CN103084205B - Anti-basic nitrogen liquefied gas yield increase cracking catalyst and preparation method thereof - Google Patents
Anti-basic nitrogen liquefied gas yield increase cracking catalyst and preparation method thereof Download PDFInfo
- Publication number
- CN103084205B CN103084205B CN201110332244.6A CN201110332244A CN103084205B CN 103084205 B CN103084205 B CN 103084205B CN 201110332244 A CN201110332244 A CN 201110332244A CN 103084205 B CN103084205 B CN 103084205B
- Authority
- CN
- China
- Prior art keywords
- molecular sieve
- weight
- content
- rare earth
- type molecular
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 90
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 title claims abstract description 71
- 238000005336 cracking Methods 0.000 title claims abstract description 45
- 239000007789 gas Substances 0.000 title claims abstract description 37
- 229910052757 nitrogen Inorganic materials 0.000 title claims abstract description 36
- 238000002360 preparation method Methods 0.000 title claims abstract description 20
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 claims abstract description 229
- 239000002808 molecular sieve Substances 0.000 claims abstract description 214
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 82
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 75
- 150000002910 rare earth metals Chemical class 0.000 claims abstract description 48
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 37
- 229910052742 iron Inorganic materials 0.000 claims abstract description 37
- 239000011574 phosphorus Substances 0.000 claims abstract description 37
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 37
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 31
- 229910052802 copper Inorganic materials 0.000 claims abstract description 31
- 239000010949 copper Substances 0.000 claims abstract description 31
- 239000003513 alkali Substances 0.000 claims abstract description 29
- 239000000463 material Substances 0.000 claims abstract description 27
- 229910001404 rare earth metal oxide Inorganic materials 0.000 claims abstract description 25
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 19
- 239000004927 clay Substances 0.000 claims abstract description 18
- 239000011230 binding agent Substances 0.000 claims abstract description 17
- KKCBUQHMOMHUOY-UHFFFAOYSA-N sodium oxide Chemical compound [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 claims abstract description 17
- 229910001948 sodium oxide Inorganic materials 0.000 claims abstract description 17
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 claims abstract description 15
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 claims abstract description 8
- 238000001035 drying Methods 0.000 claims abstract description 6
- 238000001914 filtration Methods 0.000 claims abstract description 6
- 238000005406 washing Methods 0.000 claims abstract description 6
- 238000001694 spray drying Methods 0.000 claims abstract description 4
- 238000010009 beating Methods 0.000 claims abstract description 3
- 238000000034 method Methods 0.000 claims description 49
- 239000000126 substance Substances 0.000 claims description 47
- 239000002253 acid Substances 0.000 claims description 46
- -1 rare earth compounds Chemical class 0.000 claims description 32
- 238000001179 sorption measurement Methods 0.000 claims description 31
- MNZAKDODWSQONA-UHFFFAOYSA-N 1-dibutylphosphorylbutane Chemical compound CCCCP(=O)(CCCC)CCCC MNZAKDODWSQONA-UHFFFAOYSA-N 0.000 claims description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 22
- 230000008569 process Effects 0.000 claims description 21
- 239000011734 sodium Substances 0.000 claims description 21
- 238000005004 MAS NMR spectroscopy Methods 0.000 claims description 20
- 150000003863 ammonium salts Chemical class 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 14
- DLYUQMMRRRQYAE-UHFFFAOYSA-N tetraphosphorus decaoxide Chemical compound O1P(O2)(=O)OP3(=O)OP1(=O)OP2(=O)O3 DLYUQMMRRRQYAE-UHFFFAOYSA-N 0.000 claims description 14
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 13
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 13
- LRMLWYXJORUTBG-UHFFFAOYSA-N dimethylphosphorylmethane Chemical compound CP(C)(C)=O LRMLWYXJORUTBG-UHFFFAOYSA-N 0.000 claims description 12
- 239000011148 porous material Substances 0.000 claims description 12
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 10
- 239000001301 oxygen Substances 0.000 claims description 10
- 229910052760 oxygen Inorganic materials 0.000 claims description 10
- 230000002062 proliferating effect Effects 0.000 claims description 10
- VXAUWWUXCIMFIM-UHFFFAOYSA-M aluminum;oxygen(2-);hydroxide Chemical compound [OH-].[O-2].[Al+3] VXAUWWUXCIMFIM-UHFFFAOYSA-M 0.000 claims description 9
- 230000003647 oxidation Effects 0.000 claims description 8
- 238000007254 oxidation reaction Methods 0.000 claims description 8
- 239000002994 raw material Substances 0.000 claims description 7
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 claims description 6
- 238000002002 phosphorus-31 magic angle spinning nuclear magnetic resonance spectrum Methods 0.000 claims description 6
- 239000012065 filter cake Substances 0.000 claims description 5
- 238000001116 aluminium-27 magic angle spinning nuclear magnetic resonance spectrum Methods 0.000 claims description 4
- 229910052733 gallium Inorganic materials 0.000 claims description 4
- 229910052748 manganese Inorganic materials 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052718 tin Inorganic materials 0.000 claims description 4
- 229910052725 zinc Inorganic materials 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 239000000306 component Substances 0.000 claims 1
- 239000013335 mesoporous material Substances 0.000 claims 1
- 238000004523 catalytic cracking Methods 0.000 abstract description 53
- 238000006243 chemical reaction Methods 0.000 abstract description 20
- 239000002199 base oil Substances 0.000 abstract 1
- 238000003756 stirring Methods 0.000 description 23
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 21
- 238000004458 analytical method Methods 0.000 description 20
- 239000003921 oil Substances 0.000 description 19
- 239000008367 deionised water Substances 0.000 description 17
- 229910021641 deionized water Inorganic materials 0.000 description 17
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 16
- 229910052782 aluminium Inorganic materials 0.000 description 16
- 239000000243 solution Substances 0.000 description 15
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 14
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical group [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 13
- 230000000694 effects Effects 0.000 description 13
- 239000000047 product Substances 0.000 description 13
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 12
- 229910017464 nitrogen compound Inorganic materials 0.000 description 10
- 150000002830 nitrogen compounds Chemical class 0.000 description 10
- 239000007787 solid Substances 0.000 description 10
- 238000002795 fluorescence method Methods 0.000 description 9
- 238000004846 x-ray emission Methods 0.000 description 9
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 8
- 235000019270 ammonium chloride Nutrition 0.000 description 8
- 229910052708 sodium Inorganic materials 0.000 description 8
- 229910016870 Fe(NO3)3-9H2O Inorganic materials 0.000 description 7
- 239000005995 Aluminium silicate Substances 0.000 description 6
- 235000012211 aluminium silicate Nutrition 0.000 description 6
- 125000004429 atom Chemical group 0.000 description 6
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 6
- 229910021591 Copper(I) chloride Inorganic materials 0.000 description 5
- 230000003197 catalytic effect Effects 0.000 description 5
- OXBLHERUFWYNTN-UHFFFAOYSA-M copper(I) chloride Chemical compound [Cu]Cl OXBLHERUFWYNTN-UHFFFAOYSA-M 0.000 description 5
- 239000005751 Copper oxide Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 229910000431 copper oxide Inorganic materials 0.000 description 4
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 4
- 239000000295 fuel oil Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- 229910002651 NO3 Inorganic materials 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- LFVGISIMTYGQHF-UHFFFAOYSA-N ammonium dihydrogen phosphate Chemical compound [NH4+].OP(O)([O-])=O LFVGISIMTYGQHF-UHFFFAOYSA-N 0.000 description 3
- 229910000387 ammonium dihydrogen phosphate Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000004005 microsphere Substances 0.000 description 3
- 235000019837 monoammonium phosphate Nutrition 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 238000004738 31P MAS NMR Methods 0.000 description 2
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- 239000004254 Ammonium phosphate Substances 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical group OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 239000012670 alkaline solution Substances 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- HPTYUNKZVDYXLP-UHFFFAOYSA-N aluminum;trihydroxy(trihydroxysilyloxy)silane;hydrate Chemical compound O.[Al].[Al].O[Si](O)(O)O[Si](O)(O)O HPTYUNKZVDYXLP-UHFFFAOYSA-N 0.000 description 2
- 239000001099 ammonium carbonate Substances 0.000 description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 description 2
- 229910000148 ammonium phosphate Inorganic materials 0.000 description 2
- 235000019289 ammonium phosphates Nutrition 0.000 description 2
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 2
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 2
- 235000011130 ammonium sulphate Nutrition 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- 230000000536 complexating effect Effects 0.000 description 2
- 239000010779 crude oil Substances 0.000 description 2
- 229910000388 diammonium phosphate Inorganic materials 0.000 description 2
- 235000019838 diammonium phosphate Nutrition 0.000 description 2
- 229910052621 halloysite Inorganic materials 0.000 description 2
- VCJMYUPGQJHHFU-UHFFFAOYSA-N iron(3+);trinitrate Chemical compound [Fe+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VCJMYUPGQJHHFU-UHFFFAOYSA-N 0.000 description 2
- 239000011268 mixed slurry Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 230000000607 poisoning effect Effects 0.000 description 2
- SMUQFGGVLNAIOZ-UHFFFAOYSA-N quinaldine Chemical compound C1=CC=CC2=NC(C)=CC=C21 SMUQFGGVLNAIOZ-UHFFFAOYSA-N 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000000741 silica gel Substances 0.000 description 2
- 229910002027 silica gel Inorganic materials 0.000 description 2
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 2
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 1
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 description 1
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 1
- 239000004113 Sepiolite Substances 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- 235000012538 ammonium bicarbonate Nutrition 0.000 description 1
- BIGPRXCJEDHCLP-UHFFFAOYSA-N ammonium bisulfate Chemical compound [NH4+].OS([O-])(=O)=O BIGPRXCJEDHCLP-UHFFFAOYSA-N 0.000 description 1
- 235000012501 ammonium carbonate Nutrition 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 229960000892 attapulgite Drugs 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- 229940092782 bentonite Drugs 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910001431 copper ion Inorganic materials 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 1
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 229940045803 cuprous chloride Drugs 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- GDVKFRBCXAPAQJ-UHFFFAOYSA-A dialuminum;hexamagnesium;carbonate;hexadecahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Al+3].[Al+3].[O-]C([O-])=O GDVKFRBCXAPAQJ-UHFFFAOYSA-A 0.000 description 1
- 239000002283 diesel fuel Substances 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000012013 faujasite Substances 0.000 description 1
- 229960002089 ferrous chloride Drugs 0.000 description 1
- 239000011790 ferrous sulphate Substances 0.000 description 1
- 235000003891 ferrous sulphate Nutrition 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 229910001701 hydrotalcite Inorganic materials 0.000 description 1
- 229960001545 hydrotalcite Drugs 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- NMCUIPGRVMDVDB-UHFFFAOYSA-L iron dichloride Chemical compound Cl[Fe]Cl NMCUIPGRVMDVDB-UHFFFAOYSA-L 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- RUTXIHLAWFEWGM-UHFFFAOYSA-H iron(3+) sulfate Chemical compound [Fe+3].[Fe+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O RUTXIHLAWFEWGM-UHFFFAOYSA-H 0.000 description 1
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 1
- 229910000360 iron(III) sulfate Inorganic materials 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000000329 molecular dynamics simulation Methods 0.000 description 1
- 229910052901 montmorillonite Inorganic materials 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 1
- 229910052625 palygorskite Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000001935 peptisation Methods 0.000 description 1
- 238000005504 petroleum refining Methods 0.000 description 1
- 125000004437 phosphorous atom Chemical group 0.000 description 1
- 238000001394 phosphorus-31 nuclear magnetic resonance spectrum Methods 0.000 description 1
- 125000005575 polycyclic aromatic hydrocarbon group Chemical group 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229910000275 saponite Inorganic materials 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 229910052624 sepiolite Inorganic materials 0.000 description 1
- 235000019355 sepiolite Nutrition 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- VCZQFJFZMMALHB-UHFFFAOYSA-N tetraethylsilane Chemical compound CC[Si](CC)(CC)CC VCZQFJFZMMALHB-UHFFFAOYSA-N 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Landscapes
- Catalysts (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
一种抗碱氮多产液化气的裂化催化剂及其制备方法,所述催化剂包括裂化活性组元、介孔硅铝材料、粘结剂和粘土,其中,所述的裂化活性组元包括Y型分子筛和MFI结构分子筛,所述的Y型分子筛包括稀土含量以氧化稀土计为8-23重量%、铁含量以Fe2O3计为0.1-3.0重量%、铜含量以CuO计为0-3.0重量%、磷含量以P2O5计为0-2.0重量%、氧化钠含量为0.1-2.5重量%的第一Y型分子筛。所述催化剂的制备方法,包括将裂化活性组元、介孔硅铝材料、粘土和粘结剂打浆,喷雾干燥,洗涤,过滤和干燥的步骤。该催化剂用于含碱氮原料油催化裂化,具有较高的转化率和较高的液化气收率。A cracking catalyst resistant to alkali nitrogen and producing liquefied gas and a preparation method thereof, the catalyst includes a cracking active component, a mesoporous silica-alumina material, a binder and clay, wherein the cracking active component includes a Y-type A molecular sieve and a molecular sieve with an MFI structure, the Y-type molecular sieve includes a rare earth content of 8-23% by weight as rare earth oxide, an iron content of 0.1-3.0 % by weight as Fe2O3 , and a copper content of 0-3.0% by CuO. % by weight, the first Y-type molecular sieve with a phosphorus content of 0-2.0% by weight calculated as P 2 O 5 , and a sodium oxide content of 0.1-2.5% by weight. The preparation method of the catalyst comprises the steps of beating cracking active components, mesoporous silicon-aluminum materials, clay and binder, spray drying, washing, filtering and drying. The catalyst is used for catalytic cracking of base oil containing alkali nitrogen, and has high conversion rate and high yield of liquefied gas.
Description
技术领域 technical field
本发明涉及一种催化裂化催化剂,更进一步说涉及一种抗碱氮的多产液化气的裂化催化剂。The present invention relates to a catalytic cracking catalyst, more specifically to a cracking catalyst resistant to alkali nitrogen and prolific in producing liquefied gas.
背景技术 Background technique
催化裂化(FCC)是重要的原油二次加工过程,在炼油工业中占有举足轻重的地位。在催化裂化工艺中,重质馏分如减压馏分油或更重组分的渣油在催化剂存在下发生反应,转化为液化气、汽油、柴油等高附加值产品,在这个过程中通常需要使用具有高裂化活性的催化材料。微孔沸石催化材料由于具有优良的择形催化性能和很高的裂化反应活性,被广泛应用于石油炼制和加工工业中。随着石油资源的日益枯竭以及环境保护等方面的要求,特别是原油日趋变重的增长趋势和市场对轻质油品的大量需求,在石油加工工业中越来越重视对重油和渣油的深度加工。Catalytic cracking (FCC) is an important secondary processing process of crude oil and occupies a pivotal position in the oil refining industry. In the catalytic cracking process, heavy fractions such as vacuum distillate oil or residues of heavier components react in the presence of catalysts and are converted into high value-added products such as liquefied gas, gasoline, and diesel oil. In this process, it is usually necessary to use Catalytic material with high cracking activity. Microporous zeolite catalytic materials are widely used in petroleum refining and processing industries due to their excellent shape-selective catalytic performance and high cracking reactivity. With the depletion of petroleum resources and the requirements of environmental protection, especially the growing trend of crude oil becoming heavier and the market's large demand for light oil products, more and more attention is paid to the depth of heavy oil and residual oil in the petroleum processing industry processing.
近来,随着催化裂化原料油的日益重质化、劣质化,掺炼焦化蜡油(CGO)等劣质原料已成为炼厂扩大催化裂化原料来源和挖潜增效的重要途径。与直馏蜡油相比,焦化蜡油是一种氮含量、芳烃含量和胶质含量较高、饱和烃含量较低的劣质催化原料,增大焦化蜡油的掺炼比例会严重影响催化裂化装置的正常操作,导致转化率降低,产品分布明显恶化。研究表明,焦化蜡油中的氮化物尤其是碱性氮化物(其中的氮原子称为碱氮)是造成这一后果的直接原因,碱性氮化物由于含有孤对电子,具有很强的吸附和络合性能,因此很容易与催化剂上的酸性中心发生相互作用,造成催化剂的活性下降。而且含氮化合物比多环芳烃更易于吸附在催化剂的酸性中心上,易形成结焦点,促进生焦,即含氮化合物可以看作是更易于吸附的焦炭前身物。Recently, with the increasingly heavy and inferior quality of catalytic cracking feedstock oil, blending low-quality raw materials such as coker gas oil (CGO) has become an important way for refineries to expand the source of catalytic cracking feedstock and tap the potential to increase efficiency. Compared with straight-run gas oil, coker gas oil is an inferior catalytic feedstock with higher nitrogen content, aromatic hydrocarbon content and colloid content, and lower saturated hydrocarbon content. Increasing the blending ratio of coker gas oil will seriously affect catalytic cracking Normal operation of the plant, resulting in lower conversion and a marked deterioration in product distribution. Studies have shown that the nitrogen compounds in coker wax oil, especially the basic nitrogen compounds (the nitrogen atoms in which are called basic nitrogen) are the direct cause of this consequence. Basic nitrogen compounds have a strong adsorption capacity due to their lone pair of electrons. And complexing performance, so it is easy to interact with the acidic center on the catalyst, resulting in a decrease in the activity of the catalyst. Moreover, nitrogen-containing compounds are more likely to be adsorbed on the acidic center of the catalyst than polycyclic aromatic hydrocarbons, which are easy to form agglomeration points and promote coke formation, that is, nitrogen-containing compounds can be regarded as coke precursors that are easier to adsorb.
克服碱性氮化物造成催化剂活性下降的问题上,目前采取的方法例如CN1088246A、US7744745和US5660716中提及的工艺手段,以及US4846962中提及的络合脱除碱性氮化合物的方法等。To overcome the problem of catalyst activity decline caused by basic nitrogen compounds, currently adopted methods such as the process means mentioned in CN1088246A, US7744745 and US5660716, and the method for complexing and removing basic nitrogen compounds mentioned in US4846962.
克服碱性氮化物造成催化剂活性下降的最经济有效的方法是在催化裂化过程中使用抗碱性氮化合物的裂化催化剂或助剂。但是现有裂化催化剂用于含碱氮原料仍存在活性低,产品分布变坏的问题,并且未发现涉及抗碱氮多产液化气的裂化催化剂。The most economical and effective method to overcome the decline in catalyst activity caused by basic nitrogen compounds is to use cracking catalysts or additives resistant to basic nitrogen compounds in the catalytic cracking process. However, the existing cracking catalysts still have the problems of low activity and poor product distribution when used in raw materials containing alkali nitrogen, and no cracking catalysts related to alkali nitrogen resistance and high production of liquefied gas have been found.
发明内容 Contents of the invention
本发明要解决的技术问题是提供一种抗碱氮多产液化气的催化裂化催化剂,该催化裂化催化剂用于碱性氮化合物含量较高的原料油(例如碱性氮含量为约900-2000μg/g的原料油)催化裂化,具有较高的转化率和液化气收率。The technical problem to be solved by the present invention is to provide a kind of catalytic cracking catalyst resistant to alkali nitrogen and prolific liquefied gas. /g of raw oil) catalytic cracking, with a higher conversion rate and liquefied gas yield.
本发明提供一种抗碱氮多产液化气的催化裂化催化剂,该催化裂化催化剂含有10-70重量%裂化活性组元、1-20重量%介孔硅铝材料、10-70重量%的粘土和10-60重量%粘结剂,其中,所述的裂化活性组元包括70-85重量%的Y型分子筛和15-30重量%的MFI结构分子筛,所述的Y型分子筛包括第一Y型分子筛,其中,所述的第一Y型分子筛为用稀土、铁、铜、磷改性的Y型分子筛,分子筛中稀土含量以氧化稀土计为8-23重量%,铁含量以Fe2O3计为0.1-3.0重量%,铜含量以CuO计为0-3.0重量%,磷含量以P2O5计为0-2.0重量%,氧化钠含量为0.1-2.5重量%。The invention provides a catalytic cracking catalyst resistant to alkali and nitrogen and capable of producing liquefied gas. The catalytic cracking catalyst contains 10-70% by weight of cracking active components, 1-20% by weight of mesoporous silicon-aluminum materials, and 10-70% by weight of clay and 10-60% by weight of binder, wherein the cracking active components include 70-85% by weight of Y-type molecular sieves and 15-30% by weight of MFI molecular sieves, and the Y-type molecular sieves include the first Y Type molecular sieve, wherein, the first Y-type molecular sieve is a Y-type molecular sieve modified with rare earth, iron, copper, phosphorus, the rare earth content in the molecular sieve is 8-23% by weight as rare earth oxide, and the iron content is Fe2O 3 is 0.1-3.0 wt%, the copper content is 0-3.0 wt% as CuO, the phosphorus content is 0-2.0 wt% as P2O5 , and the sodium oxide content is 0.1-2.5 wt%.
以所述裂化活性组元的总重量计,所述裂化活性组元含有70-85重量%的Y型分子筛和15-30重量%的MFI结构分子筛;以所述Y型分子筛的总重量为基准,所述Y型分子筛包括20-100重量%第一Y型分子筛以及0-80重量%的其它Y型分子筛,所述的其它Y型分子筛为第二Y型分子筛和/或第三Y型分子筛,其中所述第二Y型分子筛为含稀土的DASY分子筛,其稀土含量优选为1.5-3重量%;所述第三Y型分子筛中以稀土氧化物计的稀土含量为12-16重量%,以P2O5计的磷含量为0.5-7重量%,该分子筛的31P MAS NMR谱中,化学位移为-14±2ppm和-23±2ppm共振信号的峰面积占总峰面积的百分数大于85%,该分子筛的27Al MAS NMR谱中,化学位移为0±2ppm共振信号的峰面积占总峰面积的百分数大于20%。Based on the total weight of the cracking active component, the cracking active component contains 70-85% by weight of Y-type molecular sieve and 15-30% by weight of MFI structure molecular sieve; based on the total weight of the Y-type molecular sieve , the Y-type molecular sieve includes 20-100% by weight of the first Y-type molecular sieve and 0-80% by weight of other Y-type molecular sieves, and the other Y-type molecular sieves are the second Y-type molecular sieve and/or the third Y-type molecular sieve , wherein the second Y-type molecular sieve is rare earth-containing DASY molecular sieve, and its rare earth content is preferably 1.5-3% by weight; the rare earth content in the third Y-type molecular sieve is 12-16% by weight in terms of rare earth oxides, The phosphorus content calculated as P 2 O 5 is 0.5-7% by weight. In the 31 P MAS NMR spectrum of the molecular sieve, the peak area of the resonance signal with a chemical shift of -14 ± 2ppm and -23 ± 2ppm accounts for a percentage of the total peak area greater than 85%, in the 27 Al MAS NMR spectrum of the molecular sieve, the peak area of the resonance signal with a chemical shift of 0±2ppm accounts for more than 20% of the total peak area.
所述裂化活性组元含有第一Y型分子筛,所述第一Y型分子筛为含稀土、铁或者铁和铜、含或不含磷的Y型分子筛,稀土含量以氧化稀土计为8-23重量%,铁含量以Fe2O3计为0.1-3.0重量%,铜含量以CuO计为0-3.0重量%,磷含量以P2O5计为0-2.0重量%,氧化钠含量为0.1-2.5重量%。The cracking active component contains a first Y-type molecular sieve, and the first Y-type molecular sieve is a Y-type molecular sieve containing rare earth, iron or iron and copper, containing or not containing phosphorus, and the rare earth content is 8-23% in terms of rare earth oxide. % by weight, the iron content is 0.1-3.0 wt% as Fe2O3 , the copper content is 0-3.0 wt % as CuO, the phosphorus content is 0-2.0 wt% as P2O5 , and the sodium oxide content is 0.1 -2.5% by weight.
所述第一Y型分子筛可经过下述过程将Y型分子筛改性制备,其过程包括:以NaY分子筛为原料,经过稀土交换和焙烧,获得“一交一焙”RENaY;再与稀土化合物、含铁物质、含铜物质、含磷物质、与或不与铵盐反应,获得用稀土和铁/铜/磷改性的Y分子筛产物,即为所述改性Y分子筛活性组分。The first Y-type molecular sieve can be prepared by modifying the Y-type molecular sieve through the following process. The process includes: using NaY molecular sieve as raw material, undergoing rare earth exchange and roasting to obtain "one cross one roast" RENaY; Iron-containing substances, copper-containing substances, phosphorus-containing substances, and ammonium salts may or may not be reacted to obtain a Y molecular sieve product modified with rare earth and iron/copper/phosphorus, which is the active component of the modified Y molecular sieve.
其中,所述的获得“一交一焙”RENaY的过程为本领域技术人员所熟知,通常是将NaY与稀土化合物在NaY∶RE2O3=1∶0.10-0.25(重量比),pH=2.0-4.5,交换温度25-100℃条件下处理0.3-1.5小时,过滤,洗涤,滤饼在400-850℃,0-100%水蒸汽下焙烧0.3小时以上得到。进一步所述的获得用稀土和铁/铜/磷改性的Y分子筛产物的过程是根据目的产物组成,将RENaY与稀土化合物、含铁、含铜、含磷的物质,有或没有铵盐的情况下,按照NaY∶RE2O3∶Fe2O3/CuO∶P2O5∶铵盐=1∶0.02-0.15∶0.001-0.05∶0-0.04∶0-0.5(重量比),pH=2.0-4.5,在20-100℃下反应,再经过滤,洗涤的过程。Wherein, the described process of obtaining "one-baking" RENaY is well known to those skilled in the art, usually, NaY and rare earth compound are mixed in NaY:RE 2 O 3 =1:0.10-0.25 (weight ratio), pH= 2.0-4.5, exchange temperature at 25-100°C for 0.3-1.5 hours, filter, wash, and filter cake at 400-850°C, 0-100% steam for more than 0.3 hours to obtain. The further described process of obtaining Y molecular sieve products modified with rare earth and iron/copper/phosphorus is to combine RENaY with rare earth compounds, iron-containing, copper-containing, phosphorus-containing substances, with or without ammonium salts, according to the composition of the target product Under the circumstances, according to NaY : RE2O3 : Fe2O3 / CuO : P2O5 :ammonium salt=1 : 0.02-0.15:0.001-0.05:0-0.04:0-0.5 (weight ratio), pH= 2.0-4.5, react at 20-100°C, then filter and wash.
所述MFI结构分子筛可以为第一MFI结构分子筛和/或第二MFI结构分子筛,其中,The MFI structure molecular sieve can be a first MFI structure molecular sieve and/or a second MFI structure molecular sieve, wherein,
所述第一MFI结构分子筛中以氧化物的摩尔比计的无水化学组成表达式为:(0.01-025)RE2O3·(0.005-0.02)Na2O·Al2O3·(0.2-1.0)P2O5·(35-120)SiO2,该分子筛对正己烷和环己烷的吸附重量比为4-5;The anhydrous chemical composition expression in terms of molar ratio of oxides in the first MFI structure molecular sieve is: (0.01-025)RE 2 O 3 ·(0.005-0.02)Na 2 O·Al 2 O 3 ·(0.2 -1.0)P 2 O 5 ·(35-120)SiO 2 , the adsorption weight ratio of the molecular sieve to n-hexane and cyclohexane is 4-5;
所述第二MFI结构分子筛以氧化物重量比计的无水化学组成表达式为:(0-03)Na2O·(0.5-5.5)Al2O3·(1.3-10)P2O5·(0.7-15)M1xOy·(0.01-5)M2mOn·(70-97)SiO2,其中,M1为Fe、Co或Ni,x表示M1的原子数,y表示满足M1氧化态所需氧的个数,M2选自Zn、Mn、Ga或Sn,m表示M2的原子数,n表示满足M2氧化态所需氧的个数。The anhydrous chemical composition expression of the second MFI structure molecular sieve in terms of oxide weight ratio is: (0-03)Na 2 O·(0.5-5.5)Al 2 O 3 ·(1.3-10)P 2 O 5 ·(0.7-15)M1 x O y ·(0.01-5)M2 m O n ·(70-97)SiO 2 , where M1 is Fe, Co or Ni, x represents the atomic number of M1, and y represents the satisfaction of M1 The number of oxygen required for the oxidation state, M2 is selected from Zn, Mn, Ga or Sn, m represents the number of atoms of M2, and n represents the number of oxygen required to meet the oxidation state of M2.
本发明还提供一种所述的抗碱氮多产液化气的催化裂化催化剂的制备方法,该方法包括:The present invention also provides a preparation method of the described catalytic cracking catalyst that resists alkali nitrogen and produces liquefied gas more, the method comprising:
将裂化活性组元、介孔硅铝材料、粘土和粘结剂混合打浆,然后依次进行喷雾干燥、洗涤、过滤和干燥。The cracking active component, the mesoporous silica-alumina material, the clay and the binder are mixed and beaten, and then spray-dried, washed, filtered and dried in sequence.
本发明所提供的抗降氮多产液化气的催化裂化催化剂特别适用于重油催化裂化,特别是,当原料油中的碱性氮化合物含量较高时,例如碱性氮含量为约900-2000μg/g,本发明提供的抗降氮多产液化气的催化裂化催化剂在重油催化裂化的过程中能够表现出较高的催化裂化活性,可以获得较高的转化率,获得较高的液化气收率。The catalytic cracking catalyst for resisting nitrogen reduction and producing liquefied gas provided by the present invention is particularly suitable for catalytic cracking of heavy oil, especially when the content of basic nitrogen compounds in the raw oil is relatively high, for example, the content of basic nitrogen is about 900-2000 μg /g, the catalytic cracking catalyst for anti-nitrogen reduction and high production of liquefied gas provided by the present invention can show higher catalytic cracking activity in the process of catalytic cracking of heavy oil, can obtain higher conversion rate, and obtain higher yield of liquefied gas Rate.
具体实施方式 Detailed ways
本发明提供的抗碱氮多产液化气的催化裂化催化剂,含有裂化活性组元、介孔硅铝材料、粘土和粘结剂,其中,所述裂化活性组元含有一种改性的Y型分子筛(即本发明所述的第一Y型分子筛),该分子筛用稀土、铁、铜、磷改性,分子筛中稀土含量以氧化稀土计为8-23重量%,铁含量以Fe2O3计为0.1-3.0重量%,铜含量以CuO计为0-3.0重量%,磷含量以P2O5计为0-2.0重量%,氧化钠含量为0.1-2.5重量%。The catalytic cracking catalyst for alkali nitrogen resistance and high yield of liquefied gas provided by the present invention contains cracking active components, mesoporous silicon-aluminum materials, clay and binder, wherein the cracking active components contain a modified Y-type Molecular sieve (i.e. the first Y-type molecular sieve of the present invention), the molecular sieve is modified with rare earth, iron, copper, phosphorus, the rare earth content in the molecular sieve is 8-23% by weight as rare earth oxide, and the iron content is Fe2O3 The calculation is 0.1-3.0 wt%, the copper content is 0-3.0 wt% as CuO, the phosphorus content is 0-2.0 wt% as P 2 O 5 , and the sodium oxide content is 0.1-2.5 wt%.
优选,所述的第一Y型分子筛中稀土含量以氧化稀土计为10-20重量%,铁含量以Fe2O3计为0.5-2.5重量%,铜含量以CuO计为0.2-1.5重量%,磷含量以P2O5计为0-1.0重量%。Preferably, the rare earth content in the first Y-type molecular sieve is 10-20% by weight as rare earth oxide, the iron content is 0.5-2.5% by weight as Fe2O3 , and the copper content is 0.2-1.5% by weight as CuO , the phosphorus content is 0-1.0% by weight based on P 2 O 5 .
更优选,所述的第一Y型分子筛中稀土含量以氧化稀土计为14-20重量%,铁含量以Fe2O3计为0.6-1.0重量%,铜含量以CuO计为0.5-1.2重量%,磷含量以P2O5计为0-1.0重量%,氧化钠含量为0.1-2.0重量%。More preferably, the rare earth content in the first Y-type molecular sieve is 14-20 wt% as rare earth oxide, the iron content is 0.6-1.0 wt% as Fe2O3 , and the copper content is 0.5-1.2 wt% as CuO %, the phosphorus content is 0-1.0% by weight based on P 2 O 5 , and the sodium oxide content is 0.1-2.0% by weight.
所述第一Y型分子筛是经过下述过程将Y型分子筛改性制备的,其过程包括:以NaY分子筛为原料,经过稀土交换和焙烧,获得“一交一焙”RENaY;再与稀土化合物、含铁物质、含铜物质、含磷物质、与或不与铵盐反应,获得用稀土和铁/铜/磷改性的Y分子筛产物,即为所述的第一Y型分子筛。The first Y-type molecular sieve is prepared by modifying the Y-type molecular sieve through the following process. The process includes: using NaY molecular sieve as raw material, through rare earth exchange and roasting, to obtain "one cross one roast" RENaY; , iron-containing substances, copper-containing substances, phosphorus-containing substances, and or not react with ammonium salts to obtain a Y molecular sieve product modified with rare earth and iron/copper/phosphorus, which is the first Y-type molecular sieve.
其中,所述的“一交一焙”RENaY的过程为本领域技术人员所熟知,通常是将NaY与稀土化合物在NaY∶RE2O3=1∶0.10-0.25(重量比),pH=2.0-4.5,交换温度25-100℃条件下处理0.3-1.5小时,过滤,洗涤,滤饼在400-850℃,0-100%水蒸汽下焙烧0.3小时以上得到。进一步,所述的获得第一Y型分子筛(即用稀土、铁、铜、磷改性的Y分子筛)产物的过程,是根据目的产物组成,将RENaY与稀土化合物、含铁、含铜、含磷的物质,有或没有铵盐的情况下,按照NaY∶RE2O3∶Fe2O3/CuO∶P2O5∶铵盐=1∶0.02-0.15∶0.001-0.05∶0-0.04∶0-0.5(重量比),pH=2.0-4.5,在20-100℃下反应,再经过滤,洗涤的过程。Wherein, the process of "cross-baking" RENaY is well known to those skilled in the art, usually NaY and rare earth compound are mixed in NaY:RE 2 O 3 =1:0.10-0.25 (weight ratio), pH=2.0 -4.5, exchange temperature at 25-100°C for 0.3-1.5 hours, filter, wash, and filter cake at 400-850°C, 0-100% steam for more than 0.3 hours to obtain. Further, the process of obtaining the first Y-type molecular sieve (that is, Y molecular sieve modified with rare earth, iron, copper, phosphorus) product is to combine RENaY with rare earth compounds, iron-containing, copper-containing, and phosphorus-containing Phosphorous substances, with or without ammonium salts, as NaY:RE 2 O 3 :Fe 2 O 3 /CuO:P 2 O 5 :ammonium salts=1:0.02-0.15:0.001-0.05:0-0.04: 0-0.5 (weight ratio), pH=2.0-4.5, react at 20-100°C, then filter and wash.
上述改性过程中,所述的稀土化合物是氯化稀土或硝酸稀土或硫酸稀土,优选氯化稀土。可以是单一的稀土元素,也可以是不同的稀土元素的混合物。In the above modification process, the rare earth compound is rare earth chloride, rare earth nitrate or rare earth sulfate, preferably rare earth chloride. It can be a single rare earth element or a mixture of different rare earth elements.
所述的含铁物质可以选自不同价态铁的盐类,如氯化铁、氯化亚铁、硝酸铁、硝酸亚铁、硫酸铁、硫酸亚铁中的一种或多种。The iron-containing substance may be selected from salts of iron in different valence states, such as one or more of ferric chloride, ferrous chloride, ferric nitrate, ferrous nitrate, ferric sulfate, and ferrous sulfate.
所述的含铜物质可以选自不同价态铜的盐类,如氯化铜、氯化亚铜、硝酸铜、硝酸亚铜、硫酸铜中的一种或多种。The copper-containing substance may be selected from salts of copper in different valence states, such as one or more of copper chloride, cuprous chloride, copper nitrate, cuprous nitrate, and copper sulfate.
所述的含磷物质选自磷酸或其盐类,如磷酸铵、磷酸二氢铵、磷酸氢二铵中的一种或多种的混合物。The phosphorus-containing substance is selected from phosphoric acid or its salts, such as one or more mixtures of ammonium phosphate, ammonium dihydrogen phosphate, and diammonium hydrogen phosphate.
所述的铵盐选自氯化铵、硫酸铵、硝酸铵、碳酸铵、碳酸氢铵、硫酸氢铵、磷酸铵、磷酸二氢铵、磷酸氢二铵中的一种或多种,其中优选氯化铵和/或硫酸铵。Described ammonium salt is selected from one or more in ammonium chloride, ammonium sulfate, ammonium nitrate, ammonium carbonate, ammonium bicarbonate, ammonium bisulfate, ammonium phosphate, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, wherein preferred Ammonium Chloride and/or Ammonium Sulfate.
所述的第一Y型分子筛,在稀土含量相当的情况下,与常规稀土Y分子筛相比,具有更高的酸量尤其是具有更高的外表面酸量。通过吸附三丁基氧化磷和吸附三甲基氧化磷的酸量表征方法,该改性Y型分子筛吸附三丁基氧化磷(TBPO,动态直径0.82nm)后31P MAS NMR测定的分子筛酸量为1.400-4.500mmol·g-1,由于TBPO的分子动态直径为0.82nm,大于分子筛孔道尺寸,进入不了分子筛孔道中,因此其表征的是分子筛的外表面酸量;而该改性Y型分子筛吸附三甲基氧化磷(TMPO)后31P MAS NMR测定的分子筛酸量为2.300-6.600mmol·g-1,由于TMPO分子的动态直径为0.55nm,能够进入到分子筛的孔道中,因此其表征的是分子筛的体相酸量。Compared with conventional rare earth Y molecular sieves, the first Y-type molecular sieve has a higher acid content, especially a higher external surface acid content, when the rare earth content is equivalent. The acid content of the modified Y-type molecular sieve was determined by 31 P MAS NMR after adsorbing tributyl phosphorus oxide (TBPO, dynamic diameter 0.82nm) through the acid content characterization method of adsorbing tributyl phosphorus oxide and adsorbing trimethyl phosphorus oxide 1.400-4.500mmol·g -1 , since the molecular dynamic diameter of TBPO is 0.82nm, which is larger than the pore size of the molecular sieve, it cannot enter the pore channel of the molecular sieve, so it represents the acidity on the outer surface of the molecular sieve; and the modified Y-type molecular sieve After the adsorption of trimethylphosphorus oxide (TMPO), the molecular sieve acid content determined by 31 P MAS NMR is 2.300-6.600 mmol·g -1 . Since the dynamic diameter of TMPO molecules is 0.55 nm, they can enter the pores of molecular sieves, so its characterization is the bulk acid content of the molecular sieve.
本发明所述的第一Y型分子筛,通过以NaY为原料,经两次稀土交换引入了较高的稀土含量,提高了分子筛的活性稳定性;铁/铜/磷的引入起到了调节酸性中心强度和密度的作用,同时由于铁和/或铜离子核外电子分布具有d空轨道,有利于与含孤对电子的氮原子形成络合物而选择性吸附碱性氮化物,减轻碱氮对分子筛酸中心的毒害作用,并且所述的第一Y型分子筛具有更多的外表面酸量,这有利于其作为活性组元有效抵御碱氮大分子对分子筛酸中心的毒害作用,使所得到的改性Y型分子筛表现出优异的抗碱氮性能。从而有利于本发明提供的催化剂具有显著的抗碱氮性能。The first Y-type molecular sieve of the present invention, by using NaY as a raw material, introduces a higher rare earth content through two rare earth exchanges, which improves the activity and stability of the molecular sieve; the introduction of iron/copper/phosphorus plays a role in regulating the acid center The effect of strength and density, at the same time, because the electron distribution of iron and/or copper ions has d empty orbitals, it is beneficial to form complexes with nitrogen atoms containing lone pair electrons to selectively adsorb basic nitrides, reducing the impact of basic nitrogen on The poisoning effect of the acid center of the molecular sieve, and the first Y-type molecular sieve has more acid content on the outer surface, which is conducive to effectively resisting the poisoning effect of the alkali nitrogen macromolecule on the acid center of the molecular sieve as an active component, so that the obtained The modified Y-type molecular sieve exhibits excellent alkali nitrogen resistance. Therefore, it is beneficial that the catalyst provided by the invention has remarkable alkali nitrogen resistance.
为了提高本发明所述抗碱氮多产液化气的催化裂化催化剂在对碱性氮化合物含量较高的重油进行催化裂化的过程中的催化裂化活性,以获得提高的转化率,并提高将重质油转化为液化气的活性,以提高液化气收率,优选情况下,以所述裂化活性组元的总重量计,所述裂化活性组元含有70-85重量%的Y型分子筛组分和15-30重量%的MFI结构分子筛组分。在本发明中,所述裂化活性组元中的Y型分子筛组分和MFI结构分子筛组分的重量比例都是以干基计。In order to improve the catalytic cracking activity of the catalytic cracking catalyst of the present invention, which is resistant to alkali nitrogen and produces liquefied gas, in the process of catalytic cracking of heavy oil with a higher content of basic nitrogen compounds, so as to obtain an improved conversion rate and improve the Quality oil is converted into the activity of liquefied gas, to improve the yield of liquefied gas, preferably, based on the total weight of the cracking active components, the cracking active components contain 70-85% by weight of Y-type molecular sieve components and 15-30% by weight of molecular sieve components of MFI structure. In the present invention, the weight proportions of the Y-type molecular sieve component and the MFI structure molecular sieve component in the cracking active component are calculated on a dry basis.
本发明所述的活性组分中包括Y型分子筛,所述的Y型分子筛还可以包括除所述的第一Y型分子筛以外的其它分子筛,以Y型分子筛的总重量为基准,所述的Y型分子筛包括20~100重量%的第一Y型分子筛和0-80重量%的其它Y型分子筛。所述的其它Y型分子筛可以是第二Y型分子筛和/或第三Y型分子筛,所述第二Y型分子筛为含稀土的DASY分子筛,所述含稀土的DASY分子筛为含稀土的水热超稳分子筛,其中以RE2O3(氧化稀土)计的稀土含量优选为1.5-3.0重量%。所述含稀土的DASY分子筛可以为各种市售产品,例如可以为购自中石化催化剂齐鲁分公司的DASY2.0分子筛。The active components of the present invention include Y-type molecular sieves, and the Y-type molecular sieves may also include other molecular sieves except the first Y-type molecular sieves. Based on the total weight of the Y-type molecular sieves, the The Y-type molecular sieve includes 20-100% by weight of the first Y-type molecular sieve and 0-80% by weight of other Y-type molecular sieves. The other Y-type molecular sieves can be the second Y-type molecular sieve and/or the third Y-type molecular sieve, the second Y-type molecular sieve is a rare earth-containing DASY molecular sieve, and the rare earth-containing DASY molecular sieve is a rare earth-containing hydrothermal The ultrastable molecular sieve wherein the rare earth content calculated as RE 2 O 3 (rare earth oxide) is preferably 1.5-3.0% by weight. The rare earth-containing DASY molecular sieve can be various commercially available products, for example, it can be DASY2.0 molecular sieve purchased from Sinopec Catalyst Qilu Branch.
所述第三Y型分子筛中以稀土氧化物计的稀土含量为12-16重量%,以P2O5计的磷含量为0.5-7重量%,该分子筛的31P MAS NMR谱中,化学位移为-14±2ppm和-23±2ppm共振信号的峰面积占总峰面积的百分数大于85%,分子筛的27Al MAS NMR谱中,化学位移为0±2ppm共振信号的峰面积占总峰面积的百分数大于20%。The rare earth content in the third Y-type molecular sieve is 12-16% by weight in terms of rare earth oxides, and the phosphorus content in terms of P 2 O 5 is 0.5-7% by weight. In the 31P MAS NMR spectrum of the molecular sieve, the chemical shift The peak area of the -14±2ppm and -23±2ppm resonance signals accounts for more than 85% of the total peak area. In the 27Al MAS NMR spectrum of the molecular sieve, the peak area of the resonance signal with a chemical shift of 0±2ppm accounts for the percentage of the total peak area Greater than 20%.
优选情况下,所述第三Y型分子筛中以P2O5计的磷含量为1-3重量%。Preferably, the phosphorus content calculated as P 2 O 5 in the third Y-type molecular sieve is 1-3% by weight.
优选情况下,所述第三Y型分子筛的31P MAS NMR谱中,化学位移为-14±2ppm和-23±2ppm共振信号的峰面积占总峰面积的百分数大于90%。优选情况下,所述第三Y型分子筛的晶胞常数为 Preferably, in the 31 P MAS NMR spectrum of the third Y-type molecular sieve, the peak areas of resonance signals with chemical shifts of -14±2ppm and -23±2ppm account for more than 90% of the total peak area. Preferably, the unit cell constant of the third Y-type molecular sieve is
在本发明中,所述第三Y型分子筛可以根据现有方法制备的得到,具体的制备方法可以参照专利申请CN101088917A,特别是其中的实施例1-4。In the present invention, the third Y-type molecular sieve can be prepared according to the existing method, and the specific preparation method can refer to the patent application CN101088917A, especially the examples 1-4 therein.
在本发明中,所述的第一MFI结构分子筛对正己烷和环己烷的吸附重量比为4-5,以氧化物的摩尔比计,其无水化学组成表达式为:(0.01-0.25)RE2O3·(0.005-0.02)Na2O·Al2O3·(0.2-1.0)P2O5·(35-120)SiO2。In the present invention, the adsorption weight ratio of the first MFI structure molecular sieve to normal hexane and cyclohexane is 4-5, in terms of the molar ratio of oxides, its anhydrous chemical composition expression is: (0.01-0.25 )RE 2 O 3 ·(0.005-0.02)Na 2 O·Al 2 O 3 ·(0.2-1.0)P 2 O 5 ·(35-120)SiO 2 .
所述第一MFI结构分子筛的X光衍射谱图数据如下表1所示,表中各符号所表示的相对强度值如下所示,在下表1中,VS:80-100%;S:60-80%;M:40-60%;W:20-40%;VW:<20%。The X-ray diffraction spectrum data of the first molecular sieve with MFI structure are shown in Table 1 below, and the relative intensity values represented by the symbols in the table are shown below. In Table 1 below, VS: 80-100%; S: 60- 80%; M: 40-60%; W: 20-40%; VW: <20%.
表1Table 1
在所述第一MFI结构分子筛中,稀土包容在分子筛晶内。稀土来自分子筛合成时所使用的含稀土的八面沸石晶种。In the first molecular sieve with MFI structure, the rare earth is contained in the molecular sieve crystal. The rare earths come from the rare earth-containing faujasite seeds used in the synthesis of molecular sieves.
在所述第一MFI结构分子筛中,磷与分子筛骨架中的铝化学结合,该分子筛在27Al NMR谱中具有对应于Al(4Si)配位(即Al源自通过氧与四个Si原子形成四面体结构)的、化学位移为55ppm的谱峰,而且具有对应于Al(4P)配位(即Al原子通过氧与四个P原子形成四面体结构)的、化学位移为39ppm的谱峰;该分子筛在31P NMR谱中则具有对应于P(4Al)配位(即存在着PO4四面体与相邻AlO4四面体的相互作用)的、化学位移为-29ppm的谱峰。In the first MFI structure molecular sieve, phosphorus is chemically bound to aluminum in the framework of the molecular sieve, which has a coordination corresponding to Al(4Si) in the 27 Al NMR spectrum (i.e., Al originates from the formation of four Si atoms through oxygen. Tetrahedral structure), the chemical shift is 55ppm spectrum peak, and there is a spectrum peak corresponding to Al(4P) coordination (that is, the Al atom forms a tetrahedral structure through oxygen and four P atoms), the chemical shift is 39ppm; In the 31 P NMR spectrum, the molecular sieve has a peak corresponding to the P(4Al) coordination (that is, the interaction between the PO 4 tetrahedron and the adjacent AlO 4 tetrahedron) and a chemical shift of -29ppm.
在优选情况下,所述第一MFI结构分子筛中的磷均匀分布于分子筛晶相中。透射电镜-能量色散谱(TEM-EDS)的分析结果表明在任意单一晶体颗粒中的磷含量与分子筛体相中的磷含量相近。Preferably, the phosphorus in the molecular sieve with the first MFI structure is evenly distributed in the crystal phase of the molecular sieve. The analysis results of transmission electron microscope-energy dispersive spectroscopy (TEM-EDS) show that the phosphorus content in any single crystal particle is similar to that in the molecular sieve bulk phase.
所述第一MFI结构分子筛对正己烷与环己烷的吸附重量比为4-5,在吸附温度为40℃、吸附时间为3小时、吸附相压力P/P0=0.20-0.25的条件下,该分子筛对正己烷的吸附量为98-105毫克/克,对环己烷的吸附量为20-25毫克/克。其中P0为饱和蒸汽压。The adsorption weight ratio of the first MFI structure molecular sieve to n-hexane and cyclohexane is 4-5, under the conditions that the adsorption temperature is 40°C, the adsorption time is 3 hours, and the adsorption phase pressure P/P 0 =0.20-0.25 , the adsorption capacity of the molecular sieve to n-hexane is 98-105 mg/g, and the adsorption capacity to cyclohexane is 20-25 mg/g. where P0 is the saturated vapor pressure.
在本发明中,所述第一MFI结构分子筛可以根据现有的方法制备得到,具体的制备方法可以参照专利申请CN1147420A,特别是其中的实施例1-6。In the present invention, the first molecular sieve with MFI structure can be prepared according to the existing method, and the specific preparation method can refer to the patent application CN1147420A, especially the examples 1-6 therein.
在本发明中,所述的第二MFI结构分子筛以氧化物重量比计的无水化学组成表达式为:(0-0.3)Na2O·(0.5-5.5)Al2O3·(1.3-10)P2O5·(0.7-15)M1xOy·(0.01-5)M2mOn·(70-97)SiO2,其中,M1为Fe、Co或Ni,x表示M1的原子数,y表示满足M1氧化态所需氧的个数,M2选自Zn、Mn、Ga或Sn,m表示M2的原子数,n表示满足M2氧化态所需氧的个数。In the present invention, the anhydrous chemical composition expression of the second MFI structure molecular sieve in terms of oxide weight ratio is: (0-0.3)Na 2 O·(0.5-5.5)Al 2 O 3 ·(1.3- 10)P 2 O 5 ·(0.7-15)M1 x O y ·(0.01-5)M2 m O n ·(70-97)SiO 2 , where M1 is Fe, Co or Ni, and x represents the atom of M1 Number, y represents the number of oxygen required to meet the M1 oxidation state, M2 is selected from Zn, Mn, Ga or Sn, m represents the number of atoms of M2, and n represents the number of oxygen required to meet the M2 oxidation state.
在优选情况下,所述第二MFI结构分子筛以氧化物重量比计为(0-0.2)Na2O·(0.9-5.0)Al2O3·(1.5-7)P2O5·(0.9-10)M1xOy·(0.5-2)M2mOn·(82-92)SiO2。Preferably, the molecular sieve with the second MFI structure is (0-0.2)Na 2 O·(0.9-5.0)Al 2 O 3 ·(1.5-7)P 2 O 5 ·(0.9 -10) M1 x O y · (0.5-2) M2 m On · (82-92) SiO 2 .
在优选情况下,M1为Fe,M2为Zn。In a preferred case, M1 is Fe and M2 is Zn.
在本发明中,所述第二MFI结构分子筛可以根据现有的方法制备得到,具体的制备方法也可以参照专利申请CN1611299A,特别是其中的实施例1-11。In the present invention, the second molecular sieve with MFI structure can be prepared according to the existing method, and the specific preparation method can also refer to the patent application CN1611299A, especially the examples 1-11 therein.
在本发明中,所述粘土可以为催化裂化催化剂中常规使用的各种粘土,例如可以为选自高岭土、多水高岭土、蒙脱土、硅藻土、埃洛石、皂石、累托土、海泡石、凹凸棒石、水滑石和膨润土中的一种或多种。In the present invention, the clay can be various clays conventionally used in catalytic cracking catalysts, for example, it can be selected from kaolin, halloysite, montmorillonite, diatomaceous earth, halloysite, saponite, retort clay One or more of , sepiolite, attapulgite, hydrotalcite and bentonite.
在本发明中,所述粘结剂可以为催化裂化催化剂中常规使用的各种粘结剂,例如可以为选自硅溶胶、铝溶胶和拟薄水铝石中的一种或多种,优选为铝溶胶和拟薄水铝石的双铝粘结剂。In the present invention, the binder can be various binders conventionally used in catalytic cracking catalysts, for example, it can be one or more selected from silica sol, aluminum sol and pseudo-boehmite, preferably Double aluminum binder for aluminum sol and pseudoboehmite.
本发明提供的抗碱氮的催化裂化催化剂中,还含有介孔硅铝材料,优选,所述的介孔硅铝材料具有拟薄水铝石的物相结构,以氧化物重量计的无水化学表达式为:(0-0.3)Na2O·(40-90)Al2O3·(10-60)SiO2,其平均孔径为8-20nm,最可几孔径为5-15nm,比表面积为200-400m2/g,孔容为0.5-2.0ml/g;更优选,其平均孔径为10-20nm,最可几孔径为10-15nm,比表面积为200-400m2/g,孔容为1.0-2.0ml/g。所述介孔硅铝材料可由以下方法制得,该方法包括:将铝源与碱溶液在室温至85℃下中和成胶,成胶终点pH为7-11;然后按照SiO2∶Al2O3=1∶(0.6-9)的重量比加入硅源,在室温至90℃下老化1-10小时,然后进行过滤,过滤所得滤饼经过铵交换,使氧化钠含量不超过0.3重量%,再于100-150℃下干燥、350-650℃下焙烧1-20小时得到介孔硅铝材料,该材料可直接用于制备催化剂,或者,在室温至80℃、酸铝比0.1-0.3的条件下将上述焙烧得到的介孔硅铝材料与无机酸接触0.5-3小时得到酸处理的介孔硅铝材料用于制备裂化催化剂。所述铝源可以为本领域常规使用的各种铝源,所述铝源例如可以为选自硝酸铝、硫酸铝或氯化铝中的一种或多种。所述硅源可以为本领域常规使用的各种硅源,所述硅源例如可以为硅胶、水玻璃、硅酸钠、四乙基硅、氧化硅、硅溶胶和硅凝胶中的至少一种。所述碱溶液可以为本领域常规使用的各种碱溶液,例如可以为氨水、氢氧化钾溶液、偏铝酸钠溶液和氢氧化钠溶液中的一种或多种。所述介孔硅铝材料及其制备方法可参见CN1565733A或CN 1854258A,例如CN 1854258A的实施例1~9。The alkali nitrogen resistant catalytic cracking catalyst provided by the present invention also contains mesoporous silica-alumina material, preferably, the mesoporous silica-alumina material has a phase structure of pseudo-boehmite, anhydrous The chemical expression is: (0-0.3)Na 2 O·(40-90)Al 2 O 3 ·(10-60)SiO 2 , the average pore diameter is 8-20nm, the most probable pore diameter is 5-15nm, the ratio The surface area is 200-400m 2 /g, the pore volume is 0.5-2.0ml/g; more preferably, the average pore diameter is 10-20nm, the most probable pore diameter is 10-15nm, the specific surface area is 200-400m 2 /g, the pore The volume is 1.0-2.0ml/g. The mesoporous silica-alumina material can be prepared by the following method, which includes: neutralizing the aluminum source and alkali solution at room temperature to 85°C to form a gel, and the pH of the end point of gelation is 7-11; and then according to SiO 2 : Al 2 O 3 =1:(0.6-9) weight ratio, adding silicon source, aging at room temperature to 90°C for 1-10 hours, and then filtering, the filter cake obtained by filtering is exchanged with ammonium, so that the content of sodium oxide does not exceed 0.3% by weight , then dried at 100-150°C and calcined at 350-650°C for 1-20 hours to obtain a mesoporous silica-alumina material, which can be directly used to prepare a catalyst, or, at room temperature to 80°C, with an acid-aluminum ratio of 0.1-0.3 The mesoporous silica-alumina material obtained by the above-mentioned roasting is contacted with the inorganic acid for 0.5-3 hours under certain conditions to obtain an acid-treated mesoporous silica-alumina material for preparing a cracking catalyst. The aluminum source may be various aluminum sources conventionally used in the art, for example, the aluminum source may be one or more selected from aluminum nitrate, aluminum sulfate or aluminum chloride. The silicon source can be various silicon sources conventionally used in the art, and the silicon source can be, for example, at least one of silica gel, water glass, sodium silicate, tetraethyl silicon, silicon oxide, silica sol and silica gel kind. The alkaline solution can be various alkaline solutions commonly used in this field, for example, it can be one or more of ammonia water, potassium hydroxide solution, sodium metaaluminate solution and sodium hydroxide solution. The mesoporous silica-alumina material and its preparation method can be referred to CN1565733A or CN1854258A, for example, Examples 1-9 of CN1854258A.
根据本发明提供的抗碱氮多产液化气的催化裂化催化剂,以所述催化裂化催化剂的干基重量为基准,所述裂化活性组元以干基计的含量为10-70重量%,所述介孔硅铝材料以干基计的含量为1-20重量%,所述粘结剂以干基计的含量为10-60重量%,所述粘土以干基计的含量为10-70重量%,优选的情况下,以所述催化裂化催化剂的干基重量为基准,所述裂化活性组元以干基计的含量为10-45重量%,所述介孔硅铝材料以干基计的含量为2-15重量%,所述粘土以干基计的含量为20-40重量%,所述粘结剂以干基计的含量为20-50重量%。According to the catalytic cracking catalyst for alkali nitrogen resistance and high yield of liquefied gas provided by the present invention, based on the dry basis weight of the catalytic cracking catalyst, the content of the cracking active component is 10-70% by weight on a dry basis, so The content of the mesoporous silica-alumina material is 1-20% by weight on a dry basis, the content of the binder on a dry basis is 10-60% by weight, and the content of the clay on a dry basis is 10-70% by weight. % by weight, preferably, based on the dry basis weight of the catalytic cracking catalyst, the content of the cracking active component is 10-45% by weight on a dry basis, and the content of the mesoporous silica-alumina material is based on a dry basis The content of the clay is 2-15% by weight, the content of the clay is 20-40% by weight on a dry basis, and the content of the binder is 20-50% by weight on a dry basis.
本发明还提供一种所述的抗碱氮多产液化气的催化裂化催化剂的制备方法,该方法包括以下步骤:The present invention also provides a kind of preparation method of the described catalytic cracking catalyst of resisting alkaline nitrogen and producing liquefied gas more, the method comprises the following steps:
(1)以NaY分子筛为原料,经过稀土交换和焙烧,获得“一交一焙”RENaY;再与稀土化合物、含铁物质、含铜物质、含磷物质、与或不与铵盐反应,获得用稀土和铁/铜/磷改性的Y分子筛产物,即为本发明所述的第一Y分子筛活性组分;(1) Using NaY molecular sieve as raw material, after rare earth exchange and roasting, "cross-baking" RENaY is obtained; then react with rare earth compounds, iron-containing substances, copper-containing substances, phosphorus-containing substances, and ammonium salts to obtain The Y molecular sieve product modified with rare earth and iron/copper/phosphorus is the active component of the first Y molecular sieve described in the present invention;
其中,所述的“一交一焙”RENaY的过程为本领域技术人员所熟知,通常是将NaY与稀土化合物在NaY∶RE2O3=1∶0.10-0.25(重量比),pH=2.0-4.5,交换温度25-100℃条件下处理0.3-1.5小时,过滤,洗涤,滤饼在400-850℃,0-100%水蒸汽下焙烧0.3小时以上得到。进一步所述的获得用稀土和铁/铜/磷改性的Y分子筛产物的过程是根据目的产物组成,将RENaY与稀土化合物、含铁、含铜、含磷的物质,有或没有铵盐的情况下,按照NaY∶RE2O3∶Fe2O3/CuO∶P2O5∶铵盐=1∶0.02-0.15∶0.001-0.05∶0-0.04∶0-0.5(重量比),pH=2.0-4.5,在20-100℃下反应,再经过滤,洗涤的过程。Wherein, the process of "cross-baking" RENaY is well known to those skilled in the art, usually NaY and rare earth compound are mixed in NaY:RE 2 O 3 =1:0.10-0.25 (weight ratio), pH=2.0 -4.5, exchange temperature at 25-100°C for 0.3-1.5 hours, filter, wash, and filter cake at 400-850°C, 0-100% steam for more than 0.3 hours to obtain. The further described process of obtaining Y molecular sieve products modified with rare earth and iron/copper/phosphorus is to combine RENaY with rare earth compounds, iron-containing, copper-containing, phosphorus-containing substances, with or without ammonium salts, according to the composition of the target product Under the circumstances, according to NaY : RE2O3 : Fe2O3 / CuO : P2O5 :ammonium salt=1 :0.02-0.15 :0.001-0.05:0-0.04:0-0.5 (weight ratio), pH= 2.0-4.5, react at 20-100°C, then filter and wash.
(2)将裂化活性组元、介孔硅铝材料、粘土和粘结剂混合打浆,然后依次进行喷雾干燥、洗涤、过滤和干燥,其中,所述裂化活性组元含有Y型分子筛组分和MFI结构分子筛组分;(2) Mix and beat the cracking active component, mesoporous silica-alumina material, clay and binder, and then perform spray drying, washing, filtering and drying in sequence, wherein the cracking active component contains Y-type molecular sieve components and Molecular sieve components with MFI structure;
所述的Y型分子筛组分包括所述的第一Y型分子筛,或者包括所述的第一Y型分子筛和其它Y型分子筛,所述其它Y型分子筛优选为第二Y型分子筛和/或第三Y型分子筛,所述MFI结构分子筛组分为第一MFI结构分子筛和/或第二MFI结构分子筛,其中,The Y-type molecular sieve component includes the first Y-type molecular sieve, or includes the first Y-type molecular sieve and other Y-type molecular sieves, and the other Y-type molecular sieves are preferably second Y-type molecular sieves and/or The third Y-type molecular sieve, the MFI structure molecular sieve component is the first MFI structure molecular sieve and/or the second MFI structure molecular sieve, wherein,
所述第二Y型分子筛为含稀土的DASY分子筛;The second Y-type molecular sieve is DASY molecular sieve containing rare earth;
所述第三Y型分子筛中以稀土氧化物计的稀土含量为12-16重量%,以P2O5计的磷含量为0.5-7重量%,该分子筛的31P MAS NMR谱中,化学位移为-14±2ppm和-23±2ppm共振信号的峰面积占总峰面积的百分数大于85%,该分子筛的27Al MAS NMR谱中,化学位移为0±2ppm共振信号的峰面积占总峰面积的百分数大于20%;In the third Y-type molecular sieve, the rare earth content calculated as rare earth oxide is 12-16% by weight, and the phosphorus content calculated as P2O5 is 0.5-7% by weight. In the 31 P MAS NMR spectrum of the molecular sieve, chemical The peak area of the resonance signal with a shift of -14 ± 2ppm and -23 ± 2ppm accounts for more than 85% of the total peak area. In the 27 Al MAS NMR spectrum of the molecular sieve, the peak area of the resonance signal with a chemical shift of 0 ± 2ppm accounts for more than 85% of the total peak area. The percentage of area is greater than 20%;
所述第一MFI结构分子筛中以氧化物的摩尔比计的无水化学组成表达式为:(0.01-0.25)RE2O3·(0.005-0.02)Na2O·Al2O3·(0.2-1.0)P2O5·(35-120)SiO2,该分子筛对正己烷和环己烷的吸附重量比为4-5;The expression of the anhydrous chemical composition in terms of the molar ratio of oxides in the first MFI molecular sieve is: (0.01-0.25)RE 2 O 3 ·(0.005-0.02)Na 2 O·Al 2 O 3 ·(0.2 -1.0)P 2 O 5 ·(35-120)SiO 2 , the adsorption weight ratio of the molecular sieve to n-hexane and cyclohexane is 4-5;
所述第二MFI结构分子筛以氧化物重量比计的无水化学组成表达式为:(0-0.3)Na2O·(0.5-5.5)Al2O3·(13-10)P2O5·(0.7-15)M1xOy·(0.01-5)M2mOn·(70-97)SiO2,其中,M1为Fe、Co或Ni,x表示M1的原子数,y表示满足M1氧化态所需氧的个数,M2选自Zn、Mn、Ga或Sn,m表示M2的原子数,n表示满足M2氧化态所需氧的个数。The anhydrous chemical composition expression of the second MFI structural molecular sieve in terms of oxide weight ratio is: (0-0.3)Na 2 O·(0.5-5.5)Al 2 O 3 ·(13-10)P 2 O 5 ·(0.7-15)M1 x O y ·(0.01-5)M2 m O n ·(70-97)SiO 2 , where M1 is Fe, Co or Ni, x represents the atomic number of M1, and y represents the satisfaction of M1 The number of oxygen required for the oxidation state, M2 is selected from Zn, Mn, Ga or Sn, m represents the number of atoms of M2, and n represents the number of oxygen required to meet the oxidation state of M2.
根据本发明提供的抗碱氮多产液化气的催化裂化催化剂制备方法,在步骤(2)中,将所述裂化活性组元、介孔硅铝材料、粘土和粘结剂混合打浆,以及后续的喷雾干燥、洗涤、过滤和干燥,这些工序的实施方法均可采用常规的方法实施,它们的具体实施方法例如在专利申请CN1916166A、CN1362472A、CN1727442A、CN1132898C、CN1727445A和CN1098130A中都有详尽的描述,这里一并引入本发明中以作参考。According to the preparation method of the catalytic cracking catalyst for alkali nitrogen resistance and high yield of liquefied gas provided by the present invention, in step (2), the cracking active component, mesoporous silica-alumina material, clay and binder are mixed and beaten, and the subsequent Spray drying, washing, filtering and drying, the implementation methods of these operations can be implemented by conventional methods, and their specific implementation methods are described in detail in patent applications CN1916166A, CN1362472A, CN1727442A, CN1132898C, CN1727445A and CN1098130A, It is hereby incorporated into the present invention for reference.
根据本发明提供的所述方法,在步骤(2)中,以干基计,所述裂化活性组元、所述介孔硅铝材料、所述粘土和所述粘结剂的加入量的重量比可以为(10-70)∶(1-20)∶(10-70)∶(10-60),优选为(10-45)∶(2-15)∶(20-40)∶(20-50)。所述裂化活性组元、介孔硅铝材料、粘土和粘结剂均与前文描述的相同。According to the method provided by the present invention, in step (2), on a dry basis, the weight of the added amount of the cracking active component, the mesoporous silica-alumina material, the clay and the binder The ratio can be (10-70): (1-20): (10-70): (10-60), preferably (10-45): (2-15): (20-40): (20- 50). The cracking active component, mesoporous silica-alumina material, clay and binder are the same as those described above.
以下通过实施例对本发明作进一步说明。The present invention will be further described below through embodiment.
在以下实施例和对比例中,In the following examples and comparative examples,
介孔硅铝材料根据CN 1854258A中实施例1的方法制得(SH-SA-1);The mesoporous silicon-aluminum material is prepared according to the method of Example 1 in CN 1854258A (SH-SA-1);
第二Y型分子筛为DASY2.0分子筛,由中石化催化剂齐鲁分公司生产;The second Y-type molecular sieve is DASY2.0 molecular sieve, produced by Sinopec Catalyst Qilu Branch;
第三Y型分子筛根据专利申请CN101088917A中实施例1的方法制得;The third Y-type molecular sieve was prepared according to the method of Example 1 in the patent application CN101088917A;
第一MFI结构分子筛根据专利申请CN1147420A中实施例1的方法制得;The first molecular sieve with MFI structure was prepared according to the method of Example 1 in the patent application CN1147420A;
第二MFI结构分子筛根据专利申请CN1611299A中实施例1的方法制得;The second molecular sieve with MFI structure was prepared according to the method of Example 1 in the patent application CN1611299A;
铝溶胶由中石化催化剂齐鲁分公司生产,Al2O3含量为21.5重量%;Aluminum sol is produced by Sinopec Catalyst Qilu Branch, with an Al2O3 content of 21.5% by weight;
高岭土购自苏州中国高岭土公司;Kaolin was purchased from Suzhou China Kaolin Company;
拟薄水铝石购自山东铝厂;Pseudoboehmite was purchased from Shandong Aluminum Plant;
实施例1Example 1
本实施例用于说明本发明提供的所述催化裂化催化剂。This example is used to illustrate the catalytic cracking catalyst provided by the present invention.
(1)改性Y型分子筛的制备(1) Preparation of modified Y-type molecular sieve
反应釜中加入以干基计5.0千克NaY分子筛(长岭催化剂厂提供,结晶度86%,骨架硅铝比(SiO2/Al2O3摩尔比)5.2)和4千克去离子水,激烈搅拌状态下缓慢加入4.0升的氯化稀土溶液(齐鲁催化剂厂提供,RE2O3含量222.5克/升),用4重量%稀盐酸调节体系pH=3.5,升温至90℃下搅拌1.5小时,过滤,洗涤,干燥;然后在650℃、100%水蒸汽气氛下焙烧2小时,制得“一交一焙”稀土钠Y,记做改性分子筛ABY-1A。Add 5.0 kilograms of NaY molecular sieves on a dry basis (Changling Catalyst Factory provides, crystallinity 86%, skeleton silicon-aluminum ratio (SiO 2 /Al 2 O 3 molar ratio) 5.2) and 4 kilograms of deionized water in the reactor, vigorously stir Slowly add 4.0 liters of rare earth chloride solution (provided by Qilu Catalyst Factory, RE 2 O 3 content 222.5 g/l), adjust the pH of the system to 3.5 with 4% by weight dilute hydrochloric acid, heat up to 90°C and stir for 1.5 hours, filter , washed and dried; then roasted at 650°C for 2 hours in a 100% water vapor atmosphere to obtain "cross-baked" rare earth sodium Y, which is recorded as modified molecular sieve ABY-1A.
取改性分子筛ABY-1A干基2.0千克放入反应釜中,加入1.6千克去离子水,激烈搅拌状态下缓慢加入0.50升的氯化稀土溶液(RE2O3含量222.5克/升)、135克Fe(NO3)3·9H2O、55克CuCl2·2H2O固体及48.6克磷酸二氢铵,用4%稀盐酸调节体系pH=3.5,升温至90℃搅拌1小时,过滤,洗涤,干燥,制得本发明所述的第一Y型分子筛,记做ABY-1。Take 2.0 kg of modified molecular sieve ABY-1A dry basis and put it into the reaction kettle, add 1.6 kg of deionized water, and slowly add 0.50 liter of rare earth chloride solution (RE 2 O 3 content 222.5 g/liter), 135 gram of Fe(NO 3 ) 3 9H 2 O, 55 grams of CuCl 2 .2H 2 O solid and 48.6 grams of ammonium dihydrogen phosphate, adjust the pH of the system to 3.5 with 4% dilute hydrochloric acid, raise the temperature to 90°C and stir for 1 hour, filter, After washing and drying, the first Y-type molecular sieve of the present invention is obtained, which is recorded as ABY-1.
荧光法(XRF)测得ABY-1样品中氧化稀土含量为16.1重量%,氧化钠含量为1.6重量%,氧化铁含量为0.75重量%,氧化铜含量为0.69重量%,五氧化二磷含量为0.83重量%。Fluorescence method (XRF) records that in the ABY-1 sample, the rare earth oxide content is 16.1% by weight, the sodium oxide content is 1.6% by weight, the iron oxide content is 0.75% by weight, the copper oxide content is 0.69% by weight, and the phosphorus pentoxide content is 0.83% by weight.
样品吸附三甲基氧化磷(TMPO)后31P MAS NMR分析结果:B酸3.712mmol·g-1,L酸0.638mmol·g-1,合计4.350mmol·g-1。31P MAS NMR analysis results of the sample after adsorption of trimethylphosphorus oxide (TMPO): B acid 3.712mmol·g -1 , L acid 0.638mmol·g -1 , total 4.350mmol·g -1 .
样品吸附三丁基氧化磷(TBPO)后31P MAS NMR分析结果:B酸2.054mmol·g-1,L酸0.582mmol·g-1,合计2.636mmol·g-1。31P MAS NMR analysis results of the sample after adsorption of tributylphosphorus oxide (TBPO): B acid 2.054mmol·g -1 , L acid 0.582mmol·g -1 , total 2.636mmol·g -1 .
(2)催化裂化催化剂的制备(2) Preparation of catalytic cracking catalyst
将以干基计的19重量份的拟薄水铝石与去离子水混合打浆,并向得到的浆液中加入浓度为36重量%的盐酸胶溶,酸铝比(所述36重量%盐酸与以干基计的拟薄水铝石重量比)为0.20,升温至65℃酸化1小时,分别加入含有以干基计的28重量份高岭土的浆液、以干基计的9重量份的铝溶胶以及以干基计的8重量份的介孔硅铝材料的浆液,搅拌20分钟,之后再向其中加入以干基计的23重量份的所述第一Y型分子筛ABY-1、以干基计的5重量份的所述第二Y型分子筛DASY2.0和以干基计的8重量份的第一MFI结构分子筛的混合浆液,搅拌30分钟得到固含量30重量%的浆液,然后喷雾干燥制成微球催化剂。将该微球催化剂在500℃下焙烧1小时,再在60℃下用(NH4)2SO4洗涤((NH4)2SO4∶微球催化剂∶H2O=0.05∶1∶10)至Na2O含量小于0.25重量%,最后用去离子水淋洗,过滤后于110℃下烘干,得到催化裂化催化剂C1。The pseudo-boehmite of 19 weight parts on a dry basis is mixed with deionized water for beating, and adding a concentration of 36% by weight hydrochloric acid for peptization in the obtained slurry, the acid-aluminum ratio (the 36% by weight hydrochloric acid and The weight ratio of pseudo-boehmite on dry basis) is 0.20, the temperature is raised to 65° C. and acidified for 1 hour, and a slurry containing 28 parts by weight of kaolin on a dry basis and 9 parts by weight of aluminum sol on a dry basis are added respectively. And the slurry of the mesoporous silica-alumina material of 8 parts by weight on a dry basis, stirred for 20 minutes, and then added the first Y-type molecular sieve ABY-1 of 23 parts by weight on a dry basis, and A mixed slurry of 5 parts by weight of the second Y-type molecular sieve DASY2.0 and 8 parts by weight of the first MFI molecular sieve on a dry basis, stirred for 30 minutes to obtain a slurry with a solid content of 30% by weight, and then spray-dried Made into microsphere catalyst. The microsphere catalyst was calcined at 500°C for 1 hour, and then washed with (NH 4 ) 2 SO 4 at 60°C ((NH 4 ) 2 SO 4 : microsphere catalyst: H 2 O=0.05:1:10) Until the Na 2 O content is less than 0.25% by weight, rinse with deionized water, filter and then dry at 110° C. to obtain catalytic cracking catalyst C1.
实施例2-7Example 2-7
本实施例用于说明本发明提供的所述催化裂化催化剂。This example is used to illustrate the catalytic cracking catalyst provided by the present invention.
分别根据实施例1的方法制备催化裂化催化剂,所不同的是,在步骤(2)中,介孔硅铝材料、高岭土、所述第一Y型分子筛ABY-1、所述第二Y型分子筛DASY2.0、所述第三Y型分子筛、所述第一MFI结构分子筛、所述第二MFI结构分子筛、拟薄水铝石以及铝溶胶的以干基计的投料量分别如下表2所示,对配方中存在多种分子筛的情况,都以分子筛混合浆液的形式加入,其中各个组分的投料量均以重量份计,从而分别制得催化裂化催化剂C2-C7。Prepare catalytic cracking catalyst according to the method of embodiment 1 respectively, difference is, in step (2), mesoporous silicon aluminum material, kaolin, described first Y-type molecular sieve ABY-1, described second Y-type molecular sieve The feed amounts of DASY2.0, the third Y-type molecular sieve, the first MFI structure molecular sieve, the second MFI structure molecular sieve, pseudo-boehmite and aluminum sol on a dry basis are shown in Table 2 below. , when there are multiple molecular sieves in the formula, they are all added in the form of molecular sieve mixed slurry, and the feeding amount of each component is in parts by weight, so as to prepare catalytic cracking catalysts C2-C7 respectively.
表2Table 2
对比例1Comparative example 1
(1)本对比例是按照专利CN1733362所述方法制备的REY。(1) This comparative example is REY prepared according to the method described in patent CN1733362.
反应釜中加入干基3.5千克NaY分子筛(长岭催化剂厂提供,结晶度86%,骨架硅铝比5.2)和20千克去离子水,再向其中加入1.46升的氯化稀土溶液(齐鲁催化剂厂提供,RE2O3含量222.5克/升),60℃下搅拌5分钟后用盐酸调节体系pH=3.5-5.5,继续搅拌1小时后,加入0.4千克氨水,搅拌5分钟后过滤洗涤,干燥进焙烧炉,在重量空速0.2时-1的水蒸汽下600℃焙烧1.5小时,然后按分子筛∶氯化铵∶水=1∶0.1∶10的比例用90℃氯化铵溶液洗涤10分钟,干燥得到对比分子筛DBY。Add dry base 3.5 kilograms of NaY molecular sieves (Changling Catalyst Factory provides, crystallinity 86%, skeleton silicon-aluminum ratio 5.2) and 20 kilograms of deionized waters in the reactor, add 1.46 liters of rare earth chloride solution (Qilu Catalyst Factory) wherein to it again provided, RE 2 O 3 content 222.5 g/L), stirred at 60°C for 5 minutes, adjusted the pH of the system to 3.5-5.5 with hydrochloric acid, continued to stir for 1 hour, added 0.4 kg of ammonia water, stirred for 5 minutes, filtered and washed, dried Roasting furnace, roasting at 600°C for 1.5 hours under water vapor with a weight space velocity of 0.2: -1 , then washing with 90°C ammonium chloride solution for 10 minutes according to the ratio of molecular sieve:ammonium chloride:water=1:0.1:10, and drying A comparative molecular sieve DBY was obtained.
荧光法(XRF)测得DBY样品中氧化稀土含量为16.2重量%,氧化钠含量为1.6重量%。Fluorescence method (XRF) measured that the rare earth oxide content in the DBY sample was 16.2% by weight, and the sodium oxide content was 1.6% by weight.
样品吸附三甲基氧化磷(TMPO)后31P MAS NMR分析结果:B酸3.657mmol·g-1,L酸0.574mmol·g-1,合计4.231mmol·g-1。 31 P MAS NMR analysis results of the sample after adsorption of trimethylphosphorus oxide (TMPO): B acid 3.657mmol·g -1 , L acid 0.574mmol·g -1 , total 4.231mmol·g -1 .
样品吸附三丁基氧化磷(TBPO)后31P MAS NMR分析结果:B酸1.700mmol·g-1,L酸0.567mmol·g-1,合计2.267mmol·g-1。 31 P MAS NMR analysis results of the sample after adsorption of tributylphosphorus oxide (TBPO): B acid 1.700mmol·g -1 , L acid 0.567mmol·g -1 , total 2.267mmol·g -1 .
(2)催化裂化催化剂的制备(2) Preparation of catalytic cracking catalyst
根据实施例2中步骤(2)的方法制备催化裂化催化剂,所不同的是,用所述DBY代替所述第一Y型分子筛ABY-1,从而制得催化裂化催化剂DC1。The catalytic cracking catalyst was prepared according to the method of step (2) in Example 2, except that the DBY was used instead of the first Y-type molecular sieve ABY-1 to obtain the catalytic cracking catalyst DC1.
对比例2-3Comparative example 2-3
分别根据对比例1的方法制备催化裂化催化剂,所不同的是,在步骤(2)中,介孔硅铝材料、高岭土、DBY分子筛、所述第二Y型分子筛DASY2.0、所述第三Y型分子筛、所述第一MFI结构分子筛、所述第二MFI结构分子筛、拟薄水铝石以及铝溶胶的以干基计的投料量分别如下表3所示,其中各个组分的投料量均以重量份计,从而分别制得催化裂化催化剂DC2-DC3。The catalytic cracking catalyst was prepared according to the method of Comparative Example 1 respectively, and the difference was that in step (2), mesoporous silica-alumina material, kaolin, DBY molecular sieve, the second Y-type molecular sieve DASY2.0, the third The feed amounts of Y-type molecular sieve, the first MFI structure molecular sieve, the second MFI structure molecular sieve, pseudo-boehmite and aluminum sol are shown in Table 3 below, wherein the feed amount of each component All are in parts by weight, so as to prepare catalytic cracking catalysts DC2-DC3 respectively.
表3table 3
实施例8Example 8
本实施例用于说明本发明提供的所述催化裂化催化剂。This example is used to illustrate the catalytic cracking catalyst provided by the present invention.
根据实施例3的方法制备催化裂化催化剂,记为C8,所不同的是,改性Y型分子筛的制备方法为:The catalytic cracking catalyst is prepared according to the method of embodiment 3, which is denoted as C8, and the difference is that the preparation method of the modified Y type molecular sieve is:
反应釜中加入以干基计5.0千克NaY分子筛(长岭催化剂厂提供,结晶度86%,骨架硅铝比5.2)和4千克去离子水,激烈搅拌状态下缓慢加入5.12升的氯化稀土溶液(齐鲁催化剂厂提供,RE2O3含量222.5克/升),用4%稀盐酸调节体系pH=3.5,升温至90℃下搅拌1.5小时,过滤,洗涤,干燥;然后在650℃、100%水蒸汽气氛下焙烧2小时,制得“一交一焙”稀土钠Y,记做改性分子筛ABY-2A。Add 5.0 kilograms of NaY molecular sieves on a dry basis (provided by Changling Catalyst Factory, crystallinity 86%, skeleton silicon-aluminum ratio 5.2) and 4 kilograms of deionized water in the reaction kettle, and slowly add 5.12 liters of rare earth chloride solution under vigorous stirring (provided by Qilu Catalyst Factory, RE 2 O 3 content 222.5 g/L), use 4% dilute hydrochloric acid to adjust the pH of the system to 3.5, heat up to 90°C and stir for 1.5 hours, filter, wash, and dry; then at 650°C, 100% Calcined under water vapor atmosphere for 2 hours, the "cross-roasted" rare earth sodium Y was obtained, which was recorded as modified molecular sieve ABY-2A.
取改性分子筛ABY-2A干基2.0千克放入反应釜中,加入1.6千克去离子水,激烈搅拌状态下缓慢加入1.44升的氯化稀土溶液、210克Fe(NO3)3·9H2O固体,用4重量%稀盐酸调节体系pH=3.5,升温至90℃搅拌1小时,过滤,洗涤,干燥,制得本发明所述的第一Y型分子筛,记做ABY-2。Take 2.0 kg of modified molecular sieve ABY-2A dry basis and put it into the reaction kettle, add 1.6 kg of deionized water, slowly add 1.44 liters of rare earth chloride solution, 210 g of Fe(NO 3 ) 3 9H 2 O under vigorous stirring For the solid, use 4% by weight dilute hydrochloric acid to adjust the pH of the system to 3.5, raise the temperature to 90° C. and stir for 1 hour, filter, wash, and dry to obtain the first Y-type molecular sieve of the present invention, which is designated as ABY-2.
荧光法(XRF)测得ABY-2样品中氧化稀土含量为21.2重量%,氧化钠含量为1.3重量%,氧化铁含量为2.4重量%。Fluorescence method (XRF) measured that the rare earth oxide content in the ABY-2 sample was 21.2% by weight, the content of sodium oxide was 1.3% by weight, and the content of iron oxide was 2.4% by weight.
样品吸附三甲基氧化磷(TMPO)后31P MAS NMR分析结果:B酸5.210mmol·g-1,L酸1.078mmol·g-1,合计6.288mmol·g-1。 31 P MAS NMR analysis results of the sample after adsorption of trimethylphosphorus oxide (TMPO): B acid 5.210mmol·g -1 , L acid 1.078mmol·g -1 , total 6.288mmol·g -1 .
样品吸附三丁基氧化磷(TBPO)后31P MAS NMR分析结果:B酸3.159mmol·g-1,L酸1.063mmol·g-1,合计4.222mmol·g-1。 31 P MAS NMR analysis results of the sample after adsorption of tributylphosphorus oxide (TBPO): B acid 3.159mmol·g -1 , L acid 1.063mmol·g -1 , total 4.222mmol·g -1 .
实施例9Example 9
本实施例用于说明本发明提供的所述催化裂化催化剂。This example is used to illustrate the catalytic cracking catalyst provided by the present invention.
根据实施例3的方法制备催化裂化催化剂,记为C9,所不同的是,改性Y型分子筛的制备方法为:Prepare catalytic cracking catalyst according to the method for embodiment 3, be denoted as C9, difference is, the preparation method of modified Y type molecular sieve is:
反应釜中加入干基5.0千克NaY分子筛(长岭催化剂厂提供,结晶度86%,骨架硅铝比5.2)和4千克去离子水,激烈搅拌状态下缓慢加入4.32升的氯化稀土溶液(齐鲁催化剂厂提供,RE2O3含量222.5克/升),用4%稀盐酸调节体系pH=3.5,升温至90℃下搅拌1.5小时,过滤,洗涤,干燥;然后在550℃下焙烧2小时,制得“一交一焙”稀土钠Y,记做改性分子筛ABY-5A。Add 5.0 kilograms of NaY molecular sieves on a dry basis (Changling Catalyst Factory provides, crystallinity 86%, skeleton silicon-aluminum ratio 5.2) and 4 kilograms of deionized water in the reactor, slowly add 4.32 liters of rare earth chloride solution (Qilu Provided by the catalyst factory, RE 2 O 3 content 222.5 g/L), use 4% dilute hydrochloric acid to adjust the pH of the system to 3.5, raise the temperature to 90°C and stir for 1.5 hours, filter, wash, and dry; then bake at 550°C for 2 hours, The "Jiaojiayi" rare earth sodium Y was obtained, which was recorded as modified molecular sieve ABY-5A.
取改性分子筛ABY-5A干基2.0千克放入反应釜中,加入1.6千克去离子水,激烈搅拌状态下缓慢加入0.55升的氯化稀土、40克Fe(NO3)3·9H2O固体、110克CuCl2·2H2O固体,100克氯化铵,用4重量%稀盐酸调节体系pH=3.5,升温至90℃搅拌1小时,过滤,洗涤,干燥,制得本发明所述的改性Y分子筛,记做ABY-5。Take 2.0 kg of modified molecular sieve ABY-5A dry basis and put it into the reaction kettle, add 1.6 kg of deionized water, slowly add 0.55 liter of rare earth chloride, 40 g of Fe(NO 3 ) 3 9H 2 O solid under vigorous stirring , 110 grams of CuCl 2 2H 2 O solid, 100 grams of ammonium chloride, adjust the system pH=3.5 with 4% by weight dilute hydrochloric acid, heat up to 90°C and stir for 1 hour, filter, wash, and dry to obtain the present invention. Modified Y molecular sieve, recorded as ABY-5.
荧光法(XRF)测得ABY-5样品中氧化稀土含量为19.6重量%,氧化钠含量为1.5重重量%,氧化铁含量为0.29重量%,氧化铜含量为1.48重量%。Fluorescence method (XRF) measured that the rare earth oxide content in the ABY-5 sample was 19.6% by weight, the content of sodium oxide was 1.5% by weight, the content of iron oxide was 0.29% by weight, and the content of copper oxide was 1.48% by weight.
样品吸附三甲基氧化磷(TMPO)后31P MAS NMR分析结果:B酸4.471mmol·g-1,L酸0.863mmol·g-1,合计5.334mmol·g-1。 31 P MAS NMR analysis results of the sample after adsorption of trimethylphosphorus oxide (TMPO): B acid 4.471mmol·g -1 , L acid 0.863mmol·g -1 , total 5.334mmol·g -1 .
样品吸附三丁基氧化磷(TBPO)后31P MAS NMR分析结果:B酸2.163mmol·g-1,L酸0.683mmol·g-1,合计2.846mmol·g-1。 31 P MAS NMR analysis results of the sample after adsorption of tributylphosphorus oxide (TBPO): B acid 2.163mmol·g -1 , L acid 0.683mmol·g -1 , total 2.846mmol·g -1 .
实施例10Example 10
本实施例用于说明本发明提供的所述催化裂化催化剂。This example is used to illustrate the catalytic cracking catalyst provided by the present invention.
根据实施例3的方法制备催化裂化催化剂,记为C10,所不同的是,改性Y型分子筛的制备方法为:Prepare catalytic cracking catalyst according to the method for embodiment 3, be denoted as C10, difference is, the preparation method of modified Y type molecular sieve is:
反应釜中加入干基5.0千克NaY分子筛(长岭催化剂厂提供,结晶度86%,骨架硅铝比5.2)和4千克去离子水,激烈搅拌状态下缓慢加入5.10升的氯化稀土溶液(齐鲁催化剂厂提供,RE2O3含量222.5克/升),用4%稀盐酸调节体系pH=3.5,升温至90℃下搅拌1.5小时,过滤,洗涤,干燥;然后在650℃、100%水蒸汽气氛下焙烧2小时,制得“一交一焙”稀土钠Y,记做改性分子筛ABY-4A。Add 5.0 kilograms of NaY molecular sieves on a dry basis (Changling Catalyst Factory provides, crystallinity 86%, skeleton silicon-aluminum ratio 5.2) and 4 kilograms of deionized water in the reactor, slowly add 5.10 liters of rare earth chloride solution (Qilu Provided by the catalyst factory, RE 2 O 3 content 222.5 g/L), adjust the pH of the system to 3.5 with 4% dilute hydrochloric acid, stir at 90°C for 1.5 hours, filter, wash, and dry; Calcined under the atmosphere for 2 hours to obtain "cross-roasted" rare earth sodium Y, which is recorded as modified molecular sieve ABY-4A.
取改性分子筛ABY-4A干基2.0千克放入反应釜中,加入1.6千克去离子水,激烈搅拌状态下缓慢加入1.50升的氯化稀土溶液、135克Fe(NO3)3·9H2O及55克CuCl2·2H2O固体,用4%(质量)稀盐酸调节体系pH=3.5,升温至90℃搅拌1小时,过滤,洗涤,干燥,制得本发明所述的第一Y型分子筛,记做ABY-4。Take 2.0 kg of modified molecular sieve ABY-4A dry basis and put it into the reaction kettle, add 1.6 kg of deionized water, slowly add 1.50 liters of rare earth chloride solution, 135 g of Fe(NO3) 3 9H 2 O and 55 grams of CuCl 2 ·2H 2 O solid, adjust the pH of the system to 3.5 with 4% (mass) dilute hydrochloric acid, heat up to 90°C and stir for 1 hour, filter, wash, and dry to obtain the first Y-type molecular sieve of the present invention , remember as ABY-4.
荧光法(XRF)测得ABY-4样品中氧化稀土含量为22.5重量%,氧化钠含量为1.1重量%,氧化铁含量为0.79重量%,氧化铜含量为0.73重量%。Fluorescence method (XRF) measured that the rare earth oxide content in the ABY-4 sample was 22.5% by weight, the content of sodium oxide was 1.1% by weight, the content of iron oxide was 0.79% by weight, and the content of copper oxide was 0.73% by weight.
样品吸附三甲基氧化磷(TMPO)后31P MAS NMR分析结果:B酸5.317mmol·g-1,L酸1.181mmol·g-1,合计6.498mmol·g-1。 31 P MAS NMR analysis results of the sample after adsorption of trimethylphosphorus oxide (TMPO): B acid 5.317mmol·g -1 , L acid 1.181mmol·g -1 , total 6.498mmol·g -1 .
样品吸附三丁基氧化磷(TBPO)后31P MAS NMR分析结果:B酸3.265mmol·g-1,L酸1.097mmol·g-1,合计4.362mmol·g-1。 31 P MAS NMR analysis results of the sample after adsorption of tributylphosphorus oxide (TBPO): B acid 3.265mmol·g -1 , L acid 1.097mmol·g -1 , total 4.362mmol·g -1 .
测试例1test case 1
将上述催化裂化催化剂C1-C10和DC1-DC3分别在800℃、100%水蒸汽条件下老化8小时,之后填装在小型固定流化床ACE装置(购自美国KTI公司)中评价催化裂化催化剂的反应性能,填装量为9g。然后,在反应温度为530℃、重时空速为10h-1、剂油比(重量)为6的条件下,将表4所示的催化混合油作为原料油,注入所述小型固定流化床ACE装置中进行催化裂化反应。分析反应产物的组成,并根据以下公式计算出转化率,结果如下表5所示:The above-mentioned catalytic cracking catalysts C1-C10 and DC1-DC3 were aged at 800°C and 100% steam for 8 hours respectively, and then filled in a small fixed fluidized bed ACE device (purchased from KTI, USA) to evaluate the catalytic cracking catalysts Excellent reaction performance, the filling volume is 9g. Then, under the conditions of a reaction temperature of 530°C, a weight hourly space velocity of 10 h -1 , and a catalyst-to-oil ratio (weight) of 6, the catalytic mixed oil shown in Table 4 was used as the feedstock oil and injected into the small fixed fluidized bed The catalytic cracking reaction is carried out in the ACE unit. Analyze the composition of reaction product, and calculate conversion rate according to following formula, result is as shown in table 5 below:
表4Table 4
表5table 5
在上述表5中,通过将实施例2与对比例1,实施例3与对比例2,以及实施例5与对比例3分别进行比较可以看出,本发明的所述催化裂化催化剂在对碱性氮含量较高的原料油进行催化裂化处理的过程中表现出相对较高的催化裂化活性,能够获得较高的转化率,特别是能够获得较高的液化气收率。In the above table 5, by comparing Example 2 with Comparative Example 1, Example 3 with Comparative Example 2, and Example 5 with Comparative Example 3, it can be seen that the catalytic cracking catalyst of the present invention is effective against alkali In the process of catalytic cracking treatment of feedstock oil with high content of neutral nitrogen, it shows relatively high catalytic cracking activity, can obtain high conversion rate, especially can obtain high yield of liquefied gas.
实施例11Example 11
按照实施例5的方法制备催化剂,记为C11,不同的是所用第一Y型分子筛制备方法如下:Prepare catalyst according to the method for embodiment 5, be denoted as C11, difference is that the first Y type molecular sieve preparation method used is as follows:
反应釜中加入干基5.0千克NaY分子筛(长岭催化剂厂提供,结晶度86%,骨架硅铝比5.2)和4千克去离子水,激烈搅拌状态下缓慢加入4.20升的氯化稀土溶液(齐鲁催化剂厂提供,RE2O3含量222.5克/升),用4%稀盐酸调节体系pH=3.5,升温至90℃下搅拌1.5小时,过滤,洗涤,干燥;然后在550℃下焙烧2小时,制得“一交一焙”稀土钠Y,记做改性分子筛ABY-11A。Add 5.0 kilograms of NaY molecular sieves on a dry basis (Changling Catalyst Factory provides, crystallinity 86%, skeleton silicon-aluminum ratio 5.2) and 4 kilograms of deionized water in the reactor, slowly add 4.20 liters of rare earth chloride solution (Qilu Provided by the catalyst factory, RE 2 O 3 content 222.5 g/L), use 4% dilute hydrochloric acid to adjust the pH of the system to 3.5, raise the temperature to 90°C and stir for 1.5 hours, filter, wash, and dry; then bake at 550°C for 2 hours, The "Jiaojiayi" rare earth sodium Y was obtained, which was recorded as modified molecular sieve ABY-11A.
取改性分子筛ABY-11A干基2.0千克放入反应釜中,加入1.6千克去离子水,激烈搅拌状态下缓慢加入0.48升的氯化稀土、125克Fe(NO3)3·9H2O固体,100克氯化铵,用4%稀盐酸调节体系pH=3.5,升温至90℃搅拌1小时,过滤,洗涤,干燥,制得本发明所述的改性Y分子筛,记做ABY-11。Take 2.0 kg of modified molecular sieve ABY-11A dry basis and put it into the reaction kettle, add 1.6 kg of deionized water, slowly add 0.48 liter of rare earth chloride, 125 g of Fe(NO 3 ) 3 9H 2 O solid under vigorous stirring , 100 grams of ammonium chloride, adjust the pH of the system to 3.5 with 4% dilute hydrochloric acid, heat up to 90° C. and stir for 1 hour, filter, wash, and dry to obtain the modified Y molecular sieve of the present invention, which is recorded as ABY-11.
荧光法(XRF)测得ABY-11样品中氧化稀土含量为17.1重量%,氧化钠含量为1.7重量%,氧化铁含量为0.84重量%。Fluorescence method (XRF) measured that the rare earth oxide content in the ABY-11 sample was 17.1% by weight, the sodium oxide content was 1.7% by weight, and the iron oxide content was 0.84% by weight.
样品吸附三甲基氧化磷(TMPO)后31P MAS NMR分析结果:B酸4.399mmol·g-1,L酸0.756mmol·g-1,合计5.155mmol·g-1。The results of 31 P MAS NMR analysis of the sample after adsorption of trimethylphosphorus oxide (TMPO): B acid 4.399 mmol·g -1 , L acid 0.756 mmol·g -1 , total 5.155 mmol·g -1 .
样品吸附三丁基氧化磷(TBPO)后31P MAS NMR分析结果:B酸2.100mmol·g-1,L酸0.658mmol·g-1,合计2.758mmol·g-1。 31 P MAS NMR analysis results of the sample after adsorption of tributylphosphorus oxide (TBPO): B acid 2.100mmol·g -1 , L acid 0.658mmol·g -1 , total 2.758mmol·g -1 .
实施例12Example 12
按照实施例2的方法制备催化剂,记为C12,不同的是所用第一Y型分子筛制备方法如下:Catalyst is prepared according to the method for embodiment 2, is denoted as C12, and difference is that the first Y type molecular sieve preparation method used is as follows:
反应釜中加入干基5.0千克NaY分子筛(长岭催化剂厂提供,结晶度86%,骨架硅铝比5.2)和2千克去离子水,激烈搅拌状态下缓慢加入3.16升的氯化稀土溶液(齐鲁催化剂厂提供,RE2O3含量222.5克/升),用4%稀盐酸调节体系pH=3.5,升温至90℃下搅拌1.5小时,过滤,洗涤,干燥;然后在650℃、100%水蒸汽气氛下焙烧2小时,制得“一交一焙”稀土钠Y,记做改性分子筛ABY-12A。Add 5.0 kilograms of NaY molecular sieves on a dry basis (Changling Catalyst Factory provides, crystallinity 86%, skeleton silicon-aluminum ratio 5.2) and 2 kilograms of deionized water in the reaction kettle, slowly add 3.16 liters of rare earth chloride solution (Qilu Provided by the catalyst factory, RE 2 O 3 content 222.5 g/L), adjust the pH of the system to 3.5 with 4% dilute hydrochloric acid, stir at 90°C for 1.5 hours, filter, wash, and dry; Calcined under the atmosphere for 2 hours to obtain "cross-roasted" rare earth sodium Y, which is recorded as modified molecular sieve ABY-12A.
取改性分子筛ABY-12A干基2.0千克放入反应釜中,加入1.6千克去离子水,激烈搅拌状态下缓慢加入1.48升的氯化稀土、15克Fe(NO3)3·9H2O固体、90克CuCl2·2H2O固体,用4%稀盐酸调节体系pH=3.5,升温至90℃搅拌1小时,过滤,洗涤,干燥,制得本发明所述的改性Y分子筛,记做ABY-12。Take 2.0 kg of modified molecular sieve ABY-12A dry basis and put it into the reaction kettle, add 1.6 kg of deionized water, slowly add 1.48 liters of rare earth chloride, 15 g of Fe(NO 3 ) 3 9H 2 O solid under vigorous stirring , 90 grams of CuCl 2 2H 2 O solids, adjust the pH of the system to 3.5 with 4% dilute hydrochloric acid, heat up to 90°C and stir for 1 hour, filter, wash, and dry to obtain the modified Y molecular sieve of the present invention, denoted as ABY-12.
荧光法(XRF)测得ABY-12样品中氧化稀土含量为18.3重量%,氧化钠含量为1.3重量%,氧化铁含量为0.13重量%,氧化铜含量为1.03重量%。Fluorescence method (XRF) measured that the rare earth oxide content in the ABY-12 sample was 18.3% by weight, the content of sodium oxide was 1.3% by weight, the content of iron oxide was 0.13% by weight, and the content of copper oxide was 1.03% by weight.
样品吸附三甲基氧化磷(TMPO)后31P MAS NMR分析结果:B酸4.459mmol·g-1,L酸0.859mmol·g-1,合计5.318mmol·g-1。The results of 31 P MAS NMR analysis of the sample after adsorption of trimethylphosphorus oxide (TMPO): B acid 4.459mmol·g -1 , L acid 0.859mmol·g -1 , total 5.318mmol·g -1 .
样品吸附三丁基氧化磷(TBPO)后31P MAS NMR分析结果:B酸2.151mmol·g-1,L酸0.672mmol·g-1,合计2.823mmol·g-1。 31 P MAS NMR analysis results of the sample after adsorption of tributylphosphorus oxide (TBPO): B acid 2.151mmol·g -1 , L acid 0.672mmol·g -1 , total 2.823mmol·g -1 .
实施例13Example 13
反应釜中加入干基5.0千克NaY分子筛(长岭催化剂厂提供,结晶度86%,骨架硅铝比5.2)和4千克去离子水,激烈搅拌状态下缓慢加入2.50升的氯化稀土溶液(齐鲁催化剂厂提供,RE2O3含量222.5克/升),用4%稀盐酸调节体系pH=3.5,升温至90℃下搅拌1.5小时,过滤,洗涤,干燥;然后在550℃下焙烧2小时,制得“一交一焙”稀土钠,记做改性分子筛ABY-13A。Add 5.0 kilograms of NaY molecular sieves on a dry basis (Changling Catalyst Factory provides, crystallinity 86%, skeleton silicon-aluminum ratio 5.2) and 4 kilograms of deionized water in the reactor, slowly add 2.50 liters of rare earth chloride solution (Qilu Provided by the catalyst factory, RE 2 O 3 content 222.5 g/L), use 4% dilute hydrochloric acid to adjust the pH of the system to 3.5, raise the temperature to 90°C and stir for 1.5 hours, filter, wash, and dry; then bake at 550°C for 2 hours, The rare earth sodium "Jojiaobaked" is obtained, which is recorded as modified molecular sieve ABY-13A.
取改性分子筛ABY-13A干基2.0千克放入反应釜中,加入1.6千克去离子水,激烈搅拌状态下缓慢加入0.48升的氯化稀土、80克Fe(NO3)3·9H2O固体,100克氯化铵,用4%稀盐酸调节体系pH=3.5,升温至90℃搅拌1小时,过滤,洗涤,干燥,制得本发明所述的改性Y分子筛,记做ABY-13。Take 2.0 kg of modified molecular sieve ABY-13A dry basis and put it into the reaction kettle, add 1.6 kg of deionized water, slowly add 0.48 liter of rare earth chloride, 80 g of Fe(NO 3 ) 3 9H 2 O solid under vigorous stirring , 100 grams of ammonium chloride, adjust the pH of the system to 3.5 with 4% dilute hydrochloric acid, heat up to 90° C. and stir for 1 hour, filter, wash, and dry to obtain the modified Y molecular sieve of the present invention, which is recorded as ABY-13.
荧光法(XRF)测得ABY-13样品中氧化稀土含量为10.2重量%,氧化钠含量为2.3重量%,氧化铁含量为0.53重量%。Fluorescence method (XRF) measured that the rare earth oxide content in the ABY-13 sample was 10.2% by weight, the content of sodium oxide was 2.3% by weight, and the content of iron oxide was 0.53% by weight.
样品吸附三甲基氧化磷(TMPO)后31P MAS NMR分析结果:B酸2.370mmol·g-1,L酸0.223mmol·g-1,合计2.593mmol·g-1。 31 P MAS NMR analysis results of the sample after adsorption of trimethylphosphorus oxide (TMPO): B acid 2.370mmol·g -1 , L acid 0.223mmol·g -1 , total 2.593mmol·g -1 .
样品吸附三丁基氧化磷(TBPO)后31P MAS NMR分析结果:B酸1.025mmol·g-1,L酸0.218mmol·g-1,合计1.243mmol·g-1。 31 P MAS NMR analysis results of the sample after adsorption of tributylphosphorus oxide (TBPO): B acid 1.025mmol·g -1 , L acid 0.218mmol·g -1 , total 1.243mmol·g -1 .
对比例4Comparative example 4
取改性分子筛ABY-13A干基2.0千克放入反应釜中,加入1.6千克去离子水,激烈搅拌状态下缓慢加入0.48升的氯化稀土,100克氯化铵,用4%稀盐酸调节体系pH=3.5,升温至90℃搅拌1小时,过滤,洗涤,干燥,制得对比分子筛,记做DBY-8。Take 2.0 kg of modified molecular sieve ABY-13A dry basis and put it into the reaction kettle, add 1.6 kg of deionized water, slowly add 0.48 liter of rare earth chloride and 100 g of ammonium chloride under vigorous stirring, and adjust the system with 4% dilute hydrochloric acid pH = 3.5, heated up to 90°C and stirred for 1 hour, filtered, washed, and dried to obtain a comparative molecular sieve, which was designated as DBY-8.
荧光法(XRF)测得DBY-8样品中氧化稀土含量为10.2重量%,氧化钠含量为2.3重量%。Fluorescence method (XRF) measured that the rare earth oxide content in the DBY-8 sample was 10.2% by weight, and the sodium oxide content was 2.3% by weight.
对比样品吸附三甲基氧化磷(TMPO)后31P MAS NMR分析结果:B酸2.311mmol·g-1,L酸0.235mmol·g-1,合计2.546mmol·g-1。The results of 31 P MAS NMR analysis of the comparative sample after adsorption of trimethylphosphorus oxide (TMPO): B acid 2.311mmol·g -1 , L acid 0.235mmol·g -1 , total 2.546mmol·g -1 .
对比样品吸附三丁基氧化磷(TBPO)后31P MAS NMR分析结果:B酸0.934mmol·g-1,L酸0.209mmol·g-1,合计1.143mmol·g-1。The results of 31 P MAS NMR analysis of the comparative sample after adsorption of tributylphosphorus oxide (TBPO): B acid 0.934mmol·g -1 , L acid 0.209mmol·g -1 , total 1.143mmol·g -1 .
测试例2test case 2
将DBY-8和ABY-13经过2-3次NH4Cl交换,使Na2O含量降至0.3重量%以下,再经800℃/17h、100%水蒸汽老化后用于评价轻油微反活性,参见《石油化工分析方法(RIPP方法)》,科学出版社,1990年。在标准轻柴油原料中不添加或添加1200μg/g的碱性氮化物2-甲基喹啉后,样品的微反活性列于表6中。Exchange DBY-8 and ABY-13 with NH 4 Cl for 2-3 times to reduce the Na 2 O content to below 0.3% by weight, and then aging at 800℃/17h, 100% steam to evaluate light oil microreflection Activity, see "Petrochemical Analysis Method (RIPP Method)", Science Press, 1990. After no addition or addition of 1200 μg/g basic nitrogen compound 2-methylquinoline in the standard gas oil feedstock, the microreaction activity of the samples is listed in Table 6.
表6Table 6
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110332244.6A CN103084205B (en) | 2011-10-28 | 2011-10-28 | Anti-basic nitrogen liquefied gas yield increase cracking catalyst and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110332244.6A CN103084205B (en) | 2011-10-28 | 2011-10-28 | Anti-basic nitrogen liquefied gas yield increase cracking catalyst and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103084205A CN103084205A (en) | 2013-05-08 |
CN103084205B true CN103084205B (en) | 2014-12-03 |
Family
ID=48197634
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110332244.6A Active CN103084205B (en) | 2011-10-28 | 2011-10-28 | Anti-basic nitrogen liquefied gas yield increase cracking catalyst and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103084205B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104888821B (en) * | 2015-04-28 | 2018-01-02 | 中国科学院过程工程研究所 | A kind of hydrogenation of shale oil upgrading catalyst of nitrogen containing high alkalinity |
CN112779050A (en) * | 2019-11-11 | 2021-05-11 | 中国石油天然气股份有限公司 | Processing method of poor-quality catalytic diesel oil |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1506161A (en) * | 2002-12-13 | 2004-06-23 | 中国石油天然气股份有限公司 | Ultrastable rare earth Y molecular sieve active component and preparation method thereof |
CN1854258A (en) * | 2005-04-29 | 2006-11-01 | 中国石油化工股份有限公司 | Cracking catalyst |
-
2011
- 2011-10-28 CN CN201110332244.6A patent/CN103084205B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1506161A (en) * | 2002-12-13 | 2004-06-23 | 中国石油天然气股份有限公司 | Ultrastable rare earth Y molecular sieve active component and preparation method thereof |
CN1854258A (en) * | 2005-04-29 | 2006-11-01 | 中国石油化工股份有限公司 | Cracking catalyst |
Also Published As
Publication number | Publication date |
---|---|
CN103084205A (en) | 2013-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102974383B (en) | Catalytic cracking catalyst and preparation method thereof | |
CN100389174C (en) | A cracking aid for increasing the concentration of propylene | |
CN100537030C (en) | A catalytic cracking additive for increasing propylene concentration in liquefied gas | |
CN103084207B (en) | Anti-basic nitrogen gasoline yield increase catalysis cracking catalyst and preparation method thereof | |
CN103657712B (en) | A kind of catalytic cracking catalyst and preparation method thereof | |
CN102974384B (en) | Catalytic cracking catalyst and preparation method thereof | |
CN104998681B (en) | A kind of assistant for calalytic cracking for improving low-carbon olefin concentration and preparation method thereof | |
CN103657702B (en) | Catalytic cracking catalyst and preparation method thereof | |
CN103086397B (en) | Modified Y type molecular sieve | |
CN103084205B (en) | Anti-basic nitrogen liquefied gas yield increase cracking catalyst and preparation method thereof | |
CN106179476A (en) | A kind of catalytic cracking catalyst and its preparation method and application | |
CN109304222A (en) | Catalytic cracking catalyst for cracking coking wax oil to produce more liquefied gas and preparation method thereof | |
CN102974389B (en) | A kind of catalytic cracking catalyst and preparation method thereof | |
CN103084206B (en) | Anti-basic nitrogen diesel oil yield increase catalysis cracking catalyst and preparation method thereof | |
CN102974388B (en) | A kind of catalytic cracking catalyst and preparation method thereof | |
TWI812773B (en) | Modified Y-type molecular sieve, catalytic cracking catalyst containing it, and its preparation and use | |
JPH08173816A (en) | Catalyst composition for fluidized catalytic cracking of hydrocarbon and its production | |
CN103007992B (en) | Cracking assistant for improving low-carbon olefin concentration | |
CN100395029C (en) | Preparation method of cracking catalyst for reducing gasoline olefin content and producing more liquefied gas | |
CN106179475B (en) | A kind of catalytic cracking catalyst and its preparation method and application | |
JP5426308B2 (en) | Fluid catalytic cracking method | |
CN103084199B (en) | Anti-basic nitrogen olefin reduction cracking catalyst and preparation method thereof | |
CN102974385A (en) | Catalytic cracking catalyst and preparation method thereof | |
CN103506152B (en) | A kind of catalyst processing hydrotreated feed oil | |
CN105148984B (en) | A kind of catalytic cracking catalyst and its preparation method and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |