CN103090801A - 基于双折射色散的皮米量级位移测量装置及测量方法 - Google Patents

基于双折射色散的皮米量级位移测量装置及测量方法 Download PDF

Info

Publication number
CN103090801A
CN103090801A CN2013100151079A CN201310015107A CN103090801A CN 103090801 A CN103090801 A CN 103090801A CN 2013100151079 A CN2013100151079 A CN 2013100151079A CN 201310015107 A CN201310015107 A CN 201310015107A CN 103090801 A CN103090801 A CN 103090801A
Authority
CN
China
Prior art keywords
light
measured object
wave number
birefringece crystal
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013100151079A
Other languages
English (en)
Other versions
CN103090801B (zh
Inventor
江俊峰
刘铁根
王双
刘琨
尹金德
吴凡
秦尊琪
邹盛亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201310015107.9A priority Critical patent/CN103090801B/zh
Publication of CN103090801A publication Critical patent/CN103090801A/zh
Application granted granted Critical
Publication of CN103090801B publication Critical patent/CN103090801B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明公开了一种基于双折射色散的皮米量级位移测量装置及测量方法,从输入到输出端依序设置ASE光源(1)、光纤迈克尔逊干涉仪(2)、自聚焦准直透镜(31)、起偏器(4)、双折射晶体块(5)、检偏器(6)、自聚焦准直透镜(32)、光谱仪(7)以及信号处理单元(8)。与现有技术相比,本发明利用双折射晶体中o光和e光的折射率差值与波数的近似线性关系,通过计算循环卷积最大值所对应波数,得到被测物到基准面的距离,其测量分辨率相对于传统测量方法,有很大提高,可达皮米量级。

Description

基于双折射色散的皮米量级位移测量装置及测量方法
技术领域
本发明涉及一种光学非接触式微位移测量装置,特别是涉及一种基于双折射色散的皮米量级测量装置及测量方法。
背景技术
微位移测量方法分为机械接触式和光学非接触式。机械接触式测量方法测量范围大,纵向分辨率最高为0.1nm,但由于触针要在一定的压力下与被测物表面接触,当测量铝、铜等软金属物或涂有光刻胶等镀膜表面时,往往会再被测表面上形成划痕,产生较大的测量误差,并影响被测物表面质量。
光学非接触式测量方法以光学成像的方式测量物体位移量,实现非接触及全场各点的同时测量,系统结构简单、成本较低。光学非接触式测量方法包括结构三角形测量法、条纹投影法、全息测量术、光学探针及相位测量法,纵向分辨率最高为0.1nm,只能达到亚纳米量级。
上述传统微位移测量方法纵向分辨率普遍处于亚纳米量级,难以满足测量精度要求在皮米量级的领域。
发明内容
本发明的目的在于克服现有技术存在的上述不足,提供一种基于双折射色散的皮米量级位移测量装置及测量方法,用于表面形貌测量和可转化为位移的压力、应变、温度量的皮米量级的位移测量。
本发明提出的一种基于双折射色散的皮米量级位移测量装置,从输入到输出端依序设置ASE光源1、光纤迈克尔逊干涉仪2、第一自聚焦准直透镜31、起偏器4、双折射晶体块5、检偏器6、第二自聚焦准直透镜32、光谱仪7以及信号处理单元8,其中:
ASE光源1,用于提供传感检测宽带光源;
光纤迈克尔逊干涉仪2,包括光纤耦合器9、参考臂10和传感臂11,光纤耦合器9用于将ASE光源1发出的光引入到参考臂10和传感臂11,并将参考臂10和传感臂11返回的光引出,用于感受被测物位移引起的距离变化;
第一自聚焦准直透镜31,与第二自聚焦准直透镜32成对使用,其中第一自聚焦准直透镜31用于将耦合器9发送的光束进行准直输出,输出的准直光束经过双折射晶体块5后,通过第二自聚焦准直透镜32耦合进光纤;
起偏器4,用于对第一自聚焦准直透镜31输出的信号光进行起偏;
双折射晶体块5,用于将起偏器4产生的线偏振光再产生两个正交的线偏振光,并且由于双折射晶体的色散效应,不同波数对应不同的光程差;
检偏器6,用于对经过双折射晶体块的两个线偏振光进行投影产生干涉;
光谱仪7,用于检测被测光的光谱信号;
信号处理单元8,基于嵌入式系统或计算机,用于从光谱信号中提取出距离信息,并对应成被测物13位移信息;
所述信号处理单元8包括以下处理:
步骤一、将检测到的光谱信号的单位从波长转换到波数;
步骤二、对单位转换后的光谱信号进行离散Fourier变换;
步骤三、对离散Fourier变换后的低频对应的幅值和相位设置为0,其余频率对应的幅值和相位不变;
步骤四、进行离散Fourier反变换,反变换后得到的复数的实部即为Fourier高通滤波后的滤波信号,滤波后的信号将光源光谱形状从被测光光谱信号中滤除;
步骤五、对滤波信号进行循环卷积,得到循环卷积结果中最大值对应的波数值;
步骤六、根据被测物13到基准面12的距离与循环卷积最大值所对应波数之间的关系,得到被测物13到基准面12的距离,从而得到被测物位移信息;
步骤七、在垂直于光纤迈克尔逊干涉仪测量臂11的平面内,移动被测物,重复步骤一至步骤六,可测得被测物不同位置的位移信息。
步骤六所述的被测物13到基准面12的距离与循环卷积最大值所对应波数之间的关系的获取过程包括以下处理:
光谱仪7检测到的被测光光谱信号为αI(k)cos{k[n(k)d-2L]},其中α是与光路系统有关的常数,k为波数,d为双折射晶体块厚度,L为被测物13距参考面12的距离,I(k)为波数k对应的光源光谱强度,n(k)为波数k对应的双折射晶体中o光和e光的折射率差值;在一定的光谱范围内,双折射晶体中o光和e光的折射率差值与波数可近似为线性关系,表示为n(k)=Ak+B,其中A、B为双折射晶体色散参数相关的常数;被测光光谱信号中cos项内的相位可表示为波数的二次多项式Adk2+(Bd-2L)k,设kc为该二次多项式抛物线顶点所对应的波数,则kc=(2L-Bd)/(2Ad);cos项以y=kc为对称轴,因此,循环卷积最大值所对应的波数即为kc,其与被测物13到基准面12的距离L之间的关系为kc=(2L-Bd)/(2Ad);光源光谱的波数范围为ka至kb,为保证kc在光源光谱范围内,被测物13到基准面12的距离需要控制在Adka+Bd/2至Adkb+Bd/2范围内;测量分辨率ΔL=AdΔk,其中Δk为波数分辨率。
本发明还提出了一种基于双折射色散的皮米量级位移测量装置的测量方法,该方法包括以下步骤:
步骤一、利用光纤耦合器9将ASE光源1发出的光引入到光纤迈克尔逊干涉仪2的参考臂10和传感臂11,并将参考臂10和传感臂11返回的光引出,感受被测物位移引起的距离变化;
步骤二、利用第一自聚焦准直透镜31将光纤耦合器9发送的光束进行准直输出,输出的准直光束经过双折射晶体块5后,通过第二自聚焦准直透镜32耦合进光纤;
步骤三、利用起偏器4对自聚焦准直透镜3输出的信号光进行起偏;
步骤四、利用双折射晶体块5将起偏器4产生的线偏振光再产生两个正交的线偏振光,并且由于双折射晶体的色散效应,不同波数对应不同的光程差;
步骤五、利用检偏器6对经过双折射晶体块的两个线偏振光进行投影产生干涉;
步骤六、利用光谱仪7检测被测光的光谱信号;
步骤七、利用基于嵌入式系统或计算机的信号处理单元8从光谱信号中提取出距离信息,并对应成被测物13位移信息。
所述信号处理单元8包括以下流程:
步骤一、将检测到的光谱信号的单位从波长转换到波数;
步骤二、对单位转换后的光谱信号进行离散Fourier变换;
步骤三、对离散Fourier变换后的低频对应的幅值和相位设置为0,其余频率对应的幅值和相位不变;
步骤四、进行离散Fourier反变换,反变换后得到的复数的实部即为Fourier高通滤波后的滤波信号,滤波后的信号将光源光谱形状从被测光光谱信号中滤除;
步骤五、对滤波信号进行循环卷积,得到循环卷积结果中最大值对应的波数值;
步骤六、根据被测物13到基准面12的距离与循环卷积最大值所对应波数之间的关系,得到被测物13到基准面12的距离,从而得到被测物该位置位移信息;
步骤七、在垂直于光纤迈克尔逊干涉仪测量臂11的平面内,移动被测物,重复步骤一至步骤六,可测得被测物不同位置的位移信息。
上述流程中的步骤六所述的被测物13到基准面12的距离与循环卷积最大值所对应波数之间的关系的获取流程包括以下步骤:
光谱仪7检测到的被测光光谱信号为αI(k)cos{k[n(k)d-2L]},其中α是与光路系统有关的常数,k为波数,d为双折射晶体块厚度,L为被测物13距参考面12的距离,I(k)为波数k对应的光源光谱强度,n(k)为波数k对应的双折射晶体中o光和e光的折射率差值;在一定的光谱范围内,双折射晶体中o光和e光的折射率差值与波数可近似为线性关系,表示为n(k)=Ak+B,其中A、B为双折射晶体色散参数相关的常数;被测光光谱信号中cos项内的相位可表示为波数的二次多项式Adk2+(Bd-2L)k,设kc为该二次多项式抛物线顶点所对应的波数,则kc=(2L-Bd)/(2Ad);cos项以y=kc为对称轴,因此,循环卷积最大值所对应的波数即为kc,其与被测物13到基准面12的距离L之间的关系为kc=(2L-Bd)/(2Ad);光源光谱的波数范围为ka至kb,为保证kc在光源光谱范围内,被测物13到基准面12的距离需要控制在Adka+Bd/2至Adkb+Bd/2范围内;测量分辨率ΔL=AdΔk,其中Δk为波数分辨率。
与现有技术相比,本发明利用双折射晶体中o光和e光的折射率差值与波数的近似线性关系,通过计算循环卷积最大值所对应波数,得到被测物到基准面的距离,其测量分辨率相对于传统测量方法,有很大提高,达到皮米量级。
附图说明
图1为基于双折射色散的皮米量级位移测量装置结构示意图;
图1中:
1、ASE光源  2、光纤迈克尔逊干涉仪  31、第一自聚焦准直透镜(32、第二自聚焦准直透镜)  4、起偏器  5、双折射晶体块  6、检偏器  7、光谱仪  8、信号处理单元  9、光纤耦合器  10、参考臂  11、传感臂  12、参考面  13、被测物
图2为对光谱信号进行离散Fourier高通滤波后的信号图;
图3为对滤波信号进行循环卷积后得到的结果。
具体实施方式
下面将结合附图对本发明的具体实施方式进行详细描述,这些实施方式若存在示例性的内容,不应解释成对本发明的限制。
如图1所示,基于双折射色散的皮米量级位移测量装置包括:ASE光源1、光纤迈克尔逊干涉仪2、第一自聚焦准直透镜31(第二自聚焦准直透镜32)、起偏器4、双折射晶体块5、检偏器6、光谱仪7和信号处理单元8。其中,光纤迈克尔逊干涉仪2包括光纤耦合器9、参考臂10和传感臂11。
ASE光源1光谱范围为1530nm到1560nm,ASE光源1发出的光导入2×2单模光纤耦合器9,通过光纤耦合器9分别进入光纤迈克尔逊干涉仪2的参考臂10和传感臂11。其中参考臂10端面镀有高反射金属层,传感臂11端面为自聚焦准直透镜,传感臂11中的光经过端面的自聚焦准直透镜投射到被测物13,经被测物13反射回传感臂11,进入传感臂11的反射光束与参考臂10端面反射的光束发生双光束干涉,其光程差为被测物13到参考平面12距离L的两倍。两束反射光经过光纤耦合器9的出口导出,依次通过第一自聚焦准直透镜31、起偏器4、双折射晶体块5、检偏器6、第二自聚焦准直透镜32,最终到达光谱仪7。ASE光源1光谱范围在光谱仪7检测范围内,光谱仪7分辨率为1pm,利用双折射晶体5的色散效应可以建立被测光光谱信息与被测物13到参考平面12距离L的关系。信号处理单元8对光谱仪7输出的光谱信号进行处理,从中提取出被测物13到参考平面12的距离L,从而确定被测物位移信息。
基于双折射色散的皮米量级位移测量方法,具体包括以下步骤:
首先,将光谱仪7采集的光谱信息的单位转换为波数,即光谱信息的波数范围为0.00402768rad/nm到0.00410666rad/nm,即ka=0.00402768rad/nm,kb=0.00410666rad/nm。由于光源谱宽远小于光源光谱波长,因此,在波长分辨率为1pm的情况下,波数分辨率也可以近似认为是等间距的,波数分辨率Δk=2.54755401×10-9rad/nm。
然后,对单位转换后的光谱信号进行离散Fourier高通滤波,并对滤波信号进行循环卷积,得到循环卷积结果中最大值对应的波数值,根据被测物到基准面的距离与循环卷积最大值所对应波数之间的关系,得到被测物到基准面的距离,从而得到被测物该位置位移信息。
本实施例中双折射晶体块5采用MgF2晶体块,在光源光谱波数范围内,其o光和e光的折射率差值与波数的线性表达式中,系数A为0.10076563,B为0.01098763,MgF2晶体块厚度d为20mm。根据循环卷积最大值所对应的波数kc,与被测物13到基准面12的距离L之间的关系式kc(2L-Bd)/(2Ad)可知,被测物13到基准面12的距离L=Adkc+Bd/2=1007656.3kc+109876.3,被测物13到基准面12距离的范围在Adka+Bd/2至Adkb+Bd/2范围内,即被测物13到基准面12距离的范围为117993.33425277nm至118152.50364192nm。测量分辨率ΔL=AdΔk=5.1341177pm。被测物13到基准面12的距离L为118100nm时,光谱信号进行离散Fourier高通滤波后的信号图如图2所示。如图3所示为对滤波信号进行循环卷积后得到的结果,其最大值所对应的波数值即为波数kc。最后,在垂直于光纤迈克尔逊干涉仪测量臂11的平面内,移动被测物,重复上述两步,可测得被测物13不同位置的位移信息。

Claims (6)

1.一种基于双折射色散的皮米量级位移测量装置,其特征在于,该装置从输入到输出端依序设置ASE光源(1)、光纤迈克尔逊干涉仪(2)、第一自聚焦准直透镜(31)、起偏器(4)、双折射晶体块(5)、检偏器(6)、第二自聚焦准直透镜(32)、光谱仪(7)以及信号处理单元(8),其中: 
ASE光源(1),用于提供传感检测宽带光源; 
光纤迈克尔逊干涉仪(2),包括光纤耦合器(9)、参考臂(10)和传感臂(11),光纤耦合器(9)用于将ASE光源(1)发出的光引入到参考臂(10)和传感臂(11),并将参考臂(10)和传感臂(11)返回的光引出,用于感受被测物位移引起的距离变化; 
第一自聚焦准直透镜(31),与第二自聚焦准直透镜(32)成对使用,其中第一自聚焦准直透镜(31)用于将耦合器(9)发送的光束进行准直输出,输出的准直光束经过双折射晶体块(5)后,通过第二自聚焦准直透镜(32)耦合进光纤; 
起偏器(4),用于对自聚焦准直透镜(3)输出的信号光进行起偏; 
双折射晶体块(5),用于将起偏器(4)产生的线偏振光再产生两个正交的线偏振光,并且由于双折射晶体的色散效应,不同波数对应不同的光程差; 
检偏器(6),用于对经过双折射晶体块的两个线偏振光进行投影产生干涉; 
光谱仪(7),用于检测被测光的光谱信号; 
信号处理单元(8),基于嵌入式系统或计算机,用于从光谱信号中提取出距离信息,并对应成被测物(13)位移信息。 
2.根据权利要求1所述的基于双折射色散的皮米量级位移测量装置,其特征在于,所述信号处理单元(8)包括以下处理: 
步骤一、将检测到的光谱信号的单位从波长转换到波数; 
步骤二、对单位转换后的光谱信号进行离散Fourier变换; 
步骤三、对离散Fourier变换后的低频对应的幅值和相位设置为0,其余频率对应 的幅值和相位不变; 
步骤四、进行离散Fourier反变换,反变换后得到的复数的实部即为Fourier高通滤波后的滤波信号,滤波后的信号将光源光谱形状从被测光光谱信号中滤除; 
步骤五、对滤波信号进行循环卷积,得到循环卷积结果中最大值对应的波数值; 
步骤六、根据被测物(13)到基准面(12)的距离与循环卷积最大值所对应波数之间的关系,得到被测物(13)到基准面(12)的距离,从而得到被测物该位置位移信息; 
步骤七、在垂直于光纤迈克尔逊干涉仪测量臂(11)的平面内,移动被测物,重复步骤一至步骤六,可测得被测物不同位置的位移信息。 
3.根据权利要求书2所述的基于双折射色散的皮米量级位移测量装置,其特征在于,步骤六所述的被测物(13)到基准面(12)的距离与循环卷积最大值所对应波数之间的关系的获取过程包括以下处理: 
光谱仪(7)检测到的被测光光谱信号为αI(k)cos{k[n(k)d-2L]},其中α是与光路系统有关的常数,k为波数,d为双折射晶体块厚度,L为被测物(13)距参考面(12)的距离,I(k)为波数k对应的光源光谱强度,n(k)为波数对应的双折射晶体中o光和e光的折射率差值;在一定的光谱范围内,双折射晶体中o光和e光的折射率差值与波数可近似为线性关系,表示为n(k)=Ak+B,其中A、B为双折射晶体色散参数相关的常数;被测光光谱信号中cos项内的相位可表示为波数的二次多项式Adk2+(Bd-2L)k,设kc为该二次多项式抛物线顶点所对应的波数,则kc=(2L-Bd)/(2Ad);cos项以y=kc为对称轴,因此,循环卷积最大值所对应的波数即为kc,其与被测物(13)到基准面(12)的距离L之间的关系为kc=(2L-Bd)/(2Ad);光源光谱的波数范围为ka至kb,为保证kc在光源光谱范围内,被测物(13)到基准面(12)的距离L的范围,需要控制在Adka+Bd/2至Adkb+Bd/2范围内;测量分辨率ΔL=AdΔk,其中Δk为波数分辨率。 
4.根据权利要求书1所述的基于双折射色散的皮米量级位移测量装置的测量方法,其特征在于,该方法包括以下步骤: 
步骤一、利用光纤耦合器(9)将ASE光源(1)发出的光引入到光纤迈克尔逊干涉仪(2)的参考臂(10)和传感臂(11),并将参考臂(10)和传感臂(11)返回的 光引出,感受被测物位移引起的距离变化; 
步骤二、利用第一自聚焦准直透镜(31)将光纤耦合器(9)发送的光束进行准直输出,输出的准直光束经过双折射晶体块(5)后,通过第二自聚焦准直透镜(32)耦合进光纤; 
步骤三、利用起偏器(4)对自聚焦准直透镜(3)输出的信号光进行起偏; 
步骤四、利用双折射晶体块(5)将起偏器(4)产生的线偏振光再产生两个正交的线偏振光,并且由于双折射晶体的色散效应,不同波数对应不同的光程差; 
步骤五、利用检偏器(6)对经过双折射晶体块的两个线偏振光进行投影产生干涉; 
步骤六、利用光谱仪(7)检测被测光的光谱信号; 
步骤七、利用基于嵌入式系统或计算机的信号处理单元(8)从光谱信号中提取出距离信息,并对应成被测物(13)位移信息。 
5.根据权利要求4所述的基于双折射色散的皮米量级位移测量装置的测量方法,其特征在于,所述信号处理单元(8)包括以下流程: 
步骤一、将检测到的光谱信号的单位从波长转换到波数; 
步骤二、对单位转换后的光谱信号进行离散Fourier变换; 
步骤三、对离散Fourier变换后的低频对应的幅值和相位设置为0,其余频率对应的幅值和相位不变; 
步骤四、进行离散Fourier反变换,反变换后得到的复数的实部即为Fourier高通滤波后的滤波信号,滤波后的信号将光源光谱形状从被测光光谱信号中滤除; 
步骤五、对滤波信号进行循环卷积,得到循环卷积结果中最大值对应的波数值; 
步骤六、根据被测物(13)到基准面(12)的距离与循环卷积最大值所对应波数之间的关系,得到被测物(13)到基准面(12)的距离,从而得到被测物该位置位移信息; 
步骤七、在垂直于光纤迈克尔逊干涉仪测量臂(11)的平面内,移动被测物,重复步骤一至步骤六,可测得被测物不同位置的位移信息。 
6.根据权利要求书5所述的基于双折射色散的皮米量级位移测量装置的测量方法,其特征在于,步骤六所述的被测物(13)到基准面(12)的距离与循环卷积最大 值所对应波数之间的关系的获取流程包括以下步骤: 
光谱仪(7)检测到的被测光光谱信号为αI(k)cos{k[n(k)d-2L]},其中α是与光路系统有关的常数,k为波数,d为双折射晶体块厚度,L为被测物(13)距参考面(12)的距离,I(k)为波数k对应的光源光谱强度,n(k)为波数对应的双折射晶体中o光和e光的折射率差值;在一定的光谱范围内,双折射晶体中o光和e光的折射率差值与波数可近似为线性关系,表示为n(k)=Ak+B,其中A、B为双折射晶体色散参数相关的常数;被测光光谱信号中cos项内的相位可表示为波数的二次多项式Adk2+(Bd-2L)k,设kc为该二次多项式抛物线顶点所对应的波数,则kc=(2L-Bd)/(2Ad);cos项以y=kc为对称轴,因此,循环卷积最大值所对应的波数即为kc,其与被测物(13)到基准面(12)的距离L之间的关系为kc=(2L-Bd)/(2Ad);光源光谱的波数范围为ka至kb,为保证kc在光源光谱范围内,被测物(13)到基准面(12)的距离L需要控制在Adka+Bd/2至Adkb+Bd/2范围内;测量分辨率ΔL=AdΔk,其中Δk为波数分辨率。 
CN201310015107.9A 2013-01-15 2013-01-15 基于双折射色散的皮米量级位移测量装置及测量方法 Active CN103090801B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310015107.9A CN103090801B (zh) 2013-01-15 2013-01-15 基于双折射色散的皮米量级位移测量装置及测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310015107.9A CN103090801B (zh) 2013-01-15 2013-01-15 基于双折射色散的皮米量级位移测量装置及测量方法

Publications (2)

Publication Number Publication Date
CN103090801A true CN103090801A (zh) 2013-05-08
CN103090801B CN103090801B (zh) 2015-06-24

Family

ID=48203677

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310015107.9A Active CN103090801B (zh) 2013-01-15 2013-01-15 基于双折射色散的皮米量级位移测量装置及测量方法

Country Status (1)

Country Link
CN (1) CN103090801B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105300290A (zh) * 2015-09-28 2016-02-03 北京交通大学 一种基于波数分辨的低相干干涉绝对距离测量系统
CN109916743A (zh) * 2019-03-21 2019-06-21 京东方科技集团股份有限公司 动态力学性能测量装置、测量方法及计算设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1245284A (zh) * 1999-08-20 2000-02-23 清华大学 光纤偏振光干涉位移和振动测量仪
JP2006010693A (ja) * 2004-06-22 2006-01-12 Polytec Gmbh 物体の光学的測定を行うための装置及びその装置を用いた測定方法
CN101126629A (zh) * 2007-09-25 2008-02-20 北京交通大学 利用光纤光栅的合成波干涉台阶高度在线测量系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1245284A (zh) * 1999-08-20 2000-02-23 清华大学 光纤偏振光干涉位移和振动测量仪
JP2006010693A (ja) * 2004-06-22 2006-01-12 Polytec Gmbh 物体の光学的測定を行うための装置及びその装置を用いた測定方法
CN101126629A (zh) * 2007-09-25 2008-02-20 北京交通大学 利用光纤光栅的合成波干涉台阶高度在线测量系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105300290A (zh) * 2015-09-28 2016-02-03 北京交通大学 一种基于波数分辨的低相干干涉绝对距离测量系统
CN109916743A (zh) * 2019-03-21 2019-06-21 京东方科技集团股份有限公司 动态力学性能测量装置、测量方法及计算设备

Also Published As

Publication number Publication date
CN103090801B (zh) 2015-06-24

Similar Documents

Publication Publication Date Title
CN102332956B (zh) 一种宽带光源的色散补偿方法
CN102261985B (zh) 光学系统波像差标定装置及该装置测试误差的标定方法
CN103115636B (zh) 基于多波长低相干光源的光纤法珀传感器复用方法
CN103090808B (zh) 一种基于光谱位相的高精度大量程间距测量方法及系统
CN104296698A (zh) 一种超高精度的光学表面平整度测量方法
CN108562237B (zh) 一种采用hcn气室在光频域反射传感系统中进行光谱校准的装置和方法
CN104655290A (zh) 斐索型双波长激光调谐移相干涉测试装置及其测试方法
CN104748835A (zh) 干涉量分离激光干涉测振仪非线性误差修正方法及装置
CN105044035B (zh) 基于谱域干涉仪的折射率和厚度同步测量方法与系统
CN108844470A (zh) 一种基于色散干涉法的微腔激光绝对距离测量装置和方法
CN104215176A (zh) 高精度光学间隔测量装置和测量方法
CN108387251B (zh) 一种光纤光栅解调仪器及方法
CN103411689B (zh) 基于单频正交线偏振光的激光波长直接测量方法及装置
CN109211415A (zh) 一种基于光源光谱特征波长的波长标定方法
CN104748672A (zh) 干涉量分离单频激光干涉仪非线性误差修正方法及装置
CN107228632A (zh) 一种基于加窗傅里叶变换的位移场层析测量装置及方法
CN104748671A (zh) 角位移单频激光干涉仪非线性误差修正方法及装置
CN105785386A (zh) 基于f-p标准具的高精度调频连续波激光测距系统
CN105352915A (zh) 一种折射率二维分布的动态测量方法
CN101660998B (zh) 利用小波变换测量群延迟的方法
CN105953919B (zh) 一种全光纤傅里叶光谱分析仪
CN102865810B (zh) 基于正交双光栅的同步相移共光路干涉检测装置及检测方法
CN205003080U (zh) 基于谱域干涉仪的折射率和厚度同步测量系统
CN114894308A (zh) 一种基于低相干干涉的光谱仪标定方法与系统
CN103090801B (zh) 基于双折射色散的皮米量级位移测量装置及测量方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant