CN103087705A - A high-strength rare earth-doped up-conversion luminescent nanomaterial and its preparation method - Google Patents
A high-strength rare earth-doped up-conversion luminescent nanomaterial and its preparation method Download PDFInfo
- Publication number
- CN103087705A CN103087705A CN2013100165940A CN201310016594A CN103087705A CN 103087705 A CN103087705 A CN 103087705A CN 2013100165940 A CN2013100165940 A CN 2013100165940A CN 201310016594 A CN201310016594 A CN 201310016594A CN 103087705 A CN103087705 A CN 103087705A
- Authority
- CN
- China
- Prior art keywords
- acid
- water
- ligand
- rare earth
- compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 45
- 239000002086 nanomaterial Substances 0.000 title claims description 30
- 238000002360 preparation method Methods 0.000 title claims description 14
- 239000003446 ligand Substances 0.000 claims abstract description 68
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 51
- 239000000463 material Substances 0.000 claims abstract description 35
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims abstract description 33
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 27
- 238000000034 method Methods 0.000 claims abstract description 16
- 150000002894 organic compounds Chemical class 0.000 claims abstract description 13
- 150000002910 rare earth metals Chemical class 0.000 claims abstract description 13
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 claims abstract description 4
- 239000002904 solvent Substances 0.000 claims abstract description 3
- 239000002253 acid Substances 0.000 claims abstract 2
- 229910052691 Erbium Inorganic materials 0.000 claims description 44
- 229910052769 Ytterbium Inorganic materials 0.000 claims description 38
- 150000001875 compounds Chemical class 0.000 claims description 20
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 claims description 18
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 claims description 17
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 claims description 17
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 claims description 17
- 239000005642 Oleic acid Substances 0.000 claims description 17
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 claims description 17
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 claims description 17
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 claims description 17
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 15
- 125000000217 alkyl group Chemical group 0.000 claims description 14
- 150000002500 ions Chemical class 0.000 claims description 14
- -1 rare earth ion Chemical class 0.000 claims description 14
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 claims description 13
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 13
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 13
- 125000004417 unsaturated alkyl group Chemical group 0.000 claims description 13
- 238000004020 luminiscence type Methods 0.000 claims description 12
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 11
- HQABUPZFAYXKJW-UHFFFAOYSA-N butan-1-amine Chemical compound CCCCN HQABUPZFAYXKJW-UHFFFAOYSA-N 0.000 claims description 10
- 235000019260 propionic acid Nutrition 0.000 claims description 9
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 claims description 9
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 claims description 8
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 claims description 7
- AFENDNXGAFYKQO-UHFFFAOYSA-N 2-hydroxybutyric acid Chemical compound CCC(O)C(O)=O AFENDNXGAFYKQO-UHFFFAOYSA-N 0.000 claims description 7
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 claims description 7
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 claims description 7
- 125000003118 aryl group Chemical group 0.000 claims description 7
- 239000007810 chemical reaction solvent Substances 0.000 claims description 7
- 229910052775 Thulium Inorganic materials 0.000 claims description 6
- 239000003960 organic solvent Substances 0.000 claims description 6
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 claims description 6
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 claims description 5
- HVAMZGADVCBITI-UHFFFAOYSA-N pent-4-enoic acid Chemical compound OC(=O)CCC=C HVAMZGADVCBITI-UHFFFAOYSA-N 0.000 claims description 5
- CUBCNYWQJHBXIY-UHFFFAOYSA-N benzoic acid;2-hydroxybenzoic acid Chemical compound OC(=O)C1=CC=CC=C1.OC(=O)C1=CC=CC=C1O CUBCNYWQJHBXIY-UHFFFAOYSA-N 0.000 claims description 3
- IDGUHHHQCWSQLU-UHFFFAOYSA-N ethanol;hydrate Chemical group O.CCO IDGUHHHQCWSQLU-UHFFFAOYSA-N 0.000 claims description 3
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 claims description 3
- 239000011976 maleic acid Substances 0.000 claims description 3
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 claims description 3
- AEDZKIACDBYJLQ-UHFFFAOYSA-N ethane-1,2-diol;hydrate Chemical compound O.OCCO AEDZKIACDBYJLQ-UHFFFAOYSA-N 0.000 claims description 2
- 229910001512 metal fluoride Inorganic materials 0.000 claims description 2
- GBMDVOWEEQVZKZ-UHFFFAOYSA-N methanol;hydrate Chemical compound O.OC GBMDVOWEEQVZKZ-UHFFFAOYSA-N 0.000 claims description 2
- 238000001308 synthesis method Methods 0.000 claims description 2
- FEWJPZIEWOKRBE-JCYAYHJZSA-L L-tartrate(2-) Chemical compound [O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O FEWJPZIEWOKRBE-JCYAYHJZSA-L 0.000 claims 1
- NSOXQYCFHDMMGV-UHFFFAOYSA-N Tetrakis(2-hydroxypropyl)ethylenediamine Chemical compound CC(O)CN(CC(C)O)CCN(CC(C)O)CC(C)O NSOXQYCFHDMMGV-UHFFFAOYSA-N 0.000 claims 1
- 229940095064 tartrate Drugs 0.000 claims 1
- 229960001124 trientine Drugs 0.000 claims 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 abstract description 68
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 abstract description 9
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 abstract description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 abstract description 6
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 abstract description 6
- 239000013110 organic ligand Substances 0.000 abstract description 5
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 abstract description 5
- 238000004729 solvothermal method Methods 0.000 abstract description 5
- 150000001412 amines Chemical class 0.000 abstract description 2
- 230000015572 biosynthetic process Effects 0.000 abstract description 2
- 238000003786 synthesis reaction Methods 0.000 abstract description 2
- 230000002194 synthesizing effect Effects 0.000 abstract 2
- KTUQUZJOVNIKNZ-UHFFFAOYSA-N butan-1-ol;hydrate Chemical compound O.CCCCO KTUQUZJOVNIKNZ-UHFFFAOYSA-N 0.000 abstract 1
- 150000002762 monocarboxylic acid derivatives Chemical class 0.000 abstract 1
- 230000035484 reaction time Effects 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 40
- 238000003756 stirring Methods 0.000 description 38
- 239000008367 deionised water Substances 0.000 description 16
- 229910021641 deionized water Inorganic materials 0.000 description 16
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 14
- 239000002159 nanocrystal Substances 0.000 description 13
- 239000007864 aqueous solution Substances 0.000 description 12
- 238000010438 heat treatment Methods 0.000 description 12
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 12
- 239000007787 solid Substances 0.000 description 12
- 239000006228 supernatant Substances 0.000 description 12
- 239000000203 mixture Substances 0.000 description 9
- 229910052727 yttrium Inorganic materials 0.000 description 9
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 8
- FUZZWVXGSFPDMH-UHFFFAOYSA-N n-hexanoic acid Natural products CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 8
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 6
- 239000005711 Benzoic acid Substances 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 6
- 235000004279 alanine Nutrition 0.000 description 6
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 6
- 235000010233 benzoic acid Nutrition 0.000 description 6
- GHVNFZFCNZKVNT-UHFFFAOYSA-N decanoic acid Chemical compound CCCCCCCCCC(O)=O GHVNFZFCNZKVNT-UHFFFAOYSA-N 0.000 description 6
- 239000001630 malic acid Substances 0.000 description 6
- 235000011090 malic acid Nutrition 0.000 description 6
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 6
- 229960004889 salicylic acid Drugs 0.000 description 6
- 229920006395 saturated elastomer Polymers 0.000 description 6
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 239000011975 tartaric acid Substances 0.000 description 5
- 235000002906 tartaric acid Nutrition 0.000 description 5
- 230000007704 transition Effects 0.000 description 5
- WWZKQHOCKIZLMA-UHFFFAOYSA-N Caprylic acid Natural products CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 4
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 4
- 229910002651 NO3 Inorganic materials 0.000 description 4
- GONOPSZTUGRENK-UHFFFAOYSA-N benzyl(trichloro)silane Chemical compound Cl[Si](Cl)(Cl)CC1=CC=CC=C1 GONOPSZTUGRENK-UHFFFAOYSA-N 0.000 description 4
- 125000001424 substituent group Chemical group 0.000 description 4
- TWJNQYPJQDRXPH-UHFFFAOYSA-N 2-cyanobenzohydrazide Chemical compound NNC(=O)C1=CC=CC=C1C#N TWJNQYPJQDRXPH-UHFFFAOYSA-N 0.000 description 3
- 239000005632 Capric acid (CAS 334-48-5) Substances 0.000 description 3
- TUNFSRHWOTWDNC-UHFFFAOYSA-N Myristic acid Natural products CCCCCCCCCCCCCC(O)=O TUNFSRHWOTWDNC-UHFFFAOYSA-N 0.000 description 3
- 235000021360 Myristic acid Nutrition 0.000 description 3
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 3
- 239000001361 adipic acid Substances 0.000 description 3
- 235000011037 adipic acid Nutrition 0.000 description 3
- 229910001515 alkali metal fluoride Inorganic materials 0.000 description 3
- 150000001735 carboxylic acids Chemical class 0.000 description 3
- 229960001484 edetic acid Drugs 0.000 description 3
- 238000002189 fluorescence spectrum Methods 0.000 description 3
- 239000002105 nanoparticle Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- LEZZWFJJVMOWHL-UHFFFAOYSA-N C(CC)(=O)O.C(CCC=C)(=O)O Chemical compound C(CC)(=O)O.C(CCC=C)(=O)O LEZZWFJJVMOWHL-UHFFFAOYSA-N 0.000 description 2
- FVLDEFRINCAHQN-UHFFFAOYSA-N C(CN(CC(=O)O)CC(=O)O)N(CC(=O)O)CC(=O)O.C(C=1C(C(=O)O)=CC=CC1)(=O)O Chemical compound C(CN(CC(=O)O)CC(=O)O)N(CC(=O)O)CC(=O)O.C(C=1C(C(=O)O)=CC=CC1)(=O)O FVLDEFRINCAHQN-UHFFFAOYSA-N 0.000 description 2
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 2
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 239000012190 activator Substances 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- FPZCPJUADKTAKI-UHFFFAOYSA-N butan-1-amine;ethane-1,2-diamine Chemical compound NCCN.CCCCN FPZCPJUADKTAKI-UHFFFAOYSA-N 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- 239000011258 core-shell material Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 235000021313 oleic acid Nutrition 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000001509 sodium citrate Substances 0.000 description 2
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 2
- QGLWBTPVKHMVHM-KTKRTIGZSA-N (z)-octadec-9-en-1-amine Chemical compound CCCCCCCC\C=C/CCCCCCCCN QGLWBTPVKHMVHM-KTKRTIGZSA-N 0.000 description 1
- GDFAOVXKHJXLEI-UHFFFAOYSA-N CC(C(O)=O)NC Chemical compound CC(C(O)=O)NC GDFAOVXKHJXLEI-UHFFFAOYSA-N 0.000 description 1
- GYCKQBWUSACYIF-UHFFFAOYSA-N CCOC(c(cccc1)c1O)=O Chemical compound CCOC(c(cccc1)c1O)=O GYCKQBWUSACYIF-UHFFFAOYSA-N 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- 125000002009 alkene group Chemical group 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000090 biomarker Substances 0.000 description 1
- HXDRSFFFXJISME-UHFFFAOYSA-N butanedioic acid;2,3-dihydroxybutanedioic acid Chemical compound OC(=O)CCC(O)=O.OC(=O)C(O)C(O)C(O)=O HXDRSFFFXJISME-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- KIDBBTHHMJOMAU-UHFFFAOYSA-N propan-1-ol;hydrate Chemical compound O.CCCO KIDBBTHHMJOMAU-UHFFFAOYSA-N 0.000 description 1
- XTUSEBKMEQERQV-UHFFFAOYSA-N propan-2-ol;hydrate Chemical compound O.CC(C)O XTUSEBKMEQERQV-UHFFFAOYSA-N 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 238000009774 resonance method Methods 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- 235000011044 succinic acid Nutrition 0.000 description 1
- RMZAYIKUYWXQPB-UHFFFAOYSA-N trioctylphosphane Chemical compound CCCCCCCCP(CCCCCCCC)CCCCCCCC RMZAYIKUYWXQPB-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Luminescent Compositions (AREA)
Abstract
本发明提供了一种通过改变配体的使用提高稀土掺杂上转换纳米发光材料发光效率的方法。该方法采用水热-溶剂热的方法合成,有机物配体是单羧酸类、二羧酸或多羧酸类、胺类等有机化合物,稀土离子与配体的摩尔比为2:1~1:100,NaOH与配体的摩尔比为0:1~1:1,采用水/乙醇、水/正丙醇、水/异丙醇、水/正丁醇、水/丙酮或水/乙二醇体系为溶剂,温度范围180~240度,反应时间2~24h,F-/Re值为4~12。本发明主要解决了合成上转换纳米发光材料多类配体的选择,稀土掺杂上转换发光效率的提高和水溶性上转换纳米发光材料的合成等问题。The present invention provides a method for improving the luminous efficiency of rare earth doped up-conversion nano luminescent materials by changing the use of ligands. The method adopts a hydrothermal-solvothermal method for synthesis, the organic ligand is an organic compound such as monocarboxylic acid, dicarboxylic acid or polycarboxylic acid, amine, etc., the molar ratio of rare earth ion to ligand is 2:1-1:100, the molar ratio of NaOH to ligand is 0:1-1:1, water/ethanol, water/n-propanol, water/isopropanol, water/n-butanol, water/acetone or water/ethylene glycol system is used as solvent, the temperature range is 180-240 degrees, the reaction time is 2-24 hours, and the F-/Re value is 4-12. The present invention mainly solves the problems of selecting multiple types of ligands for synthesizing up-conversion nano luminescent materials, improving the luminous efficiency of rare earth doped up-conversion and synthesizing water-soluble up-conversion nano luminescent materials.
Description
技术领域technical field
本发明涉及一种高强度稀土掺杂上转换发光纳米材料及其制备方法,属于纳米材料制备领域。The invention relates to a high-intensity rare earth doped up-conversion luminescent nano material and a preparation method thereof, belonging to the field of nano material preparation.
背景技术Background technique
稀土掺杂上转换发光纳米材料由于其独特的发光特性,如:丰富的光学性质,窄的发射峰,发光色纯度高,荧光寿命长,近红外激发等,使其在激光显示器、光数据存储、生物标记、太阳能电池等方面都具有重大的潜在应用。上转换发光材料的制备方法主要分为两种:高温油相法和水热-溶剂热法,高温油相法通过使用高沸点的溶剂在高温下反应合成纳米发光材料,因其高温条件使得能选择的配体种类较少;而水热-溶剂热法则采用高温高压的方法得到高质量的纳米颗粒,该合成方法因高压条件使得反应温度相对较温和,配体的选择范围在很大程度上扩宽,一些短碳链的较低沸点的化合物也能应用于合成上转换纳米发光材料。Rare earth-doped upconversion luminescent nanomaterials have unique luminescent properties, such as: rich optical properties, narrow emission peaks, high luminous color purity, long fluorescence lifetime, near-infrared excitation, etc., making them ideal for laser displays, optical data storage, etc. , biomarkers, solar cells, etc. have significant potential applications. The preparation methods of up-conversion luminescent materials are mainly divided into two types: high-temperature oil-phase method and hydrothermal-solvothermal method. There are fewer ligands to choose; while the hydrothermal-solvothermal method uses high temperature and high pressure methods to obtain high-quality nanoparticles. This synthesis method makes the reaction temperature relatively mild due to high pressure conditions, and the range of ligand selection is largely By extension, some short carbon chain compounds with lower boiling points can also be used to synthesize up-conversion nano-luminescent materials.
上转换发光材料的发光效率一直是阻碍其工业应用的主要因素,如何提高上转换发光纳米材料的发光效率一直受到很大的关注。核壳结构纳米材料、等离子共振法、金属掺杂等方法能一定程度上提高上转换纳米材料的发光效率,但这些都存在制备复制,价格昂贵等缺点。The luminous efficiency of up-conversion luminescent materials has always been the main factor hindering their industrial application, and how to improve the luminous efficiency of up-conversion luminescent nanomaterials has been receiving great attention. Core-shell structure nanomaterials, plasmon resonance method, metal doping and other methods can improve the luminous efficiency of upconversion nanomaterials to a certain extent, but these have the disadvantages of preparation replication and high price.
随着上转换发光纳米材料在生物及医药领域的应用发展,具有水溶性的上转换纳米发光材料被急需利用。虽然通过配体置换或聚合物包覆的方法能得到具有水溶性的上转换发光纳米材料,但这些方法不仅操作复杂、效率较低且成本较高。With the application and development of upconversion luminescent nanomaterials in the fields of biology and medicine, water-soluble upconversion nanoluminescent materials are urgently needed to be utilized. Although water-soluble upconversion luminescent nanomaterials can be obtained by ligand replacement or polymer coating, these methods are not only complicated to operate, but also have low efficiency and high cost.
发明内容Contents of the invention
本发明的目的是为了解决较少配体选择性的上转换纳米发光材料的制备及通过选择不同的配体合成出高的发光强度、颜色及水溶性的上转换纳米材发光料。The purpose of the present invention is to solve the preparation of up-conversion nano-luminescent materials with less ligand selectivity and to synthesize high-luminous-intensity, color and water-soluble up-conversion nano-luminescent materials by selecting different ligands.
本发明的技术方案是改变配体的碳链长度、配位官能团的种类和数量,通过减少配体通过伸缩振动引起的激活离子的非辐射跃迁,提高上转换发光纳米材料的发光效率。The technical solution of the present invention is to change the carbon chain length of the ligand, the type and quantity of the coordination functional group, and improve the luminous efficiency of the up-conversion luminescent nanomaterial by reducing the non-radiative transition of the activated ion caused by the stretching vibration of the ligand.
一种高强度稀土掺杂上转换发光纳米材料,所述材料是配体L通过配位化学键与稀土掺杂上转换发光纳米材料的稀土离子结合形成的纳米材料,所述稀土掺杂上转换发光纳米材料具有如下结构:A high-strength rare-earth-doped up-conversion luminescent nanomaterial, the material is a nano-material formed by combining a ligand L with rare earth ions of a rare-earth-doped up-conversion luminescent nanomaterial through a coordination chemical bond, and the rare-earth doped up-conversion luminescence Nanomaterials have the following structure:
MNFy:Yb3+,ReMNF y :Yb 3+ ,Re
其中,M选自Na+、Li+、K+、Mg2+、Ca2+和Ba2+中的一种;N为Y3+、Gd3+或Lu3+;y为4或5;Re为Er3+、Ho3+或Tm3+;Wherein, M is selected from one of Na + , Li + , K + , Mg 2+ , Ca 2+ and Ba 2+ ; N is Y 3+ , Gd 3+ or Lu 3+ ; y is 4 or 5; Re is Er 3+ , Ho 3+ or Tm 3+ ;
所述配体L为以C1~C18碳链为骨架的有机化合物,所述有机化合物含有1~6个取代基,所述取代基选自羧基、羟基和氨基中的至少一种。The ligand L is an organic compound with a C1-C18 carbon chain as a skeleton, and the organic compound contains 1-6 substituents, and the substituents are selected from at least one of carboxyl, hydroxyl and amino.
本发明所述MNFy:Yb3+,Re化合物指MNFy型化合物N位掺杂Yb3+和Re离子的化合物,当M位离子为一价离子时y为4,二价离子时y为5。此类化合物中M、N、Re离子的选择、Yb3+和Re离子的掺杂量的确定为本领域技术的现有技术,本领域熟练技术人员可以通过对发光材料发光强度等的要求确定。The MNF y :Yb 3+ , Re compound in the present invention refers to a compound in which Yb 3+ and Re ions are doped at the N position of the MNF y- type compound. When the M-position ion is a monovalent ion, y is 4, and when a divalent ion, y is 5. The selection of M, N, Re ions in this type of compound, and the determination of the doping amount of Yb 3+ and Re ions are prior art in the art, and those skilled in the art can determine the luminous intensity according to the requirements of the luminescent material. .
本发明优选所述MNFy:Yb3+,Re化合物为NaYF4:Yb,Er、NaYF4:Yb,Tm、NaYF4:Yb,Ho、LiYF4:Yb,Er、KYF4:Yb,Er、MgYF5:Yb,Er、CaYF5:Yb,Er、BaYF5:Yb,Er、NaGdF4:Yb,Er、或NaLuF4:Yb,Er,进一步优选为NaYF4:Yb,Er、NaYF4:Yb,Tm或NaGdF4:Yb,Er。In the present invention, the preferred MNF y :Yb 3+ , Re compounds are NaYF 4 :Yb,Er, NaYF 4 :Yb,Tm, NaYF 4 :Yb,Ho, LiYF 4 :Yb,Er, KYF 4 :Yb,Er, MgYF 5 : Yb, Er, CaYF 5 : Yb, Er, BaYF 5 : Yb, Er, NaGdF 4 : Yb, Er, or NaLuF 4 : Yb, Er, more preferably NaYF 4 : Yb, Er, NaYF 4 : Yb , Tm or NaGdF 4 :Yb, Er.
本发明优选所述MNFy:Yb3+,Re化合物中Yb3+与Re的摩尔比为10:1,进一步优选Yb3+和Re离子的摩尔掺杂量为20%和2%。In the present invention, the preferred MNF y : Yb 3+ , the molar ratio of Yb 3+ and Re in the Re compound is 10:1, more preferably the molar doping amounts of Yb 3+ and Re ions are 20% and 2%.
本发明所述C1~C18碳链包括饱和烷基、不饱和烷基(烯烃基)、芳基等。本文中使用的术语“烷基”包括直链烷基和支链烷基。如提及单个烷基如“丙基”,则只特指直链烷基,如提及单个支链烷基如“异丙基”,则只特指支链烷基。The C1-C18 carbon chains in the present invention include saturated alkyl groups, unsaturated alkyl groups (alkene groups), aryl groups and the like. The term "alkyl" as used herein includes straight chain alkyl groups and branched chain alkyl groups. If a single alkyl group such as "propyl" is mentioned, it only refers to a straight chain alkyl group, and if a single branched chain alkyl group such as "isopropyl" is mentioned, it only refers to a branched chain alkyl group.
本发明所述高强度稀土掺杂上转换发光纳米材料优选所述配体L为具有通式I的有机化合物:The high-strength rare earth doped up-conversion luminescent nanomaterials of the present invention preferably said ligand L is an organic compound with general formula I:
式中,R1为C1~C17饱和或不饱和烷基;羟基或氨基取代的C1~C17饱和烷基;羟基或氨基取代的C1~C17不饱和烷基、芳基。In the formula, R 1 is C 1 -C 17 saturated or unsaturated alkyl; C 1 -C 17 saturated alkyl substituted by hydroxyl or amino; C 1 -C 17 unsaturated alkyl or aryl substituted by hydroxyl or amino.
进一步优选为丙酸、4-戊烯酸、顺丁烯酸、α-羟基丁酸、丙氨酸、油酸、苯甲酸或水杨酸,更进一步优选为丙酸、4-戊烯酸、α-羟基丁酸、丙氨酸、苯甲酸或水杨酸。More preferably propionic acid, 4-pentenoic acid, maleic acid, α-hydroxybutyric acid, alanine, oleic acid, benzoic acid or salicylic acid, still more preferably propionic acid, 4-pentenoic acid, Alpha-Hydroxybutyrate, Alanine, Benzoic Acid, or Salicylic Acid.
丙酸 4-戊烯酸 α-羟基丁酸Propionic Acid 4-Pentenoic Acid α-Hydroxybutyric Acid
丙氨酸 苯甲酸 水杨酸Alanine Benzoic Acid Salicylic Acid
本发明所述高强度稀土掺杂上转换发光纳米材料优选所述配体L为具有通式II的有机化合物:The high-intensity rare earth doped up-conversion luminescent nanomaterials of the present invention preferably said ligand L is an organic compound having the general formula II:
式中:R2为C1~C16饱和或不饱和烷基;羟基、氨基或羧基取代的C1~C16饱和烷基或不饱和烷基;羧基取代的C1~C16不饱和烷基、苯基、芳基。In the formula: R 2 is C 1 ~ C 16 saturated or unsaturated alkyl; C 1 ~ C 16 saturated or unsaturated alkyl substituted by hydroxyl, amino or carboxyl; C 1 ~ C 16 unsaturated alkyl substituted by carboxy base, phenyl, aryl.
进一步优选为丁二酸、苹果酸、酒石酸、邻苯二甲酸、柠檬酸或乙二胺四乙酸。More preferably, it is succinic acid, malic acid, tartaric acid, phthalic acid, citric acid or ethylenediaminetetraacetic acid.
丁二酸 苹果酸 酒石酸Succinic Acid Malic Acid Tartaric Acid
邻苯二甲酸 乙二胺四乙酸Phthalic acid ethylenediaminetetraacetic acid
本发明所述高强度稀土掺杂上转换发光纳米材料优选所述有机配体L为丁胺、乙二胺、或三乙烯四胺。In the high-intensity rare earth-doped upconversion luminescent nanomaterial of the present invention, the organic ligand L is preferably butylamine, ethylenediamine, or triethylenetetramine.
丁胺 乙二胺Butylamine Ethylenediamine
三乙烯四胺 Triethylenetetramine
本发明的原理:Principle of the present invention:
采用水热-溶剂热法合成稀土掺杂上转换纳米发光材料,因为高压密闭环境使其反应温度相对较低,反应物料的沸点升高,从而使得可选用的配体受外界条件的限制降低,即可供选择的配体数量增多。图5为稀土掺杂上转换发光材料的发光原理,激活剂Er3+具有多个能级,不同能级对应不同波长的光,外界的能量振动会引起Er3+在不同能级的跃迁。有机配体与上转换纳米发光材料之间通过配位络合键结合在一起,含有不同碳链长度和基团的配体因其自身的伸缩振动能,如:CH的2800-3000cm-1伸缩振动能、OH的3300-3400cm-1伸缩振动能、NH的3300-3500cm-1的伸缩振动能,与Er3+的4S3/2-4F9/2和4F9/2-4I11/2能级之间的能量差相匹配,影响上转换纳米发光材料中激活剂Er3+的非辐射跃迁,从而造成上转换纳米发光材料的发光强度和发光颜色的改变。长碳链的配体因为含有CH键的个数增加,使得配体在2800-3000cm-1处伸缩振动能增强,加大了Er3+在4S3/2-4F9/2能级之间的非辐射跃迁,从而进一步降低了上转换纳米发光材料的发光效率。而-OH、-NH2或-COOH基团的增加,增强了配体在3300-3500cm-1的伸缩振动能,加大了4F9/2-4I11/2能级之间的非辐射跃迁,进而降低了上转换纳米发光材料的发光效率。不同碳链长度配体或含有不同个数的-OH、-NH2、-COOH基团的配体水溶性不同,而有机配体以配位键的形式络合在上转换纳米发光材料的表面,从而使得配体与上转换纳米发光材料的结合产物拥有不同程度的水溶性。Rare earth-doped upconversion nano-luminescent materials are synthesized by hydrothermal-solvothermal method, because the high-pressure airtight environment makes the reaction temperature relatively low, and the boiling point of the reaction material increases, so that the available ligands are limited by external conditions. That is, the number of ligands to choose from increases. Figure 5 shows the luminescence principle of rare earth doped up-conversion luminescent materials. The activator Er3+ has multiple energy levels, and different energy levels correspond to light of different wavelengths. External energy vibrations will cause Er3 + to transition at different energy levels. Organic ligands and up-conversion nano-luminescent materials are combined through coordination and complex bonds. Ligands containing different carbon chain lengths and groups have their own stretching vibration energy, such as: 2800-3000cm -1 stretching of CH Vibration energy, 3300-3400cm -1 stretching vibration energy of OH, 3300-3500cm -1 stretching vibration energy of NH, 4 S 3/2 - 4 F 9/2 and 4 F 9/2 - 4 with Er 3+ The energy difference between the I 11/2 energy levels is matched, which affects the non-radiative transition of the activator Er3+ in the up-conversion nano-luminescent material, resulting in the change of the luminous intensity and luminous color of the up-conversion nano-luminescent material. Due to the increase in the number of CH bonds in the ligands with long carbon chains, the stretching vibration energy of the ligands at 2800-3000cm -1 is enhanced, which increases the energy level of Er 3+ in 4 S 3/2 - 4 F 9/2 The non-radiative transition between them further reduces the luminous efficiency of upconversion nanoluminescent materials. The addition of -OH, -NH 2 or -COOH groups enhances the stretching vibration energy of the ligand at 3300-3500cm -1 and increases the non-separation between 4 F 9/2 - 4 I 11/2 energy levels. The radiative transition reduces the luminous efficiency of upconversion nanoluminescent materials. Ligands with different carbon chain lengths or ligands containing different numbers of -OH, -NH 2 , -COOH groups have different water solubility, while organic ligands are complexed on the surface of upconversion nanoluminescent materials in the form of coordination bonds , so that the combination products of the ligand and the up-conversion nano-luminescent material have different degrees of water solubility.
本发明的另一目的是提供上述高强度稀土掺杂上转换发光纳米材料的制备方法。Another object of the present invention is to provide a preparation method of the above-mentioned high-intensity rare earth-doped up-conversion luminescent nanomaterial.
一种高强度稀土掺杂上转换发光纳米材料的制备方法,所述方法为水热-有机溶剂热合成法,按目标MNFy:Yb3+,Re化合物将稀土离子源化合物与配体L化合物溶于反应溶剂中,其中稀土元素离子与配体化合物的摩尔比为2:1~1:100,加入NaOH,NaOH与配体L化合物的摩尔比为0:1~1:1,配制溶液A;将碱金属氟化物溶于反应溶剂中,形成溶液B;向溶液A中加入溶液B,氟离子与稀土离子的摩尔比为4~12,混合均匀后移至反应釜中于180~240℃,反应2~24h;A preparation method of a high-intensity rare earth-doped upconversion luminescent nanomaterial, the method is a hydrothermal-organic solvothermal synthesis method, and a rare earth ion source compound and a ligand L compound are prepared according to the target MNF y : Yb 3+ , Re compound Soluble in the reaction solvent, wherein the molar ratio of the rare earth element ion to the ligand compound is 2:1~1:100, add NaOH, the molar ratio of NaOH to the ligand L compound is 0:1~1:1, and prepare solution A ; Dissolve the alkali metal fluoride in the reaction solvent to form solution B; add solution B to solution A, the molar ratio of fluoride ions to rare earth ions is 4-12, mix well and move to the reaction kettle at 180-240°C , reaction 2~24h;
其中,反应溶剂为水-乙醇、水-甲醇、水-异丙醇、水-正丙醇、水-正丁醇或水-乙二醇溶剂,其中水与有机溶剂的体积比为2:1~1:5,进一步优选为水-乙醇按水与乙醇的体积比为1:1形成的反应溶剂。Wherein, the reaction solvent is water-ethanol, water-methanol, water-isopropanol, water-n-propanol, water-n-butanol or water-ethylene glycol solvent, wherein the volume ratio of water to organic solvent is 2:1 ~1:5, more preferably water-ethanol, the reaction solvent formed by the volume ratio of water and ethanol is 1:1.
其中,M选自Na+、Li+、K+、Mg2+、Ca2+和Ba2+中的一种;N为Y3+、Gd3+或Lu3+;y为4或5;Re为Er3+、Ho3+或Tm3+;Wherein, M is selected from one of Na + , Li + , K + , Mg 2+ , Ca 2+ and Ba 2+ ; N is Y 3+ , Gd 3+ or Lu 3+ ; y is 4 or 5; Re is Er 3+ , Ho 3+ or Tm 3+ ;
所述配体L为以C1~C18碳链为骨架的有机化合物,所述有机化合物含有1~6个取代基,所述取代基选自羧基、羟基和氨基中的至少一种。The ligand L is an organic compound with a C1-C18 carbon chain as a skeleton, and the organic compound contains 1-6 substituents, and the substituents are selected from at least one of carboxyl, hydroxyl and amino.
上述方法中所述稀土离子源化合物优选为稀土离子硝酸盐,所述稀土离子为Y3+、Gd3+、Lu3+、Er3+、Ho3+或Tm3+;碱金属氟化物为NaF、KF。The rare earth ion source compound in the above method is preferably a rare earth ion nitrate, and the rare earth ion is Y 3+ , Gd 3+ , Lu 3+ , Er 3+ , Ho 3+ or Tm 3+ ; the alkali metal fluoride is NaF, KF.
本发明所述高强度稀土掺杂上转换发光纳米材料的制备方法优选所述溶液A中硝酸稀土盐:去离子水:乙醇比为1:20:20(mmol:mL:mL);溶液B中金属氟化物:去离子水:乙醇比为4~12:10:10(mmol:mL:mL)。The preparation method of the high-strength rare earth-doped up-conversion luminescent nanomaterial in the present invention preferably has a rare earth nitrate: deionized water: ethanol ratio of 1:20:20 (mmol:mL:mL) in solution A; The metal fluoride: deionized water: ethanol ratio is 4-12:10:10 (mmol:mL:mL).
上述方法进一步包括后处理的步骤:将反应釜冷却后,除去上层清液,收集固体,用乙醇和水的混合液体洗涤两次,离心,干燥。The above method further includes the step of aftertreatment: after cooling the reactor, remove the supernatant, collect the solid, wash twice with the mixed liquid of ethanol and water, centrifuge and dry.
本发明所述高强度稀土掺杂上转换发光纳米材料的制备方法一个优选的技术方案为:A preferred technical solution of the preparation method of the high-strength rare earth-doped up-conversion luminescent nanomaterial in the present invention is as follows:
取0.4M稀土离子硝酸盐水溶液于烧杯中,按体积比稀土离子硝酸盐水溶液:去离子水:有机溶剂为2.5:2.5~30:11~40,加入去离子水和有机溶剂乙醇,再加入配体化合物和NaOH,其中,稀土元素离子与配体化合物的摩尔比为2:1~1:100,NaOH与配体化合物的摩尔比为0:1~1:1,搅拌,形成溶液A;Take 0.4M rare earth ion nitrate aqueous solution in a beaker, the volume ratio of rare earth ion nitrate aqueous solution: deionized water: organic solvent is 2.5:2.5~30:11~40, add deionized water and organic solvent ethanol, and then add Ligand compound and NaOH, wherein, the molar ratio of rare earth element ion and ligand compound is 2:1~1:100, the molar ratio of NaOH and ligand compound is 0:1~1:1, stir, form solution A;
按碱金属氟化物:去离子水:有机溶剂比为168~504:10:10(mg:mL:mL)将NaF溶解在去离子水和乙醇混合液中,搅拌,形成溶液B;According to the ratio of alkali metal fluoride: deionized water: organic solvent is 168~504:10:10 (mg:mL:mL), dissolve NaF in the mixture of deionized water and ethanol, and stir to form solution B;
在搅拌下,向A中逐滴滴加B溶液,氟离子与稀土离子的摩尔比为4~12,滴加完后,超声分散,转移至水热釜中加热,加热温度180~240℃,反应2~24h。Under stirring, add solution B dropwise to A, the molar ratio of fluoride ions to rare earth ions is 4-12, after the dropwise addition, ultrasonically disperse, transfer to a hydrothermal kettle for heating, the heating temperature is 180-240°C, Reaction 2 ~ 24h.
将反应釜冷却后,除去上层清液,收集固体,用乙醇和水的混合液体洗涤两次,离心,干燥。After the reactor was cooled, the supernatant was removed, and the solid was collected, washed twice with a mixed liquid of ethanol and water, centrifuged, and dried.
本发明所述高强度稀土掺杂上转换发光纳米材料的制备方法中优选所述配体L为具有通式I的有机化合物:In the preparation method of the high-intensity rare earth doped up-conversion luminescent nanomaterial of the present invention, the ligand L is preferably an organic compound having the general formula I:
式中,R1为C1~C17饱和或不饱和烷基;羟基或氨基取代的C1~C17饱和烷基;羟基或氨基取代的C1~C17不饱和烷基、芳基。In the formula, R 1 is C 1 -C 17 saturated or unsaturated alkyl; C 1 -C 17 saturated alkyl substituted by hydroxyl or amino; C 1 -C 17 unsaturated alkyl or aryl substituted by hydroxyl or amino.
进一步优选为丙酸、4-戊烯酸、顺丁烯酸、α-羟基丁酸、丙氨酸、油酸、苯甲酸或水杨酸,更进一步优选为丙酸、4-戊烯酸、α-羟基丁酸、丙氨酸、苯甲酸或水杨酸。More preferably propionic acid, 4-pentenoic acid, maleic acid, α-hydroxybutyric acid, alanine, oleic acid, benzoic acid or salicylic acid, still more preferably propionic acid, 4-pentenoic acid, Alpha-Hydroxybutyrate, Alanine, Benzoic Acid, or Salicylic Acid.
丙酸 4-戊烯酸 α-羟基丁酸Propionic Acid 4-Pentenoic Acid α-Hydroxybutyric Acid
丙氨酸 苯甲酸 水杨酸Alanine Benzoic Acid Salicylic Acid
本发明所述高强度稀土掺杂上转换发光纳米材料的制备方法中优选所述配体L为具有通式II的有机化合物:In the preparation method of the high-intensity rare earth-doped upconversion luminescent nanomaterial of the present invention, the ligand L is preferably an organic compound having the general formula II:
式中:R2为C1~C16饱和或不饱和烷基;羟基、氨基或羧基取代的C1~C16饱和烷基或不饱和烷基;羧基取代的C1~C16不饱和烷基、苯基、芳基。In the formula: R 2 is C 1 ~ C 16 saturated or unsaturated alkyl; C 1 ~ C 16 saturated or unsaturated alkyl substituted by hydroxyl, amino or carboxyl; C 1 ~ C 16 unsaturated alkyl substituted by carboxy base, phenyl, aryl.
进一步优选为丁二酸、苹果酸、酒石酸、邻苯二甲酸、柠檬酸或乙二胺四乙酸。More preferably, it is succinic acid, malic acid, tartaric acid, phthalic acid, citric acid or ethylenediaminetetraacetic acid.
丁二酸 苹果酸 酒石酸Succinic Acid Tartaric Acid Malic Acid
邻苯二甲酸 乙二胺四乙酸Phthalic acid ethylenediaminetetraacetic acid
本发明所述高强度稀土掺杂上转换发光纳米材料的制备方法中优选所述有机配体L为丁胺、乙二胺、或三乙烯四胺。In the preparation method of the high-intensity rare earth-doped upconversion luminescent nanomaterial of the present invention, the organic ligand L is preferably butylamine, ethylenediamine, or triethylenetetramine.
丁胺 乙二胺Butylamine Ethylenediamine
三乙烯四胺 Triethylenetetramine
本发明的有益效果为:本发明解决了配体选择性少、稀土掺杂上转换纳米发光材料的低发光效率等缺点,且可以直接合成具有不同水溶性的上转换纳米发光材料。合成稀土掺杂上转换纳米发光材料中,已报道的配体数量很有限,如:油酸、柠檬酸钠、乙二胺四乙酸二钠、油胺、三辛基膦等,而本发明则可以提供多类配体可供选择。在提高上转换纳米发光材料发光效率的方法中,一般采用核壳结构、等离子共振、金属离子掺杂等方法,但这些方法不仅制备复杂且价格昂贵,而通过选用不同配体则可以直接合成高效率的上转换纳米发光材料。另外,通过选择不同类型的配体,如带有不同个数或类型的亲水基团,使得与配体通过配位键络合的上转换纳米发光材料具有不同程度的水溶性。The beneficial effects of the invention are: the invention solves the disadvantages of low ligand selectivity and low luminous efficiency of rare earth-doped up-conversion nano-luminescent materials, and can directly synthesize up-conversion nano-luminescent materials with different water solubility. In the synthesis of rare earth-doped up-conversion nano-luminescent materials, the number of ligands reported is very limited, such as: oleic acid, sodium citrate, disodium edetate, oleylamine, trioctylphosphine, etc., and the present invention A variety of ligands are available for selection. In the methods of improving the luminous efficiency of upconversion nanoluminescent materials, methods such as core-shell structure, plasmon resonance, and metal ion doping are generally used, but these methods are not only complicated and expensive to prepare, but can be directly synthesized by selecting different ligands. High-efficiency upconversion nanoluminescent materials. In addition, by selecting different types of ligands, such as with different numbers or types of hydrophilic groups, the up-conversion nano-luminescent materials complexed with the ligands through coordination bonds have different degrees of water solubility.
附图说明Description of drawings
图1为实施例2~7中,以丙酸、丁酸、己酸、癸酸、十四酸和油酸为配体合成的NaYF4:Yb,Er纳米晶体的XRD图。图1显示,以不同碳链长度的羧酸为配体合成的物质XRD谱图与标准六方晶相NaYF4:Yb,Er卡片相一致,即合成的物质都为六方相的NaYF4:Yb,Er晶体。配体碳链长度的改变不会影响产品的结构和晶相。Fig. 1 is the XRD pattern of NaYF 4 :Yb, Er nanocrystals synthesized with propionic acid, butyric acid, hexanoic acid, capric acid, myristic acid and oleic acid as ligands in Examples 2-7. Figure 1 shows that the XRD spectra of substances synthesized with carboxylic acids of different carbon chain lengths as ligands are consistent with the standard hexagonal crystal phase NaYF 4 :Yb,Er cards, that is, the synthesized substances are all hexagonal phase NaYF 4 :Yb, Er crystals. The change of the carbon chain length of the ligand will not affect the structure and crystal phase of the product.
图2为实施例2~7中,以丙酸、丁酸、己酸、癸酸、十四酸和油酸为配体合成的NaYF4:Yb,Er纳米晶体的上转换荧光光谱图。图2显示,随着配体碳链长度的增长,NaYF4:Yb,Er纳米晶体的发光强度逐渐减弱,而丙酸为配体合成的NaYF4:Yb,Er纳米晶体发光强度弱于丁酸合成的NaYF4:Yb,Er纳米晶体则主要是因为配体粒径减小的原因。配体碳链越长,合成的NaYF4:Yb,Er纳米晶体发光强度越弱。Fig. 2 is an upconversion fluorescence spectrum diagram of NaYF 4 :Yb, Er nanocrystals synthesized with propionic acid, butyric acid, hexanoic acid, capric acid, myristic acid and oleic acid as ligands in Examples 2-7. Figure 2 shows that with the increase of the carbon chain length of the ligand, the luminescence intensity of NaYF 4 : Yb, Er nanocrystals gradually weakens, while the luminescence intensity of NaYF 4 : Yb, Er nanocrystals synthesized with propionic acid as a ligand is weaker than that of butyric acid The synthesized NaYF 4 :Yb,Er nanocrystals are mainly due to the reduction of ligand particle size. The longer the carbon chain of the ligand, the weaker the luminescence intensity of the synthesized NaYF 4 :Yb, Er nanocrystals.
图3为实施例13~16中,以己酸、己二酸、柠檬酸和乙二胺四乙酸为配体合成的NaYF4:Yb,Er纳米晶体上转换荧光光谱图。己酸、己二酸、柠檬酸和乙二胺四乙酸的碳链长度相差不大,但羧酸个数分别为1、2、3和4个。图3显示,随着配体中羧酸个数的增加,合成的NaYF4:Yb,Er纳米晶体发光强度逐渐减弱。Fig. 3 is an up-conversion fluorescence spectrum diagram of NaYF 4 :Yb, Er nanocrystals synthesized with hexanoic acid, adipic acid, citric acid and ethylenediaminetetraacetic acid as ligands in Examples 13-16. Caproic acid, adipic acid, citric acid and EDTA have similar carbon chain lengths, but the number of carboxylic acids is 1, 2, 3 and 4, respectively. Figure 3 shows that with the increase of the number of carboxylic acids in the ligand, the luminescence intensity of the synthesized NaYF 4 :Yb,Er nanocrystals gradually weakens.
图4为实施例17~19中,以丁胺、二乙烯三胺和三乙烯四胺为配体合成的NaYF4:Yb,Er纳米晶体上转换荧光光谱图。图4显示,随着配体中氨基个数的增加,合成的NaYF4:Yb,Er纳米晶体发光强度逐渐减弱。Fig. 4 is an upconversion fluorescence spectrum of NaYF 4 :Yb, Er nanocrystals synthesized with butylamine, diethylenetriamine and triethylenetetramine as ligands in Examples 17-19. Figure 4 shows that as the number of amino groups in the ligand increases, the luminescence intensity of the synthesized NaYF 4 :Yb,Er nanocrystals gradually decreases.
图5为稀土掺杂上转换发光材料的发光原理。Fig. 5 shows the luminescent principle of the rare earth-doped up-conversion luminescent material.
具体实施方式Detailed ways
下述非限制性实施例可以使本领域的普通技术人员更全面地理解本发明,但不以任何方式限制本发明。The following non-limiting examples can enable those skilled in the art to understand the present invention more fully, but do not limit the present invention in any way.
实施例1Example 1
取2.5mL0.4M的78%Y(NO3)3,20%Yb(NO3)3,2%Er(NO3)3水溶液于烧杯中,加16mL的去离子水和18.5mL的乙醇,再加入7ml的油酸,搅拌,形成溶液A。称取504mg的NaF溶解在10mL的水和10mL的乙醇中,搅拌,形成溶液B。A搅拌30min后,在搅拌下,向A中逐滴滴加B溶液,滴加完后,超声半小时,转移至75mL水热釜中,拧盖,放入烘箱中加热,加热温度200度,反应10h,冷却,倒去上层清液,收集下面的固体,用乙醇和水的混合液体洗涤两次,离心,干燥,得到油酸配体络合的NaYF4:Yb,Er。Take 2.5mL of 0.4M 78%Y(NO 3 ) 3 , 20%Yb(NO 3 ) 3 , 2%Er(NO 3 ) 3 aqueous solution in a beaker, add 16mL of deionized water and 18.5mL of ethanol, and then Add 7ml of oleic acid and stir to form solution A. Weigh 504 mg of NaF and dissolve it in 10 mL of water and 10 mL of ethanol, and stir to form solution B. After stirring A for 30 minutes, add solution B dropwise to A under stirring. After the dropwise addition, sonicate for half an hour, transfer to a 75mL hydrothermal kettle, screw the lid on, and heat in an oven at a heating temperature of 200 degrees. React for 10 hours, cool down, pour off the supernatant, collect the solid below, wash twice with a mixture of ethanol and water, centrifuge, and dry to obtain NaYF 4 :Yb,Er complexed with oleic acid ligand.
实施例2~7Embodiment 2-7
取2.5mL0.4M的78%Y(NO3)3,20%Yb(NO3)3,2%Er(NO3)3水溶液于烧杯中,加14mL的去离子水和16.5mL的乙醇,加入7ml的丙酸、丁酸、己酸、癸酸、十四酸或油酸和0.7g的NaOH,搅拌,形成溶液A。称取504mg的NaF溶解在10mL的水和10mL的乙醇中,搅拌,形成溶液B。A搅拌30min后,在搅拌下,向A中逐滴滴加B溶液,滴加完后,超声半小时,转移至75mL水热釜中,拧盖,放入烘箱中加热,加热温度200度,反应7h,冷却,倒去上层清液,收集下面的固体,用乙醇和水的混合液体洗涤两次,离心,干燥,得到不同碳链长度羧酸配体络合的NaYF4:Yb,Er纳米晶体。Take 2.5mL of 0.4M 78%Y(NO 3 ) 3 , 20%Yb(NO 3 ) 3 , 2%Er(NO 3 ) 3 aqueous solution in a beaker, add 14mL of deionized water and 16.5mL of ethanol, add 7ml of propionic acid, butyric acid, hexanoic acid, capric acid, myristic acid or oleic acid and 0.7g of NaOH were stirred to form solution A. Weigh 504 mg of NaF and dissolve it in 10 mL of water and 10 mL of ethanol, and stir to form solution B. After stirring A for 30 minutes, add solution B dropwise to A under stirring. After the dropwise addition, sonicate for half an hour, transfer to a 75mL hydrothermal kettle, screw the lid on, and heat in an oven at a heating temperature of 200 degrees. React for 7 hours, cool down, pour off the supernatant, collect the solid below, wash twice with a mixed liquid of ethanol and water, centrifuge, and dry to obtain NaYF 4 : Yb, Er nanoparticles complexed with carboxylic acid ligands of different carbon chain lengths crystals.
实施例8~9
取2.5mL0.4M的78%Y(NO3)3,20%Yb(NO3)3,2%Er(NO3)3水溶液于烧杯中,加17.5mL的去离子水和20mL的乙醇,加入1mmol的苯甲酸或水杨酸,形成溶液A。称取504mg的NaF溶解在10mL的水和10mL的乙醇中,搅拌,形成溶液B。A搅拌30min后,在搅拌下,向A中逐滴滴加B溶液,滴加完后,超声半小时,转移至75mL水热釜中,拧盖,放入烘箱中加热,加热温度200度,反应7h,冷却,倒去上层清液,收集下面的固体,用乙醇和水的混合液体洗涤两次,离心,干燥,得到苯甲酸或水杨酸络合的NaYF4:Yb,Er纳米晶体。Take 2.5mL of 0.4M 78%Y(NO 3 ) 3 , 20%Yb(NO 3 ) 3 , 2%Er(NO 3 ) 3 aqueous solution in a beaker, add 17.5mL of deionized water and 20mL of ethanol, add 1 mmol of benzoic acid or salicylic acid to form solution A. Weigh 504 mg of NaF and dissolve it in 10 mL of water and 10 mL of ethanol, and stir to form solution B. After stirring A for 30 minutes, add solution B dropwise to A under stirring. After the dropwise addition, sonicate for half an hour, transfer to a 75mL hydrothermal kettle, screw the lid on, and heat in an oven at a heating temperature of 200 degrees. React for 7 hours, cool down, pour off the supernatant, collect the solid below, wash twice with a mixture of ethanol and water, centrifuge, and dry to obtain NaYF 4 :Yb,Er nanocrystals complexed with benzoic acid or salicylic acid.
实施例10~12Examples 10-12
取2.5mL0.4M的78%Y(NO3)3,20%Yb(NO3)3,2%Er(NO3)3水溶液于烧杯中,加17.5mL的去离子水和20mL的乙醇,加入1mmol的丁二酸、苹果酸或酒石酸,形成溶液A。称取504mg的NaF溶解在10mL的水和10mL的乙醇中,搅拌,形成溶液B。A搅拌30min后,在搅拌下,向A中逐滴滴加B溶液,滴加完后,超声半小时,转移至75mL水热釜中,拧盖,放入烘箱中加热,加热温度200度,反应7h,冷却,倒去上层清液,收集下面的固体,用乙醇和水的混合液体洗涤两次,离心,干燥,得到丁二酸、苹果酸或酒石酸络合的NaYF4:Yb,Er纳米晶体。Take 2.5mL of 0.4M 78%Y(NO 3 ) 3 , 20%Yb(NO 3 ) 3 , 2%Er(NO 3 ) 3 aqueous solution in a beaker, add 17.5mL of deionized water and 20mL of ethanol, add 1 mmol of succinic acid, malic acid or tartaric acid to form solution A. Weigh 504 mg of NaF and dissolve it in 10 mL of water and 10 mL of ethanol, and stir to form solution B. After stirring A for 30 minutes, add solution B dropwise to A under stirring. After the dropwise addition, sonicate for half an hour, transfer to a 75mL hydrothermal kettle, screw the lid on, and heat in an oven at a heating temperature of 200 degrees. React for 7 hours, cool down, pour off the supernatant, collect the solid below, wash twice with a mixed liquid of ethanol and water, centrifuge, and dry to obtain NaYF 4 :Yb,Er nanoparticles complexed with succinic acid, malic acid or tartaric acid crystals.
实施例13~16Examples 13-16
取2.5mL0.4M的78%Y(NO3)3,20%Yb(NO3)3,2%Er(NO3)3水溶液于烧杯中,加17.5mL的去离子水和20mL的乙醇,加入1mmol的己酸、己二酸、柠檬酸钠或乙二胺四乙酸二钠,形成溶液A。称取504mg的NaF溶解在10mL的水和10mL的乙醇中,搅拌,形成溶液B。A搅拌30min后,在搅拌下,向A中逐滴滴加B溶液,滴加完后,超声半小时,转移至75mL水热釜中,拧盖,放入烘箱中加热,加热温度200度,反应7h,冷却,倒去上层清液,收集下面的固体,用乙醇和水的混合液体洗涤两次,离心,干燥,得到不同羧酸个数配体络合的NaYF4:Yb,Er纳米晶体。Take 2.5mL of 0.4M 78%Y(NO 3 ) 3 , 20%Yb(NO 3 ) 3 , 2%Er(NO 3 ) 3 aqueous solution in a beaker, add 17.5mL of deionized water and 20mL of ethanol, add 1 mmol of caproic acid, adipic acid, sodium citrate or disodium edetate to form solution A. Weigh 504 mg of NaF and dissolve it in 10 mL of water and 10 mL of ethanol, and stir to form solution B. After stirring A for 30 minutes, add solution B dropwise to A under stirring. After the dropwise addition, sonicate for half an hour, transfer to a 75mL hydrothermal kettle, screw the lid on, and heat in an oven at a heating temperature of 200 degrees. React for 7 hours, cool down, pour off the supernatant, collect the solid below, wash twice with a mixed liquid of ethanol and water, centrifuge, and dry to obtain NaYF 4 : Yb, Er nanocrystals complexed with different carboxylic acid ligands .
实施例17~19Examples 17-19
取2.5mL0.4M的78%Y(NO3)3,20%Yb(NO3)3,2%Er(NO3)3水溶液于烧杯中,加17.5mL的去离子水和20mL的乙醇,加入0.2mL的丁胺、二乙烯三胺或三乙烯四胺,形成溶液A。称取504mg的NaF溶解在10mL的水和10mL的乙醇中,搅拌,形成溶液B。A搅拌30min后,在搅拌下,向A中逐滴滴加B溶液,滴加完后,超声半小时,转移至75mL水热釜中,拧盖,放入烘箱中加热,加热温度200度,反应7h,冷却,倒去上层清液,收集下面的固体,用乙醇和水的混合液体洗涤两次,离心,干燥,得到不同胺络合的NaYF4:Yb,Er纳米晶体。Take 2.5mL of 0.4M 78%Y(NO 3 ) 3 , 20%Yb(NO 3 ) 3 , 2%Er(NO 3 ) 3 aqueous solution in a beaker, add 17.5mL of deionized water and 20mL of ethanol, add 0.2 mL of butylamine, diethylenetriamine or triethylenetetramine to form solution A. Weigh 504 mg of NaF and dissolve it in 10 mL of water and 10 mL of ethanol, and stir to form solution B. After stirring A for 30 minutes, add solution B dropwise to A under stirring. After the dropwise addition, sonicate for half an hour, transfer to a 75mL hydrothermal kettle, screw the lid on, and heat in an oven at a heating temperature of 200 degrees. React for 7 hours, cool down, pour off the supernatant, collect the solid below, wash twice with a mixture of ethanol and water, centrifuge, and dry to obtain NaYF 4 :Yb, Er nanocrystals complexed with different amines.
实施例20Example 20
取2.5mL0.4M的78%Y(NO3)3,20%Yb(NO3)3,2%Tm(NO3)3水溶液于烧杯中,加14mL的去离子水和16.5mL的乙醇,再加入7ml的油酸和0.7g的NaOH,搅拌,形成溶液A。称取504mg的NaF溶解在10mL的水和10mL的乙醇中,搅拌,形成溶液B。A搅拌30min后,在搅拌下,向A中逐滴滴加B溶液,滴加完后,超声半小时,转移至75mL水热釜中,拧盖,放入烘箱中加热,加热温度200度,反应7h,冷却,倒去上层清液,收集下面的固体,用乙醇和水的混合液体洗涤两次,离心,干燥,得到油酸配体络合的NaYF4:Yb,Tm。Take 2.5mL of 0.4M 78%Y(NO 3 ) 3 , 20%Yb(NO 3 ) 3 , 2%Tm(NO 3 ) 3 aqueous solution in a beaker, add 14mL of deionized water and 16.5mL of ethanol, and then Add 7ml of oleic acid and 0.7g of NaOH, stir to form solution A. Weigh 504 mg of NaF and dissolve it in 10 mL of water and 10 mL of ethanol, and stir to form solution B. After stirring A for 30 minutes, add solution B dropwise to A under stirring. After the dropwise addition, sonicate for half an hour, transfer to a 75mL hydrothermal kettle, screw the lid on, and heat in an oven at a heating temperature of 200 degrees. React for 7 hours, cool down, pour off the supernatant, collect the solid below, wash twice with a mixture of ethanol and water, centrifuge, and dry to obtain NaYF 4 :Yb,Tm complexed with oleic acid ligand.
实施例21Example 21
取2.5mL0.4M的78%Gd(NO3)3,20%Yb(NO3)3,2%Tm(NO3)3水溶液于烧杯中,加14mL的去离子水和16.5mL的乙醇,再加入7ml的油酸和0.7g的NaOH,搅拌,形成溶液A。称取504mg的NaF溶解在10mL的水和10mL的乙醇中,搅拌,形成溶液B。A搅拌30min后,在搅拌下,向A中逐滴滴加B溶液,滴加完后,超声半小时,转移至75mL水热釜中,拧盖,放入烘箱中加热,加热温度200度,反应7h,冷却,倒去上层清液,收集下面的固体,用乙醇和水的混合液体洗涤两次,离心,干燥,得到油酸配体络合的NaGdF4:Yb,Tm。Take 2.5mL of 0.4M 78%Gd(NO 3 ) 3 , 20%Yb(NO 3 ) 3 , 2%Tm(NO 3 ) 3 aqueous solution in a beaker, add 14mL of deionized water and 16.5mL of ethanol, and then Add 7ml of oleic acid and 0.7g of NaOH, stir to form solution A. Weigh 504 mg of NaF and dissolve it in 10 mL of water and 10 mL of ethanol, and stir to form solution B. After stirring A for 30 minutes, add solution B dropwise to A under stirring. After the dropwise addition, sonicate for half an hour, transfer to a 75mL hydrothermal kettle, screw the lid on, and heat in an oven at a heating temperature of 200 degrees. React for 7 hours, cool down, pour off the supernatant, collect the solid below, wash twice with a mixture of ethanol and water, centrifuge, and dry to obtain NaGdF 4 :Yb,Tm complexed with oleic acid ligand.
实施例22~27Examples 22-27
取2.5mL0.4M的78%Y(NO3)3,20%Yb(NO3)3,2%Er(NO3)3水溶液于烧杯中,加14mL的去离子水和16.5mL的甲醇、正丙醇、异丙醇、正丁醇、乙二醇或丙酮,再加入73-30ml的油酸和0.7g的NaOH,搅拌,形成溶液A。称取504mg的NaF溶解在10mL的水和10mL的甲醇、正丙醇、异丙醇、正丁醇或丙酮中,搅拌,形成溶液B。A搅拌30min后,在搅拌下,向A中逐滴滴加B溶液,滴加完后,超声半小时,转移至75mL水热釜中,拧盖,放入烘箱中加热,加热温度200度,反应7h,冷却,倒去上层清液,收集下面的固体,用乙醇和水的混合液体洗涤两次,离心,干燥,得到油酸配体络合的NaYF4:Yb,Er。Take 2.5mL of 0.4M 78%Y(NO 3 ) 3 , 20%Yb(NO 3 ) 3 , 2%Er(NO 3 ) 3 aqueous solution in a beaker, add 14mL of deionized water and 16.5mL of methanol, normal Propanol, isopropanol, n-butanol, ethylene glycol or acetone, then add 73-30ml of oleic acid and 0.7g of NaOH, stir to form solution A. Weigh 504 mg of NaF and dissolve in 10 mL of water and 10 mL of methanol, n-propanol, isopropanol, n-butanol or acetone, and stir to form solution B. After stirring A for 30 minutes, add solution B dropwise to A under stirring. After the dropwise addition, sonicate for half an hour, transfer to a 75mL hydrothermal kettle, screw the lid on, and heat in an oven at a heating temperature of 200 degrees. React for 7 hours, cool down, pour off the supernatant, collect the solid below, wash twice with a mixture of ethanol and water, centrifuge, and dry to obtain NaYF 4 :Yb,Er complexed with oleic acid ligand.
实施例28Example 28
取2.5mL0.4M的78%Y(NO3)3,20%Yb(NO3)3,2%Er(NO3)3水溶液于烧杯中,加1.5mL的去离子水和45mL的乙二醇,再加入7ml的油酸,搅拌,形成溶液A。称取504mg的NaF溶解在5mL的水中,搅拌,形成溶液B。A搅拌30min后,在搅拌下,向A中逐滴滴加B溶液,滴加完后,超声半小时,转移至75mL水热釜中,拧盖,放入烘箱中加热,加热温度200度,反应12h,冷却,倒去上层清液,收集下面的固体,用乙醇和水的混合液体洗涤两次,离心,干燥,得到油酸配体络合的NaYF4:Yb,Er。Take 2.5mL of 0.4M 78%Y(NO 3 ) 3 , 20%Yb(NO 3 ) 3 , 2%Er(NO 3 ) 3 aqueous solution in a beaker, add 1.5mL of deionized water and 45mL of ethylene glycol , Then add 7ml of oleic acid and stir to form solution A. Weigh 504 mg of NaF and dissolve it in 5 mL of water, stir to form solution B. After stirring A for 30 minutes, add solution B dropwise to A under stirring. After the dropwise addition, sonicate for half an hour, transfer to a 75mL hydrothermal kettle, screw the lid on, and heat in an oven at a heating temperature of 200 degrees. React for 12 hours, cool down, pour off the supernatant, collect the solid below, wash twice with a mixture of ethanol and water, centrifuge, and dry to obtain NaYF 4 :Yb,Er complexed with oleic acid ligand.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013100165940A CN103087705A (en) | 2013-01-16 | 2013-01-16 | A high-strength rare earth-doped up-conversion luminescent nanomaterial and its preparation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013100165940A CN103087705A (en) | 2013-01-16 | 2013-01-16 | A high-strength rare earth-doped up-conversion luminescent nanomaterial and its preparation method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103087705A true CN103087705A (en) | 2013-05-08 |
Family
ID=48200852
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2013100165940A Pending CN103087705A (en) | 2013-01-16 | 2013-01-16 | A high-strength rare earth-doped up-conversion luminescent nanomaterial and its preparation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103087705A (en) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103666474A (en) * | 2013-12-19 | 2014-03-26 | 中国科学院苏州纳米技术与纳米仿生研究所 | Red light/near-infrared light double-color up-conversion luminescence nanomaterial and preparation method thereof |
CN103911154A (en) * | 2014-04-09 | 2014-07-09 | 中国科学院长春应用化学研究所 | Monodisperse up-conversion luminescent micro/nano crystal and preparation method thereof |
CN104327855A (en) * | 2014-11-21 | 2015-02-04 | 武汉理工大学 | Method for preparing rare-earth doped potassium yttrium fluoride up-conversion luminescence nano material |
CN104386730A (en) * | 2014-10-15 | 2015-03-04 | 宁波大学 | A kind of Ho3+/Yb3+ double-doped α-NaYF4 laser crystal and its preparation method |
CN104591253A (en) * | 2015-02-02 | 2015-05-06 | 首都师范大学 | Microemulsion synthesis method of porous water-soluble rare earth nano material |
CN104861978A (en) * | 2015-06-05 | 2015-08-26 | 武汉理工大学 | Method for synthesizing rare-earth metal codoped yttrium potassium pentafluoride nano crystal from waste fluorescent powder |
CN104910915A (en) * | 2015-04-22 | 2015-09-16 | 南京工业大学 | Preparation method and application of hydrophilic rare earth nano material |
CN105419780A (en) * | 2014-09-15 | 2016-03-23 | 中国科学院理化技术研究所 | Synthesis method of rare earth ion doped nano crystal for organic liquid laser working medium |
CN105694888A (en) * | 2016-02-29 | 2016-06-22 | 武汉理工大学 | A kind of Mg2+ doped NaREF4 up-conversion fluorescent material and preparation method thereof |
CN105753891A (en) * | 2016-03-23 | 2016-07-13 | 浙江大学 | Rare earth organic framework material for fluorescence detection of trace water and preparation method of rare earth organic framework material |
CN106010538A (en) * | 2016-06-01 | 2016-10-12 | 中国计量大学 | A Method for Suppressing the Concentration Quenching Effect in Yb/Er:NaGdF4 Upconversion Luminescent Nanocrystals |
CN106995701A (en) * | 2017-05-04 | 2017-08-01 | 湖北大学 | A kind of preparation method of rear-earth-doped up-conversion nanoparticles |
CN107286928A (en) * | 2017-05-26 | 2017-10-24 | 安徽师范大学 | The detection method and application of up-conversion luminescence nanomaterial of citrate modification and preparation method thereof, hydrogen peroxide or uric acid |
CN108034424A (en) * | 2017-12-05 | 2018-05-15 | 湖州师范学院 | A kind of overdelicate optical temperature sensing material and preparation method thereof |
CN109735335B (en) * | 2018-12-25 | 2020-12-11 | 北京化工大学 | Synthesis method of "BYT tracer" and its application |
CN112683985A (en) * | 2020-12-28 | 2021-04-20 | 中国科学院苏州生物医学工程技术研究所 | Metal label based on rare earth doped nano metal organic framework material |
CN109705767B (en) * | 2018-12-29 | 2021-06-04 | 苏州度辰新材料有限公司 | Structural white packaging adhesive film for solar cell module |
CN113292988A (en) * | 2021-05-27 | 2021-08-24 | 深圳先进技术研究院 | Rare earth core-shell nano material and preparation method thereof |
CN114181700A (en) * | 2021-12-14 | 2022-03-15 | 广西经正涂料有限公司 | Organic-inorganic hybrid fluorine titanium potassium red-light fluorescent powder and preparation method thereof |
CN114835910A (en) * | 2022-03-31 | 2022-08-02 | 许昌学院 | Nd-based metal organic framework Nd-MOF material and preparation method thereof |
CN115274901A (en) * | 2022-07-18 | 2022-11-01 | 江苏中来新材科技有限公司 | Up-conversion photovoltaic backboard and double-sided photovoltaic module |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009157879A1 (en) * | 2008-06-26 | 2009-12-30 | National University Of Singapore | A photovoltaic apparatus |
CN102382654A (en) * | 2011-09-15 | 2012-03-21 | 上海大学 | Preparation method of rare earth-doped NaYF4 nanocrystals for up-conversion fluorescent material |
CN102030356B (en) * | 2010-10-26 | 2012-06-06 | 北京化工大学 | Method for preparing polychromatic luminous nanocrystalline of monodisperse NaYF4 |
-
2013
- 2013-01-16 CN CN2013100165940A patent/CN103087705A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009157879A1 (en) * | 2008-06-26 | 2009-12-30 | National University Of Singapore | A photovoltaic apparatus |
CN102030356B (en) * | 2010-10-26 | 2012-06-06 | 北京化工大学 | Method for preparing polychromatic luminous nanocrystalline of monodisperse NaYF4 |
CN102382654A (en) * | 2011-09-15 | 2012-03-21 | 上海大学 | Preparation method of rare earth-doped NaYF4 nanocrystals for up-conversion fluorescent material |
Non-Patent Citations (5)
Title |
---|
《J. Mater. Chem.》 20110621 Wenbin Niu等 Utilizing the amidation reaction to address the ''cooperative effect'' of carboxylic acid/amine on the size, shape, and multicolor output of fluoride upconversion nanoparticles 10894-10902 1,2,5,7 第21卷, * |
《Journal of Nanomaterials》 20120131 SuliWu 等 Hydrothermal Synthesis of beta-NaYF4:Yb, Er Nanocrystals with Upconversion Fluorescence Using Tetraethylene Pentamine as Chelating Ligand ID 369605,参见第2页左栏2.2 1-3,5-8 , * |
SULIWU 等: "Hydrothermal Synthesis of β-NaYF4:Yb, Er Nanocrystals with Upconversion Fluorescence Using Tetraethylene Pentamine as Chelating Ligand", 《JOURNAL OF NANOMATERIALS》, 31 January 2012 (2012-01-31) * |
WENBIN NIU等: "Multicolor output and shape controlled synthesis of lanthanide-ion doped fluorides upconversion nanoparticles", 《DALTON TRANS.》, vol. 40, 28 February 2011 (2011-02-28), pages 3305 - 3314 * |
WENBIN NIU等: "Utilizing the amidation reaction to address the ‘‘cooperative effect’’ of carboxylic acid/amine on the size, shape, and multicolor output of fluoride upconversion nanoparticles", 《J. MATER. CHEM.》, vol. 21, 21 June 2011 (2011-06-21), pages 10894 - 10902 * |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103666474A (en) * | 2013-12-19 | 2014-03-26 | 中国科学院苏州纳米技术与纳米仿生研究所 | Red light/near-infrared light double-color up-conversion luminescence nanomaterial and preparation method thereof |
CN103911154A (en) * | 2014-04-09 | 2014-07-09 | 中国科学院长春应用化学研究所 | Monodisperse up-conversion luminescent micro/nano crystal and preparation method thereof |
CN103911154B (en) * | 2014-04-09 | 2016-03-30 | 中国科学院长春应用化学研究所 | Micro nanocrystalline of a kind of single dispersing up-conversion luminescence and preparation method thereof |
CN105419780A (en) * | 2014-09-15 | 2016-03-23 | 中国科学院理化技术研究所 | Synthesis method of rare earth ion doped nano crystal for organic liquid laser working medium |
CN105419780B (en) * | 2014-09-15 | 2017-12-15 | 中国科学院理化技术研究所 | Synthesis method of rare earth ion doped nano crystal for organic liquid laser working medium |
CN104386730A (en) * | 2014-10-15 | 2015-03-04 | 宁波大学 | A kind of Ho3+/Yb3+ double-doped α-NaYF4 laser crystal and its preparation method |
CN104327855A (en) * | 2014-11-21 | 2015-02-04 | 武汉理工大学 | Method for preparing rare-earth doped potassium yttrium fluoride up-conversion luminescence nano material |
CN104327855B (en) * | 2014-11-21 | 2016-01-06 | 武汉理工大学 | A kind of preparation method of rear-earth-doped yttrium fluoride potassium up-conversion luminescence nanomaterial |
CN104591253A (en) * | 2015-02-02 | 2015-05-06 | 首都师范大学 | Microemulsion synthesis method of porous water-soluble rare earth nano material |
CN104910915A (en) * | 2015-04-22 | 2015-09-16 | 南京工业大学 | Preparation method and application of hydrophilic rare earth nano material |
CN104861978B (en) * | 2015-06-05 | 2017-03-08 | 武汉理工大学 | Method for synthesizing yttrium potassium pentafluoride nanocrystals co-doped with rare earth metals by using waste fluorescent powder |
CN104861978A (en) * | 2015-06-05 | 2015-08-26 | 武汉理工大学 | Method for synthesizing rare-earth metal codoped yttrium potassium pentafluoride nano crystal from waste fluorescent powder |
CN105694888A (en) * | 2016-02-29 | 2016-06-22 | 武汉理工大学 | A kind of Mg2+ doped NaREF4 up-conversion fluorescent material and preparation method thereof |
CN105694888B (en) * | 2016-02-29 | 2019-02-26 | 武汉理工大学 | A kind of Mg2+ doped NaREF4 up-conversion fluorescent material and preparation method thereof |
CN105753891A (en) * | 2016-03-23 | 2016-07-13 | 浙江大学 | Rare earth organic framework material for fluorescence detection of trace water and preparation method of rare earth organic framework material |
CN106010538A (en) * | 2016-06-01 | 2016-10-12 | 中国计量大学 | A Method for Suppressing the Concentration Quenching Effect in Yb/Er:NaGdF4 Upconversion Luminescent Nanocrystals |
CN106010538B (en) * | 2016-06-01 | 2018-02-13 | 中国计量大学 | One kind is used to suppress Yb/Er:NaGdF4The method of concentration quenching effect in up-conversion luminescence nanometer crystal |
CN106995701A (en) * | 2017-05-04 | 2017-08-01 | 湖北大学 | A kind of preparation method of rear-earth-doped up-conversion nanoparticles |
CN107286928A (en) * | 2017-05-26 | 2017-10-24 | 安徽师范大学 | The detection method and application of up-conversion luminescence nanomaterial of citrate modification and preparation method thereof, hydrogen peroxide or uric acid |
CN107286928B (en) * | 2017-05-26 | 2019-11-05 | 安徽师范大学 | Up-conversion luminescence nanomaterial of citrate modification and preparation method thereof, the detection method and application of hydrogen peroxide or uric acid |
CN108034424A (en) * | 2017-12-05 | 2018-05-15 | 湖州师范学院 | A kind of overdelicate optical temperature sensing material and preparation method thereof |
CN109735335B (en) * | 2018-12-25 | 2020-12-11 | 北京化工大学 | Synthesis method of "BYT tracer" and its application |
CN109705767B (en) * | 2018-12-29 | 2021-06-04 | 苏州度辰新材料有限公司 | Structural white packaging adhesive film for solar cell module |
CN112683985B (en) * | 2020-12-28 | 2023-03-14 | 中国科学院苏州生物医学工程技术研究所 | Metal label based on rare earth doped nano metal organic framework material |
CN112683985A (en) * | 2020-12-28 | 2021-04-20 | 中国科学院苏州生物医学工程技术研究所 | Metal label based on rare earth doped nano metal organic framework material |
CN113292988A (en) * | 2021-05-27 | 2021-08-24 | 深圳先进技术研究院 | Rare earth core-shell nano material and preparation method thereof |
CN114181700A (en) * | 2021-12-14 | 2022-03-15 | 广西经正涂料有限公司 | Organic-inorganic hybrid fluorine titanium potassium red-light fluorescent powder and preparation method thereof |
CN114181700B (en) * | 2021-12-14 | 2023-08-18 | 广西经正涂料有限公司 | A kind of organic-inorganic hybrid titanium potassium fluorine red fluorescent powder and preparation method thereof |
CN114835910A (en) * | 2022-03-31 | 2022-08-02 | 许昌学院 | Nd-based metal organic framework Nd-MOF material and preparation method thereof |
CN115274901A (en) * | 2022-07-18 | 2022-11-01 | 江苏中来新材科技有限公司 | Up-conversion photovoltaic backboard and double-sided photovoltaic module |
CN115274901B (en) * | 2022-07-18 | 2023-08-11 | 江苏中来新材科技有限公司 | An up-conversion photovoltaic backplane and double-sided photovoltaic module |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103087705A (en) | A high-strength rare earth-doped up-conversion luminescent nanomaterial and its preparation method | |
CN110157408B (en) | Method for synthesizing efficient and stable all-inorganic halogen perovskite quantum dot scintillator by equivalent ligand | |
Ma et al. | Enhanced stability of CsPbBr3 Quantum Dots by anchoring on the hierarchical three-dimensional layered double hydroxide | |
CN107226914B (en) | A kind of terbium organic framework complex and preparation method thereof | |
CN112391167B (en) | Rare earth doped ternary metal fluoride NaCaLnF 6 Preparation method of heterogeneous isomorphic material thereof | |
Jia et al. | Highly uniform YBO3 hierarchical architectures: facile synthesis and tunable luminescence properties | |
CN102533272B (en) | The rear-earth-doped sodium yttrium fluoride nanoparticle of the water miscible amination of one-step synthesis method | |
CN102276637A (en) | Terbium coordination polymer and its synthetic method and use | |
CN107163937A (en) | A kind of rear-earth-doped zirconium fluoride lithium nano luminescent material with loose structure and its preparation method and application | |
CN103923638B (en) | A kind of water-soluble high-efficient rare earth luminescent material and preparation method thereof | |
CN101298557A (en) | Preparation of europium-doped yttrium borate spherical luminescent material | |
Litvin et al. | B‐Site Doping of Metal Halide Perovskite Nanoplatelets Influences Their Optical Properties | |
Liu et al. | An Ultrafast and Room‐Temperature Strategy for Kilogram‐Scale Synthesis of Sub‐5 nm Eu3+‐doped CaMO4 Nanocrystals with a Photoluminescence Quantum Yield Exceeding 85% | |
CN110684533B (en) | SiO (silicon dioxide) 2 Preparation method of europium cuprate nano fluorescent and electrocatalytic powder | |
Li et al. | Novel luminescent hybrids by incorporating rare earth β-diketonates into polymers through ion pairing with an imidazolium counter ion | |
Wang et al. | Application of chelation effect in improving the triple properties of K2SiF6Mn4+ phosphors through composite modification | |
CN107033908A (en) | A kind of GdF3:Yb3+,Er3+The preparation method of upconversion fluorescence nano material | |
CN112852424B (en) | Alkali metal-rare earth ternary sulfide nano luminescent material and preparation method and application thereof | |
CN104193860B (en) | Method for synthesizing polyhedron oligomerization silsesquioxane macromolecule composite luminescent material containing rare earth | |
Lian et al. | High-Efficiency Blue-Emitting Mn-Ligand passivated CsPbBr3 nanoplatelets | |
CN101671558B (en) | Preparation method of dysprosium zirconate terbium-doped green luminescent material | |
CN109913218B (en) | Micron-sized hexagonal phase NaYF4Up-conversion material and rapid preparation process thereof | |
CN102633823A (en) | Rare-earth metal complex and preparation method thereof | |
Gao et al. | Synthesis and luminescent properties of Eu (III)/Tb (III) rare earth complex-coated the core-shell structured silica microspheres: Unleashing the potential for white light emission | |
Liang et al. | A User‐Friendly Method for Synthesizing High‐Quality NaYF4: Yb, Er (Tm) Nanocrystals in Liquid Paraffin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20130508 |