於包括執行緒合併之能源效率及能源節約的方法、裝置及系統
US7529956B2 (en) Granular reduction in power consumption
US9122464B2 (en) Method, apparatus, and system for energy efficiency and energy conservation including energy efficient processor thermal throttling using deep power down mode
US8448002B2 (en) Clock-gated series-coupled data processing modules
US10078357B2 (en) Power gating functional units of a processor
US20120159074A1 (en) Method, apparatus, and system for energy efficiency and energy conservation including dynamic cache sizing and cache operating voltage management for optimal power performance
CN111240457B (zh) 一种基于risc-v的动态功耗管理方法
Jaiantilal et al. Modeling CPU energy consumption for energy efficient scheduling
US9753531B2 (en) Method, apparatus, and system for energy efficiency and energy conservation including determining an optimal power state of the apparatus based on residency time of non-core domains in a power saving state
US20140282587A1 (en) Multi-core binary translation task processing
Stangaciu et al. Energy efficiency in real-time systems: A brief overview
CN102768571A (zh) 基于pcm的数据中心的节能方法
Gupta et al. Minimizing power consumption by personal computers: A technical survey
CN103092744B (zh) 一种动态电源管理策略性能评估方法
CN1936774A (zh) 笔记本电脑实时时钟唤醒的实现方法
CN103823544B (zh) 一种动态电源管理方法
Janani Transient analysis of differentiated breakdown model
CN103218031A (zh) 电子装置以及休眠方法
Bellam et al. Improving reliability and energy efficiency of disk systems via utilization control
CN101477402A (zh) 一种策略控制系统能耗的服务器系统
Gong et al. Retention state-enabled and progress-driven energy management for self-powered nonvolatile processors
Pradhan et al. Access network energy efficient dynamic power scaling

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant